串行通信总结
rs232通讯协议

rs232通讯协议RS232通讯协议是一种用于串行通信的标准协议,它定义了数据通信的电气特性和信号传输的协议。
RS232通讯协议广泛应用于计算机、工业控制、通信设备等领域,是一种非常重要的通讯标准。
首先,我们来了解一下RS232通讯协议的基本特性。
RS232通讯协议使用串行通信,即一次只能发送一个比特。
它采用了一对差分信号线(TXD和RXD)进行数据传输,其中TXD用于发送数据,RXD用于接收数据。
此外,RS232还定义了数据传输的时序和波特率等参数,确保数据能够准确可靠地传输。
在RS232通讯中,数据是以ASCII码的形式进行传输的。
ASCII码是一种使用7位或8位二进制编码的字符集,它包括了数字、字母、标点符号等字符。
在RS232通讯中,数据通过TXD线发送出去,接收方通过RXD线接收数据,并将其转换为ASCII码进行解析。
除了数据传输外,RS232通讯协议还定义了一些控制信号,用于控制数据传输的流程。
其中,RTS(Ready to Send)和CTS(Clear to Send)信号用于控制发送方和接收方之间的数据流控制,DSR(Data Set Ready)和DTR(Data Terminal Ready)信号用于表示设备的就绪状态,而RI(Ring Indicator)和CD(Carrier Detect)信号则用于表示通讯线路的状态。
在实际应用中,RS232通讯协议需要使用特定的硬件接口来实现数据的传输。
常见的RS232接口包括DB9和DB25两种类型,它们分别使用9针和25针连接器进行数据传输。
此外,为了提高数据传输的可靠性,通常还会使用一些线缆和转换器来适配不同设备之间的接口。
总结一下,RS232通讯协议是一种重要的串行通信标准,它定义了数据通信的电气特性和信号传输的协议。
通过了解RS232通讯协议的基本特性和硬件接口,我们可以更好地理解和应用这一通讯标准,为各种设备之间的数据传输提供可靠的支持。
RS232通讯原理

RS232通讯原理RS232通讯原理是一种串行通信协议,最早由美国电气和电子工程师协会(American National Standards Institute,ANSI)规定,用于计算机和外设之间传输数据。
RS232通常用于短距离(不超过15米)的数据传输,它定义了数据的传输格式、物理接口和电气特性。
1. 传输格式:RS232使用异步传输方式,即数据以字节为单位传输。
每个字节分为起始位(Start Bit),数据位(Data Bit),校验位(Parity Bit)和停止位(Stop Bit)。
起始位将信号从高电平转换为低电平,标志着一帧的开始。
数据位用来传输实际的数据,可以是5至9位。
校验位用于检测数据传输过程中可能出现的错误,常见的校验方式有奇偶校验(Odd Parity)和偶校验(Even Parity)。
停止位用于将信号从低电平转换为高电平,标志着一帧的结束。
2.物理接口:RS232定义了连接计算机和外设的物理插口,常用的插口类型有9针(DB9)和25针(DB25)。
这些插口包括数据传输所需的引脚,如发送数据线(TXD),接收数据线(RXD),数据终端就绪线(RTS),数据设备就绪线(DTR)等。
发送数据线和接收数据线用于双向数据传输,数据终端就绪和数据设备就绪线用于双向通信的协调。
3.电气特性:RS232规定了数据传输的电气特性,包括逻辑电平、电压范围和电流要求。
逻辑电平分为“1”和“0”,通常使用正电平表示“1”,负电平表示“0”。
电压范围在-25V至25V之间,实际使用中通常在-12V至12V之间。
为了确保可靠的数据传输,RS232的发送器和接收器必须能够提供足够的电流。
1.发送端将要传输的数据转换为二进制编码,并根据RS232的数据格式将数据转换为适当的数据帧。
2.发送端将按照数据帧的格式将一帧数据从发送线发送到接收线,并发送起始位,数据位,校验位和停止位。
这些位形成一个双向传输的数据信号。
CAN总线基础知识总结(建议收藏)

