雷达技术的发展趋势概述

雷达技术的发展趋势概述

雷达技术的发展趋势概述

随着微波、计算机、半导体、大规模集成电路等各个领域科学进步,雷达技术在不断发展,其内涵和研究内容都在不断地拓展。本文从雷达基础知识出发,对雷达技术发展趋势进行概述。

?雷达的基础内容

?雷达的种类繁多,分类的方法也非常复杂。按结构分可以分为单基地、双基地、多基地(网络化雷达),其获取的信息通常可以有角度(方位)、时间(距离)、频率(多普勒、速度)等;

?从其天线类型来说一般可以分为机械扫描、无源阵列、有源阵列、数字阵列,还有比较先进的数字波束生成(DBF)、分布式协同定位等新的技术形式;?从其发射的信号样式来说一般可以分为连续波、调频连续波、脉冲、线性调频等常见的信号样式,还有跳频、编码(巴克码)、脉内调制、超宽带、OFDM 等新的信号样式;

?信号处理技术除了相关/非相关处理等常规的处理方法外,还包括空时自适应(STAP)、多输入多输出(MIMO)、合成孔径(SAR/ISAR/CSAR)、合成脉冲与孔径(SIAR)和以人工智能为技术基础的自适应/认知雷达信号处理技术。

?雷达功能也由单一功能慢慢演变成多任务、多功能雷达系统。雷达使用的器件也由当初的晶体管发展成GaAs/ GaN/ SiGe的器件。

?雷达的部署方式通常有固定、机载、岸基移动、舰载、空间、协同、分布式、便携等。

?雷达的主要应用有监视(空中、海面、陆地、太空)、空中管制、火控、地面动目标检测、成像/测绘、导航和引导(高度计,地形跟踪,自动,自动地面车辆等)、气象、穿墙(地)、周边安全、执法、运动等。

机载预警雷达发展趋势分析

工程设计作业—机载预警雷达发展趋势分析

班级:020831 学号:02083052 姓名:王得帅 摘要经过几十年的发展, 机载预警雷达技术取得了很大进

步文中介绍了国外典型机载预警雷达的发展现状,并针对新的作战环境下机载预警雷达面临的技术问题,分析了机载预警雷达的发展趋势,最后对机载预警雷达的发展提出了一些建议。 关键词机载预警雷达; 杂波抑制; 反隐身; 抗干扰; 相控阵 0引言 预警机将雷达装上飞机, 利用飞机平台的飞行高度克服地球曲率对观测视距的限制, 消除雷达盲区,扩大低空和超低空探测距离,发现更远的敌机和导弹,为防空系统提供更多的预警间其雷达称为机载预警雷达预警机不仅具有全空域的远距离探测能力, 还具有机动性好,生存能力强, 布防灵活等特点, 因此成为现代高技术信息化战争不可缺少的战略装备由于机载预警雷达架设在高空飞行的飞机上, 因而其优越性是地基雷达所无法比拟的然而, 雷达升空后, 下视工作加平台运动带来了地杂波频谱扩展问题,雷达安装在飞机上对雷达系统也出了许多限制(如对雷达体积重量和功耗的限制 ), 技术难度很大,能够自主研制高性能机载预警雷达的国家屈指可数美国经过几十年的发展, 形成了 E 2 E 3 2个系列的预警机,并在多次战争中发挥重要作用根据在使用中出现的问题,美国还在不断对这两种型

号的雷达进行改进以提高性能此外,随着现代电子技术和飞行器隐身技术的迅速发展,机载预警雷达未来的主要作战对象将是隐身性能和飞行性能俱佳的第 4代战机, 以及低空高速飞行的低雷达散射截面(RCS)巡航导弹,而实际电子战环境中还存在着多种形式的干扰等, 对下一代机载预警雷达技术的发展提出了更高的要求 1国外典型机载预警雷达 美国海军是最早使用预警机的军种, 由于在 194年珍珠港事件中蒙受重大损失,美国海军认识到地面舰载雷达的局限性, 决定把当时较先进的 AN /APS 2雷达安装在复仇者鱼雷轰炸机上, 这就是著名的Cadillac计划, AN /APS 20也就成为了现代机载预警雷达的雏形,它基本相当于把普通的地面脉冲雷达搬到飞机平台上雷达升空可以解决视线受地球曲率遮挡,而在高速飞行的条件下,随之带来的就是地杂波频谱扩展问题,采用动目标显示 (MTI)技术的普通脉冲雷达的探测性能受到极大的限制,而多普勒( PD)技术可用来解决机载雷达强杂波背景下检测空中运动目标,它通常发射一组较高重复频率( PRF)的相参脉冲信号,每个距离门设置一组滤波器,对接收到的回波信号进行多普勒滤波,从而对地杂波进行有效的抑制,以