CAN总线基础知识总结一、CAN总线简介1、CAN总线(Controller Area Network,控制器局域网)是由德国BOSCH(博世)公司在1986年为汽车而设计的,它是一种串行通信总线,只需两根线CAN_H和CAN_L。
2、隐性(逻辑1)与显性(逻辑0)的概念:CAN总线在数据传输过程中,实际上传输的是CAN_H和CAN_L之间的电位差。
CAN_H只能是高电平(3.5V)或悬浮状态(2.5V),CAN_L只能是低电平(1.5V)或悬浮状态(2.5)V,当CAN_H和CAN_L都为2.5V 时,是隐性,表示逻辑1,当 CAN_H为3.5V、CAN_L都为2.5V时,是显性,表示逻辑0。
表示隐性和显性逻辑的能力是CAN总线仲裁方法的基本先决条件,即所有节点都为隐性时,总线才处于隐性状态;只要有一个节点发送了显性,总线就呈现为显性状态。
3、120Ω电阻:必须在总线的每一节点的CAN_H和CAN_L之间接一个120Ω左右的电阻,以避免出现信号反射。
4、CAN技术规范CAN2.0A和CAN2.0B:CAN2.0A只有标准帧(标识符(ID)有11位);CAN2.0B除了标准帧,还有扩展帧(标识符(ID)有29位)。
5、CAN的国际标准ISO11898和ISO11519:CAN 协议经ISO 标准化后有ISO11898和ISO11519两种标准,它们对于数据链路层的定义相同,但物理层不同。
ISO11898 是波特率为125kbps-1Mbps 的CAN高速通信标准。
ISO11519 是波特率为125kbps 以下的CAN低速通信标准。
高速通信标准和低速通信标准的硬件规格也不一样,所以需要选用不同的收发器。
在收发器的规格书上都会注明高速通信用还是低速通信用,或者是符合ISO11898标准还是ISO11519标准。
6、CAN总线协议只定义了物理层和数据链路层,要将CAN总线应用于工程项目中必须制定上层的应用协议。
plc通信原理

plc通信原理PLC通信原理PLC(可编程逻辑控制器)是一种常用于自动化控制系统中的设备,它通过与其他设备进行通信来实现对工业过程的监控和控制。
PLC 通信原理是指PLC与其他设备之间进行数据交换和通信的工作原理。
一、PLC通信的基本原理PLC通信的基本原理是通过PLC与其他设备之间建立通信连接,在双方之间传输数据以实现信息的交换。
通信连接可以通过串行通信、以太网通信、无线通信等方式实现。
1. 串行通信串行通信是指通过串行接口将PLC与其他设备连接起来进行数据传输。
串行通信的特点是传输速度相对较慢,但可以实现较长距离的通信。
常用的串行通信协议有Modbus、Profibus等。
2. 以太网通信以太网通信是指通过以太网接口将PLC与其他设备连接起来进行数据传输。
以太网通信的特点是传输速度快,可以实现高速大容量的数据传输。
常用的以太网通信协议有Ethernet/IP、Profinet等。
3. 无线通信无线通信是指通过无线网络将PLC与其他设备连接起来进行数据传输。
无线通信的特点是可以实现设备之间的无线连接,方便设备的移动和布线。
常用的无线通信技术有Wi-Fi、蓝牙等。
二、PLC通信的工作流程PLC通信的工作流程可以简单分为数据采集、数据处理和数据传输三个步骤。
1. 数据采集数据采集是指PLC通过各种传感器和执行器对工业过程中的数据进行采集。
采集的数据可以包括温度、压力、流量、位置等各种参数。
PLC通过输入模块将采集到的数据转换成数字信号,以便进行后续处理和传输。
2. 数据处理数据处理是指PLC对采集到的数据进行逻辑运算和控制算法处理。
PLC可以根据预设的控制逻辑对采集到的数据进行判断和计算,并控制输出模块对执行器进行控制。
数据处理的结果可以用于监控工业过程的状态、控制设备的动作等。
3. 数据传输数据传输是指PLC将处理后的数据通过通信接口传输给其他设备。
PLC可以通过串行通信、以太网通信、无线通信等方式与其他设备进行数据交换。
can通信基础知识讲解

can通信基础知识讲解Can通信是一种常见的通信协议,广泛应用于汽车领域。
本文将从Can通信的基础知识入手,介绍Can通信的原理、特点以及应用。
一、Can通信的原理Can通信是Controller Area Network的缩写,即控制器局域网。
它是一种串行通信协议,主要用于在汽车电子系统中传输数据。
Can通信采用差分信号传输,通过两根线(Can_High和Can_Low)来实现数据的收发。
Can_High和Can_Low的电平差异表示二进制数据的0和1。
Can通信采用非归零编码,即数据在传输过程中不会回到零电平,从而减少了传输中的干扰。
二、Can通信的特点1. 高可靠性:Can通信采用冗余校验机制,即每个数据帧都包含有校验和。
接收端在接收到数据帧后会对校验和进行验证,从而保证数据的可靠性。
2. 高效性:Can通信采用了事件触发的方式,只有在需要发送数据时才进行通信,减少了通信的时间开销。
3. 可扩展性:Can通信支持多个节点之间的通信,节点数量可以灵活扩展。
4. 抗干扰性强:Can通信采用差分信号传输,能够有效抵抗电磁干扰和噪声干扰。
5. 实时性好:Can通信的传输速率较快,能够满足实时性的要求。
三、Can通信的应用Can通信广泛应用于汽车领域,主要用于实现汽车内部各个电子控制单元(ECU)之间的通信。
以下是Can通信在汽车领域的一些典型应用:1. 发动机控制单元(ECU)之间的通信:Can通信用于发动机控制单元与其他ECU之间的数据交换,如发动机转速、油耗等数据的传输。
2. 制动系统的控制:Can通信用于制动系统的各个部件之间的通信,如制动踏板、制动盘、制动液位等数据的传输。
3. 车身电子系统的控制:Can通信用于车身电子系统中各个部件之间的通信,如车门、车窗、天窗等设备的控制。
4. 安全系统的控制:Can通信用于安全系统中的各个部件之间的通信,如安全气囊、防抱死制动系统等设备的控制。
四、Can通信的发展趋势Can通信作为一种可靠、高效的通信协议,已经在汽车领域得到广泛应用。
sci串口通信原理 -回复

sci串口通信原理-回复SCI(串行通信接口)是一种常见的串口通信协议,被广泛应用于各种电子设备中。
在本文中,我们将一步一步回答关于SCI串口通信原理的问题,包括它的工作原理、常见的应用场景以及一些技术细节。
首先,让我们来了解SCI串口通信的工作原理。
SCI是一种串行通信接口,它通过使用单一的线路来传输数据。
这条线路被分为两个方向,一个用于传输数据(TX),一个用于接收数据(RX)。
通过在这两个方向上的电位变化,可以实现数据的传输。
SCI串口通信一般使用异步传输模式,即数据按照一个位一个位地传输,每个位之间使用起始位和停止位进行分隔。
在SCI串口通信中,每个数据位通常是8位或9位。
其中,8个数据位中的7个用于传输数据的真正内容,而最高位为校验位。
校验位有助于检测数据传输错误,提高数据传输的可靠性。
在接收端,接收器会比对接收到的校验位和传输过程中计算得到的校验位,以检测并纠正任何可能的错误。
除了数据位外,SCI串口通信还使用两个控制信号:RTS(请求发送)和CTS(清除发送)。
RTS信号由发送端控制,用于请求发送数据。
而CTS 信号由接收端控制,用于指示接收端是否准备好接收数据。
这两个控制信号的使用可以有效地控制数据的传输速率,避免数据传输丢失或溢出的情况发生。
SCI串口通信可以应用于多种场景中。
例如,它常用于个人电脑与其他外部设备之间的通信,如打印机、调制解调器、数码相机等。
此外,它还可以用于嵌入式系统中,如工业自动化、机器人控制、仪器仪表等。
由于SCI串口通信具有简单、可靠、成本低廉等特点,因此在各种场景下都有广泛的应用。
在SCI串口通信中,还有一些技术细节需要考虑。
首先是波特率的选择,波特率表示数据传输速度,常用的波特率有9600、19200、38400等。
选择合适的波特率能够平衡数据传输速度和系统资源的利用率。
其次是数据格式的设置,包括数据位数、校验位和停止位。
不同的应用场景可能需要不同的数据格式设置,需要根据具体需求进行调整。
IIC和SPI通信总结【精选】

• 软件方面 主机程序流程
开始 SPI初始化 MCP2515芯片初始化
写数据
退出
SPI初始化函数中通过TRIS方向寄存器控制时钟线和数据 线都为输出。
通过设置SSPSTAT(同步串行口状态寄存器)和 SSPCON(同步串行口控制寄存器)使单片机工作在主机 状态。
在主程序while循环里不断执行MCP2515_Transmit(void) (数据发送函数)
SPI时钟分析
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构 成,其时序主要是在sck的控制下,两个双向移位寄存器 进行数据交换。 上升沿发送、下降沿接收、高位先发送。 上升沿到来的时候,sdo上的电平将被发送到从设备的寄 存器中。 下降沿到来的时候,sdi上的电平将被接收到主设备的寄 存器中。
由于要使两块单片机通过IIC通信,所以得将两块开发板的 数据线SDA,时钟线SCL分别对应着接起来。
由于IIC是开漏的直接输出,所以得接一个上拉电阻
因为RC3-1连接的是PIC16F877A的RC3端口,而RC3端口 是一个复用端口,它在IIC通信中可作同步串行通信时钟输 入端SCL。而图中P6的SCL通过P11的SCL1来连接U8的SCl, 以此来提供上拉电阻。
void LED_Display(uint8 chosebit,uint8 wdata)
简述串行接口的工作原理以及串行接口的优缺点