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

卫星互联网的大国角力

卫星互联网的大国角力 一场由技术革新和商业资本驱动的卫星互联网发展浪潮席卷全球。然而值得我们注意的是,我国卫星互联网发展面临基础相对薄弱、业务统筹不够和产业生态有待优化等挑战,在卫星互联网这场“暗战”中还需要迎头赶上。 卫星互联网正在全球范围内掀起一股热潮,吸引了各方力量的加入,同时也推动了技术的进步。 由于卫星互联网地位的日益凸显,各国纷纷加快了卫星互联网的布局。美国前总统奥巴马在“先进无线通信研究计划”中提出促进地面移动通信系统与卫星通信 系统的无缝融合,推动新一代空天地一体化通信网络建设和军民共用通信系统构建。2016年年底,美国白宫宣布投资5000万美元的创新基金用于推动小卫星的发展。英国于2017年1月发布了卫星和空间科学领域的空间频谱战略,并将对卫星宽带使用和普遍服务的进展进行监督。与此同时,英国还计划放宽非同步轨道卫星的频谱使用,考虑引入新业务,提高卫星通信频谱利用率。澳大利亚则于2016年12月发布“超高速宽带基础设施”立法草案,内容涵盖了为国家卫星宽带网络提供长期资金支持。其他国家,如俄罗斯、巴西、新西兰、缅甸和智利等,也相继启动向边远地区、农村、岛屿提供卫星互联网覆盖的计划。 伴随着卫星互联网成为新的热点,该技术本身也在不断革新。自2014年以来,全球范围内至少提出了6个大型中低轨卫星星座项目。 卫星互联网的兴起,商业力量功不可没,多方都在拼抢这一互联网的新入口。 为了抢占未来发展先机,频率轨道资源成为关注焦点。面对有限的频率轨道资源和动辄上千颗的卫星星座部署,拥有频率和轨道资源成为发展的关键。 迎头赶上打造成熟产业生态 客观来看,我国卫星产业已取得长足进展,但是在构建互联网领域仍存在一定的差距,需要迎头赶上。 目前,我国卫星产业在卫星发射、卫星制造和卫星应用等方面都取得了突破。其一,我国卫星总数已居世界前列。最新统计数据显示,我国的卫星总数超过了190颗,占地球卫星总数的13%,与美国之间的差距正在缩小。其二,我国企业纷纷在宽带通信卫星领域进行布局。2015年9月,航天科工集团联合航天企业、通信设备企业等提出“福星计划”,构建天基互联网;2016年7月,航天科技集团启动建设高通量宽带卫星通信系统,预计投资100亿元;近期,中国卫通成功发射Ka频段高通量卫星“中星16号”,并将逐步投入使用。 与国外相比,我国卫星互联网发展还存在一定差距,主要体现在以下三个方面:第一,卫星互联网发展基础相对薄弱。一方面我国卫星通信网络建设以国土及周

2020年智能交通系统激光雷达行业分析

2020年智能交通系统激光雷达行业分析 一、行业概况 (2) 二、行业竞争状况 (3) 1、SICK (4) 2、IBEO Automotive Systems GmbH (4) 3、Velodyne Lidar (4) 4、速腾聚创 (4) 5、禾赛科技 (5) 6、思岚科技 (5) 三、行业主要壁垒 (5) 1、技术与人才壁垒 (5) 2、资质壁垒 (6) 3、资金壁垒 (6) 4、品牌和客户资源壁垒 (7)

一、行业概况 智能交通系统(即ITS-Intelligent Transportation System)是将信息技术、计算机、数据通信、传感器、电子控制、自动控制、人工智能、运筹学等技术有效集成运用,对交通管理、交通运输、公众出行等交通领域全方位以及交通建设管理全过程进行管控支撑,使交通系统在区域、城市各时空范围内具备感知、互联、分析、预测、控制等能力,以充分保障交通安全、发挥交通基础设施效能、提升交通系统运行交流和管理水平。 智能交通行业是以智能交通系统为载体,智能交通服务为最终目标的、相互关联的增值活动企业个体所组成的企业群,其构成包括智能交通信息采集与处理设备制造商、智能交通信息服务集成商、智能交通信息服务提供商、智能交通信息通信网络运营商、智能交通信息服务和管理终端设备制造商及其软件系统开发商、交通工具生产商和政府管理部门等。其中,智能交通信息采集与处理设备是整个智能交通系统尤为重要的环节,智能交通信息采集与处理设备利用先进传感技术、电子控制技术、现代微波通信技术、嵌入式软硬件技术等,采集并处理交通基础数据,将信息按照一定的接口和编码规范输出给智能交通信息管理应用平台,为使用者和管理者提供应用依据,对智能交通系统和服务的质量起着先导作用。我国政府积极出台相关政策,快速促进智能交通行业发展。政府、行业和企业协力促进智能交通行业的技术革新、标准制定和产品研发。我国开展一系列的示范项目,

天基雷达技术发展概况资料

雷达论文 —天基雷达技术发展概况 学院:电子工程与光电技术学院专业:通信工程 班级:11042201 学号:1104220110 姓名:史倩霞 指导老师:顾陈

天基雷达技术发展概况 摘要:本文详细地介绍了国内外天基雷达技术发展现状,归纳总结了发展天基雷达的关键和难点技术,最后阐述了天基雷达的发展前景。关键字:天基雷达合成孔径雷达 引言 天基雷达( Space-based Radar,SBR)是指工作在地球大气层之外的各种雷达系统,能对空中及地面动目标进行跟踪,可以提供大的监视范围,一般工作在微波段。天基雷达能够全天候、在各种天气下进行工作,具有大范围、高精度的探测能力,可以进行遥感探测、还可以对舰船、交通工具、飞行器等运动目标进行跟踪监视。天基雷达是由多颗卫星组成的星座,具有对地球进行连续覆盖的能力,可以对机载系统不能进入的地区进行覆盖,完成预警、遥感、控制、空间探索等任务,具有光学系统和一般地基雷达、机载雷达不具备的能力。天基雷达是一种全新体制的雷达,天基雷达技术研究是当今世界最前沿科学领域之一。 国外天基雷达发展情况 1 美国SBR发展现状 美国在SBR的霸主地位不可动摇,它目前面临的一个核心挑战是通过性能更优的雷达和其他传感系统,更准确地预测针对美国的任何攻击并发展反攻击能力。美国空军正在加紧推进天基雷达项目。天基雷达计划是美军为实施转折性空间力量增强战略的一项具体内容。该计划的任务是建造一个由8一l0颗雷达成像卫星组成的系统,卫星上

主要有效载荷为合成孔径雷达和动目标指示器(MTI),旨在为美国分布在全球的武装部队提供实时的战术和战场信息。它将与空基(机载)E一8联合监视目标攻击雷达系统(JSTARS)和无人机(UAV)协同工作,成为空、天、地一体化的情报、监视与侦察(ISR)系统的重要组成部分。为了开发天基雷达成像卫星,美国空军于2001年提出了天基雷达计划。该计划拟建成的星座的卫星数量为8~l0颗,比“发现者一2”计划减少了约2/3。两者最重要的区别在于天基雷达计划不需要经过演示验证,而是一步到位,直接建立实用星座。美国空军在天基雷达卫星的关键技术上已经取得了长足的进展。诺斯罗普·格鲁曼、哈里斯和罗马3家公司接受了美国国防先进研究计划局(DARPA)的委托,正在开展有关天基雷达方案“创造性天基雷达技术”的研究以及轻质量天基雷达天线的研制。如果天基雷达计划执行得顺利,将于2012~ 20l3年投入使用。 2 日本SBR发展现状 FI本为了对付“周边事态”和建立自主的天基情报侦察系统,于2003年3月发射了一颗光学侦察卫星和一颗雷达侦察卫星,其中光学侦察卫星的分辨率为1 m,雷达侦察卫星的分辨率为3 m,并具有全天时、全天候侦察和一定的识别伪装能力。到2020年前后,日本将进一步加强天基军用侦察和军事通信能力,能够建立和使用包括侦察监视、通信广播、导弹预警、导航定位和气象预报等种类齐全、功能强大的军用航天体系。日本雷达侦察卫星与天线如图所示。