串行接口是一种数字接口,用于在计算机系统中传输数字信号或者数据。
串行接口通过一根线依次传输每个位的数据,相比并行接口,串行接口只需要一根线就可以进行数据传输,因此在一些场景中可以节省成本和空间。
本文将首先简述串行接口的工作原理,然后分别对串行接口的优点和缺点进行详细介绍。
一、串行接口的工作原理1. 数据传输串行接口通过一个个数据位的顺序传送数据,每个数据位通过一根线进行传输。
在传输时,数据被分割成一个个数据包,每个数据包由起始位、数据位、校验位和停止位组成。
这些数据包按照一定的规则经过线路传输,接收端再将这些数据包组装还原成原始数据。
而整个过程中,数据包的传输是依赖于时钟脉冲信号的。
2. 时钟信号为了确保接收端能够正确地接收和理解发送端的数据,串行接口需要一个时钟信号来进行数据的同步。
时钟信号在数据传输的过程中充当了一个重要的角色,确保发送端的数据能够被准确地读取和复原。
3. 带宽利用串行接口能够更好地利用带宽,因为它只需要一根线来进行数据传输。
在一些对带宽有限制的环境下,串行接口可以更好地满足需求。
二、串行接口的优缺点串行接口作为一种常见的数字接口,在许多设备中被广泛使用。
其优缺点如下:优点:1. 使用简单串行接口只需要一根线进行数据传输,在设计和使用上相对简单。
这对于一些资源有限的情况下尤为重要,比如在一些嵌入式系统中,串行接口能够更好地满足需要。
2. 抗干扰能力强因为串行接口只需要一根线进行数据传输,相比并行接口,串行接口在传输过程中对于干扰的抵抗能力更强。
这使得串行接口能够更好地适用于电磁干扰严重的环境。
3. 长距离传输串行接口可以支持较长的传输距离,这对于一些需要进行长距离数据传输的场景非常重要。
缺点:1. 传输速率低由于串行接口是逐位传输数据的,因此在相同条件下,它的传输速率往往比并行接口要低。
这意味着在需要进行高速数据传输的场景下,串行接口可能无法满足需求。
2. 数据传输效率低串行接口在数据传输的过程中需要进行数据包的分割和再组装,这会导致数据传输的效率较低,尤其在大批量数据传输的情形下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串行通信总结
我们都知道在现实应用中,各种控制器之间需要进行数据交换,而大部
分的数据交换都是通过串行通信实现的。
如今,串行通信已经发展的比较成熟,如RS232,RS485,CAN,SPI,IIC,USB 等都是常见的串行通信技术。
RS232 的通信协议与微控制器uart 串口通信协议(我们常说的数据链路层)一致,只是
电平在0,1 的定义上(我们常说的物理层)有所差别。
uart 中端口对GND 低
电平代表0,端口对GND 高电平(+5V)代表1,而RS232 中用-15V~-3V 代表
逻辑1,3V~15V 代表逻辑0。
物理层对逻辑0,1 电压的限制比较高,同时是单线电平信号,抗干扰能力表弱,不适用与长距离通信。
虽然uart 支持多机通信,
但是RS232 一般用在短距离点对点通信的应用场合(可能是通信距离短组建不
了多机通信网络吧)。
RS485 是应用在多机通信应用比较多的通信方式。
在工业控制中,RS485 的数据链路层也是基于Uart 上的,只不过在物理层的逻辑0,1 定义上是采用差
分信号的。
RS485 一般有AB 两根线,当A-B=2V~6V 为逻辑1,A-B=-2V~-6V 为逻辑0。
由于RS485 采用差分信号传输数据,抗干扰能力强,传输距离远。
由RS485 协议组建的多机通信网络中,一般有一个主机,N(N Can 总线技术是另一类多机串行通信技术。
CAN 通信技术可以组建多达110 多个点的多点通
信网络。
这里插入一份开放系统互连模型的分层定义表。
Can 总线的在物理层与RS485 类似,也是采用两根数据线CANH,CANL 传
输差分信号,CANH-CANL=0 代表隐性(相当于逻辑1),CANH-CANL 有一
个比较大的差值时代表显性(相当于逻辑0)。
具体数据链路层的定义与RS485。