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

雷达发展历程和相控阵雷达未来发展趋势研究

雷达发展历程和相控阵雷达未来发展趋势研究 发表时间:2017-11-30T08:37:41.610Z 来源:《电力设备》2017年第21期作者: 1徐国星 2欧海峰[导读] 摘要:雷达作为一种军民两用的电子传感器被广泛应用,其首要任务就是探测目标,要求能够在复杂的环境下,以一定的数据率 (陆军31635部队60分队广西桂林 541000) 摘要:雷达作为一种军民两用的电子传感器被广泛应用,其首要任务就是探测目标,要求能够在复杂的环境下,以一定的数据率,在一定的范围内及时发现、识别、稳定跟踪目标。但是随着环境复杂化、目标多样化、任务多元化,特别是一些隐身目标,低空低速高空高速目标的出现,促进了雷达技术的不断发展。本文就雷达发展的历程及相控阵雷达未来发展的趋势进行阐述,以供参考。 关键词:相控阵雷达;发展历程;发展趋势 1雷达发展历程概述 雷达诞生于上个世纪30年代,先后经历了二次世界大战、新军事革命、冷战军备竞赛等不同历史时期,随着时间的推移和各种因素的促进,雷达不论在理论、体制、方法,还是应用上都得到了很大的发展。总体来说,雷达发展的历程可分为四个阶段:第一阶段为上个世纪30年代至50年代,当时雷达典型的技术特点为电子管、非相参,探测目标以飞机为主;第二个阶段为上个世纪50年代至80年代,防空作战对雷达的精确引导技术提出了更高的要求,稳定性和可靠性较高的全相参微波雷达逐渐替代了非相参技术体制的微波雷达,其技术特征主要是半导体、全相参(见图1);第三阶段为上个世纪80年代到上个世纪90年代,为满足现代空战对雷达高精度、高抗干扰能力、高可靠性、高分辨率、多目标跟踪能力等要求,开始发展大规模集成电路、全固态、相控阵技术,从而有效应对复杂电磁环境下低空高速目标的要求;第四个阶段开始于本世纪初期,雷达技术主要向多功能、自适应、目标识别等方面发展,以应对隐身目标、高空高速、低空低速目标的出现。 2相控阵雷达关键技术 2.1射频技术 射频技术是指其使用多种材料和T/R组件来提升雷达在不同射频波段的功率性能和抗噪声性能。在阵列天线上,砷化镓(GaAs)单片微波集成电路制成的T/R组件已普遍应用,技术十分成熟。随着宽禁带半导体技术的进展,在相控阵雷达上,碳化硅和氮化镓(GaN)单片微波集成电路制成的T/R组件已开始使用。GaN用于相控阵雷达比GaAs优越之处在于:高的能量禁带、高的击穿场强、在小芯片尺寸上具有高的射频密度、可用作宽带放大器、高的电源偏压、高热导性、高的抗辐射性能等。GaN单片微波集成电路在S波段T/R组件的应用比较成熟,但由于下一代MPAR工作频率的提高,对于功率、效率、可靠性等都提出了更高的要求,需要进一步研发超高效率的GaN功率放大器、低成本的非密封表面安装组件、高动态范围低噪声放大器、小型而廉价的射频集成电路,以及研究提高T/R组件功率密度、改善输出功率、降低功耗、提高工作电压、降低直流分布损耗、提高系统效率等技术。 2.2子阵列集成技术 该技术可提升相控阵天线的一次成功概率,降低经济成本。其可以通过表面安装技术与电路板组件封装相结合,通过嵌入式处理方式将波束形成、功率控制等集成到模块中,然后利用印制电路板技术一次成型。 2.3多波束形成技术 该技术是相控阵雷达的核心技术之一,其以数字技术为基础,可以直接应用微波集成采技术对信号进行高精度抽样与检测,可以在S 波段中实现多波束形成。形成多波束的方法有多种,主要取决于雷达的需求与其实现的技术基础。随着数字技术和大规模数字与模拟集成电路技术的进步,数字多波束形成技术已开始应用于相控阵雷达中。 2.4双极化技术 雷达对目标对象的识别、反隐以及干扰抑制等都是通过对目标回波的极化特性进行判断来实现的。相控阵雷达的双极化技术可以为每个阵元分配一组共两个互相独立的极化通道,然后利用天线阵元的双通道特性来获得差动反射率的偏差,增强目标的极化特征。 2.5多输入输出技术 MIMO雷达技术起源于20世纪90年代法国的米波稀布阵综合脉冲孔径雷达,到21世纪初才提出MIMO雷达的概念。它可以利用雷达天线阵列的多天线特性向空域目标发射多束探测信号,然后对回波信号进行分集接收和数据融合处理,实现参数可识别性能的提升和发射方向图的设计。在现代战争中,MIMO雷达在低截获、反隐身、抗反辐射导弹和抗干扰等性能上具有明显的优势,是目前最为接近低截获概率雷达性能的一种新体制雷达,对目标还具有距离、方位、俯仰、速度诸元测量能力,已受到雷达和电子战领域的重视。 3相控阵雷达的发展趋势 3.1 AESA技术正得到广泛应用 AESA技术已广泛应用于各个领域的MPAR中,如陆基防空雷达、机载SAR、战斗机雷达。今后的发展趋势是用宽禁带半导体器件制作T/R组件和采用共形结构集成天线。GaN相对GaAs的优越性在前面已经介绍,这里不再赘述。共形结构集成天线可有效利用辐射能量,并具有高度模块化的体系架构、高度可靠性和可维护性、低的全寿命周期成本,以及减小的RCS。

雷达模拟器的未来发展趋势

雷达模拟器未来发展趋势 班级:***************班 学号:***** 作者:薛飞 摘要:本文通过雷达的发展简史、计算机模拟技术发展历史及趋势、电子游戏画面引擎技术和雷达模拟器的相关图形学原理作为参考依据,通过类比的方法和引用未来电子画面渲染技术的发展方向来分析和推测雷达模拟器的未来几年的发展趋势。 关键词:雷达电子计算机模拟技术模拟软件游戏引擎 0 引言 雷达:是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置…… 计算机模拟:是利用计算机进行模拟的方法。利用计算机软件开发出的模拟器,可以进行故障树分析、测试VLSI逻辑设计等复杂的模拟任务…… 1 雷达的发展历史及现状 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。 二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。 后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。还有一种精神感应雷达,该雷达能够对人类在脑电波起反应,对人体的生命迹象进行感知。 当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标 进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。 自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。 雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。以地面为目标的雷达可以探测地面的精确形状。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面也显示出了很好的应用潜力。

泛在互联网专题报告:泛在网络,万物智联

泛在互联网专题报告:泛在网络,万物智联 一、行业回顾(略) 1.1受新冠疫情影响,通信行业一季度承压 1.2新基建政策力推,5G建设呈现加速态势 1.3通信指数先扬后抑,实体清单引发担忧 二、投资展望 国家重视新基建,政策力推,从二季度开始新基建各项工作加速展开,预计最终将反映在业绩上。以5G为例,电信运营商二季度的建设节奏明显加快,5G 二期基站需求量中的近80%在二季度完成供货,因此5G产业链相关公司二季度业绩具备兑现基础。但需要关注的是:一是二季度5G基站发货量大,对于基站设备的上游供应商,其业绩可能在二季度就有较好的表现,例如PCB、光模块、基站天线、基站滤波器等;二是5G主设备,包括基站与传输设备,由于发货更多集中在6月份,且运营商需要开通后才能确认收入,因此可能业绩更多兑现在三季度。此外,云计算板块在疫情带动在线消费快速发展的基础上,上半年表现也较好。 回顾4G周期,4G商用后第7个月起,通信指数表现逐步向好。我们认为,这与4G商用后网络开始规模建设,经历6个月左右的建网周期业绩开始兑现有关。2013年12月18日,中国移动率先宣布4G商用,但当时的商用城市范围有限,直到2014年6月,中国移动的4G商用范围才扩大至所有地级市城区。参考历史,中国5G的商用时间为2019年10月31日,当时的商用范围也仅在部分城市,5G商用后的第7个月为今年6月。

因此,我们认为目前通信行业已经进入业绩兑现阶段,叠加疫情影响下,相对的高增更难能可贵,建议抓新基建相关的中报行情,尤其是5G、云计算两个板块,其中光模块将是首选,然后是5G与云设备商。此外,海上风力发电抢装带来海缆需求爆发,叠加光纤光缆行业触底,特高压建设带动电缆需求较好,相关公司建议重视。展望下半年,我们认为两条投资主线值得关注。一是泛在网络,5G公网(运营商负责建设与运营)之外,铁路无线专网与卫星互联网值得关注;二是万物智联,其中智能汽车、智能制造相关领域是重点。 此外,科技碰撞可能将是常态,市场短期可能需要业绩来消化,中长期来看,我们需要关注自主创新中的潜力标的,同时在华为受限情况下,市场补缺者可能相继出现,也需关注市场格局变化带来的投资机会。

雷达发展史

雷达发展史 雷达的基本概念形成于20世纪初。但是直到第二次世界大战前后,雷达才得到迅速发展。早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。 1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。 第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。就使用的频段而言,战前的器件和技术只能达到几十兆赫。大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。1939年,英国发明工作在3000兆赫的功率,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。在高炮火控方面,美国研制的精密自动跟踪雷达SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。 40年代后期出现了动目标显示技术,这有利于在地杂波和云雨等杂波背景中发现目标。高性能的动目标显示雷达必须发射相干信号,于是研制了功率、、前向波管等器件。50年代出现了高速喷气式飞机,60年代又出现了低空突防飞机和中、远程导弹以及军用卫星,促进了雷达性能的迅速提高。60~70年代,电子计算机、、和大规模数字集成电路等应用到雷达上,使雷达性能大大提高,同时减小了体积和重量,提高了可靠性。 在雷达新体制、新技术方面,50年代已较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术等;60年代出现了;70年代固态相控阵雷达和脉冲多普勒雷达问世。在中国,雷达技术从50年代初才开始发展起来。中国研制的雷达已装备军队。中国已经研制成防空用的二坐标和三坐标警戒引导雷达、地-空导弹制导雷达、远程导弹初始段靶场测量雷达和再入段靶场测量与回收雷达。中国研制的大型雷达还用于观测中国和其他国家发射的人造卫星。 在民用方面,远洋轮船的导航和防撞雷达、飞机场的航行管制雷达以及气象雷达等均已生产和应用。中国研制成的机载合成孔径雷达已能获得大面积清晰的测绘地图。中国研制的新一代雷达均已采用计算机或微处理器,并应用了中、大规模集成电路的数字式信息处理技术,频率已扩展至毫米波段。① 尽管雷达在二战时发展迅速,但追根溯源,此前的科学家运用他们的智慧为此创造了必要的条件。让我们来看下面的简史: 1842年多普勒(Christian Andreas Doppler)率先提出利用多普勒效应的多普勒式雷达。 1864年马克斯威尔(James Clerk Maxwell)推导出可计算电磁波特性的公式。 1886年赫兹(Heinerich Hertz)展开研究无线电波的一系列实验。1888年赫兹成功利用仪器产生无线电波。

毫米波雷达的应用及发展趋势

87 科协论坛·2009年第1期 (下)科研探索 与知识创新 1 引言 最初,对发展毫米波雷达的推动力主要来自于用小口径天线即可获得比微波雷达更窄的天线波束,更高的天线增益。窄波束具有高分辨率和由于空间选择性好而带来的高抗干扰能力。近年来海湾战争、科索沃战争的实践已经表明,“远程打击,精确打击”技术在军事应用中非常重要,高精度、高分辨率测量、精确制导和精确目标指示、实现自动目标识别(ATR)等需求对毫米波(MMW)雷达的发展提供了巨大的新的推动力。毫米波雷达的应用主要限制在近程雷达上,其主要原因有两个:一是难以获得要求的高发射功率和相应的低损耗传输馈线;二是毫米波在大气中传输时损耗大,例如,在8mm 和3mm 窗口,单程传播损耗分别为0.08dB/km 和0.3dB/km 左右。 2 毫米波雷达的系统概念 如图1所示,发射信号按雷达计算机控制的速率,通过双工器输出。回波信号的返回时间也由该计算机控制,该信号被输入到接收机,在此,它经下变频处理并采样。得到的信号由数字脉冲压缩系统压缩处理。该数字信号被记录在一个“廉价硬盘冗余阵列”(redundant array of inexpensive disks)(RAID)记录系统上,并且也输入到一个阵列处理机上, 该阵列处理机对这些数字实施综合处理。 3 毫米波雷达的优缺点 (1)毫米波雷达的优点与其他传感器系统比较,毫米波雷达有如下优点:1)高分辨率,小尺寸;由于天线和其他的微波元器件尺寸与频率有关,因此毫米波雷达的天线和微波元器件可以较小,小的天线尺寸可获得窄波束;2)干扰,大气衰减虽然限制了毫米波雷达的性能,但有助于减小许多雷达一起工作时的相互影响;3)与常常用来与毫米波雷达相比的红外系统相比,毫米 波雷达的一个优点是可以直接测量距离和速度信息。 (2)毫米波雷达的缺点1)与微波雷达相比,毫米波雷达的性能有所下降,原因如下:①发射机的功率低;②波导器件中的损耗大;2)与天气的关系很大,降雨时更为严重;3)在防空环境中,不可避免的会出现距离模糊和速度模糊;4)毫米波器件昂贵,不能大批量生产装备。 4 毫米波雷达的应用需求与特征4.1 对毫米波雷达的应用需求 (1)进行高精度、高分辨测量,精确制导和目标指示;(2)获得宽带信号与增大回波信号多普勒带宽;(3)获得高天线增益,获得高雷达能量(发射机平均功率,发射天线增益和接收天线口径的乘积,即PavGtAr); (4)获得精细的距离———多普勒图像和目标识别;(5)测量复杂目标的结构;(6)改善雷达的抗干扰能力;(7)观测小尺寸目标;(8)空间雷达,空间飞行器交汇雷达;(9)受体积、重量严格限制的平台上的雷达,例如安装在坦克、导弹、飞机,特别是直升机和无人机等上的雷达,例如导弹上的寻的头,机载地形跟随,地形回避等; (10)低角跟踪、测高、抑制多径干扰;(11)毫米波无源探测。4.2 毫米波对目标高精度探测 目标的高分辨测量,在纵向距离维,主要依靠大的雷达信号瞬时带宽(Δf=1GHz),其理论距离分辨Δθ。 ΔRcr=λ/(2Δθ) 由于毫米波雷达波长比微波雷达短许多,故为获得同样的ΔRcr ,Δθ可相应降低,因而实现转角Δθ所需的目标飞行时间(亦称雷达观察时间)也相应降低,这对在远距离高机动飞行目标(例如在空间变轨的卫星和导弹目标)进行成像特别有意义。为了说明这一点,若设目标相对于雷达的切向飞行速度为υtang ,目标至雷达的距离为Rt ,为实现要求的横向分辨率ΔRcr 所需时间为Tobs ,则有:Tobs=λRt/(2υtang ΔRcr)。图2中a为对λ=8.57mm ,图中b为对λ=3cm 时要求的观察时间Tobs 与目标相对于雷达的切向飞行速度Vtang 的关系图。将来Rt设为1000km ,要求的△Rcr 为0.3m。由此不难看出,如果目标远离雷达,即使是对高速飞行导弹目标,为了获得很高的横向分辨率,对雷达观察时间的要求仍是很高,因此,即使采用X波段,仍嫌不够,必须毫米波波段雷达。 毫米波雷达的应用及发展趋势 □ 刘荣丰 李 博 (91550部队第210所 辽宁·大连 116023) 摘 要 毫米波雷达具有导引精度高、抗干扰能力强、多普勒分辨率高、等离子体穿透能力强等特点;因此其广泛的用于末制导、引信、工业、医疗等方面。本文评述了毫米波雷达的优缺点,以及它的应用,详细阐述了军用毫米波雷达发展的新技术和新方法。 关键词 毫米波 毫米波雷达 毫米波集成电路 毫米波雷达应用 中图分类号:TN95 文献标识码:A 文章编号:1007-3973(2009)01-087-02

经典雷达资料天基雷达SBR系统和技术2

SBR系统的优缺点 当传感器要完成探测太空、海洋和空中目标任务及完成导弹防御任务时,可考虑使用SBR。与陆基雷达相比,这些部署在太空的雷达具有以下优点: (1)空间和时间覆盖范围仅受选定的轨道和卫星的数目限制。如图22.9和图22.10所示。大范围的连续观测是可以实现的[28]。图22.9标明了从圆形极地轨道上提供连续覆盖整个地球表面所需要的轨道平面数量和卫星数量。可以看出,当卫星的高度大于6 000n mile时,需要在两个轨道平面上使用6颗卫星,在卫星探测范围内没有天底孔。图22.10说明了在赤道轨道的特殊情况下,实现连续覆盖所需要求卫星的数量。这种情形仅限于扩展到图中所指定纬度的宽条形区,可看出:当卫星的高度大于6 000n mile时,4颗卫星能够覆盖一条60 宽的条形区。时间上的覆盖范围如图22.11所示。图中给出了目标被跟踪以后从太空卫星观测地面目标的最大时间[28],可以看出,当轨道高度为6 000n mile时,一个地面目标能被观测的时间超过7 000s。 图22.9 极地轨道的全球覆盖[28] 图22.10 赤道轨道的带状覆盖图[28] (2)使用电子扫瞄天线的SBR是可以完成多种任务的。例如,一个雷达卫星系统能:

①搜索一个扇区,完全覆盖美国本土周围的防御区域,探测距海岸一定距离的轰炸机;②搜索一个覆盖极地的扇区以便在弹道导弹早期预警系统(BMEWS)发现之前发现洲际弹道导弹(ICBM);③监视任何国外潜在的太空发射场地;④完成海洋地区的监视;⑤搜索一个海基弹道导弹(SLBM)防御区域;⑥探测可能对美国同步卫星构成威胁的太空目标。任务的数量仅受限于重量和可用的主电源,但当采用航天飞机作为发射装置时,这些限制都能克服。因此惟独技术和成本才是真正的限制。 (3)大气传播影响可以通过适当选择工作频率和有利的几何关系使之最小化。 (4)如果数据经中继卫星获得,就不需要海外工作站。因此一个国家的SBR系统在政治上是独立的,并且国外跟踪站的丧失对系统性能没有影响。 影响太空大型雷达系统发展步伐的因素有: (1)太空大型天线结构技术、太空大型相控阵技术、太空大型重量技术和太空大型主能源系统技术在早期进程中都要考虑到。 图22.11 目标被跟踪后从太空卫星观测目标的最大时间[28] (2)天基多功能雷达系统的合理运行费用还需要论证。即使使用航天飞机可以减少将负荷送入轨道的单位重量费用,SBR系统仍需要投入巨资。

雷达发展史

雷达的基本概念形成于20世纪初。但是直到第二次世界大战前后,雷达才得到迅速发展。早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。 1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。 第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。就使用的频段而言,战前的器件和技术只能达到几十兆赫。大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。1939年,英国发明工作在3000兆赫的功率,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。在高炮火控方面,美国研制的精密自动跟踪雷达SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。 40年代后期出现了动目标显示技术,这有利于在地杂波和云雨等杂波背景中发现目标。高性能的动目标显示雷达必须发射相干信号,于是研制了功率、、前向波管等器件。50年代出现了高速喷气式飞机,60年代又出现了低空突防飞机和中、远程导弹以及军用卫星,促进了雷达性能的迅速提高。60~70年代,电子计算机、、和大规模数字集成电路等应用到雷达上,使雷达性能大大提高,同时减小了体积和重量,提高了可靠性。 在雷达新体制、新技术方面,50年代已较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术等;60年代出现了;70年代固态相控阵雷达和脉冲多普勒雷达问世。 在中国,雷达技术从50年代初才开始发展起来。中国研制的雷达已装备军队。中国已经研制成防空用的二坐标和三坐标警戒引导雷达、地-空导弹制导雷达、远程导弹初始段靶场测量雷达和再入段靶场测量与回收雷达。中国研制的大型雷达还用于观测中国和其他国家发射的人造卫星。 在民用方面,远洋轮船的导航和防撞雷达、飞机场的航行管制雷达以及气象雷达等均已生产和应用。中国研制成的机载合成孔径雷达已能获得大面积清晰的测绘地图。中国研制的新一代雷达均已采用计算机或微处理器,并应用了中、大规模集成电路的数字式信息处理技术,频率已扩展至毫米波段。① 尽管雷达在二战时发展迅速,但追根溯源,此前的科学家运用他们的智慧为此创造了必要的条件。让我们来看下面的简史: 1842年多普勒(Christian Andreas Doppler)率先提出利用多普勒效应的多普勒式雷达。 1864年马克斯威尔(James Clerk Maxwell)推导出可计算电磁波特性的公式。 1886年赫兹(Heinerich Hertz)展开研究无线电波的一系列实验。1888年赫兹成功利用仪器产生无线电波。 图1赫兹图 2 无线电的产生1897年汤普森(JJ Thompson)展开对真空管内阴极射线的研究。 1904年侯斯美尔(Christian Hülsmeyer)发明电动镜(telemobiloscope),是利用无线电波回声探测的装置,可防止海上船舶相撞。 1906年德弗瑞斯特(De Forest Lee)发明真空三极管,是世界上第一种可放大信号的主动

雷达技术发展规律和宏观趋势分析——4

附件 4 雷达技术发展规律和宏观趋势分析 摘要:该文着眼于历史、现实和未来的时间尺度,从目标、环境和任务等外因与方式、能力和资源等内因相互作用的视角,对雷达技术的发展动因和阶段特征进行分析寻证后认为,在通道构型、视角覆盖和信号维度等方面,实现由低维度探测向高维度探测的阶梯式演进,是雷达技术发展的基本规律,而改变信息获取方式、提升实现能力和增大资源利用,是雷达技术创新的主要途径。文中还据此推演了未来雷达技术的发展方向和主要特征,并提出了促进创新发展的建议。 01 引言 雷达技术已经走过了 70 多年的发展历程,先后经历了二次世界大战、冷战军备竞赛、新军事革命等不同历史因素的促进并经受了考验,雷达技术的体制、理论、方法、技术和应用都已得到很大的发展。进入新世纪前后的10 多年间,雷达技术面临的目标、环境、任务,以及支撑雷达系统研制生产的相关技术,都发生了深刻的变化。当今雷达技术仍在高速地发展和演变,从而衍生出许多新的概念、体制和技术,以适应未来全球资源竞争对雷达技术提出的严峻挑战。 目前已有许多综述性文献,在不同的历史时期,分别从特定历史阶段[3-4]、多种系统体制[5-11]、不同应用领域[12-15]、特定国家和机构[16-20]等角度,对雷达技术的发展进行了回顾和分析,剖析重点装备和技术、分析历史阶段划分、透视装备发展主线、归纳技术发展动向。这些工作对于促进当时的雷达技术发展,起到了重要的推动作用。 本文试图从宏观的视角和大的时间尺度,认识雷达技术发展的内外因素和物理实质,分析雷达技术创新和变革的源动力,探讨雷达技术发展的规律和主要表现形式,剖析不同发展阶段的主要技术特征,推演预测未来发展的方向和特征,透视制约雷达技术发展节奏的内外因素。以期为把握雷达技术发展的时代脉络和宏观趋势、契合需求和引领创新、推动发展和促进应用,提供新的观察视角和思考方法。 02 02 雷达系统技术的发展外因 目标、环境和任务,是促成雷达体制、频段、理论和技术不断发展演变的3 个主要外部因素。其中,对雷达技术发展推动作用最大的是目标多样化,其次是环境复杂化和任务多元化。 目标多样化是指目标的种类构型、运动特性、活动空间、散射特性、极化特性、频谱特性等方面呈现多样化的趋势。例如,目标的种类构型由常规的空中飞机逐渐扩展为战术导弹、弹道导弹、巡航导弹、掠海导弹、无人飞机、浮空平台、临近空间平台、空天

雷达技术综述资料

雷达技术综述 Overview of Radar Technology 摘要: 雷达被广泛用于军事预警、导弹制导、民航管制、地形测量、气象、航海等众多领域。本文首先概述了雷达发展历程并总结了雷达技术发展的成因,然后对雷达的基本工作原理和基本雷达方程作了简要的介绍。最后介绍了几种实际雷达并指出了雷达的未来发展方向。 关键词: 雷达技术;工作原理;雷达应用;发展趋势 Abstract: Radar is widely used in many fields of military early warning, missile guidance, aviation control, topographic surveying, meteorology, navigation and so on.This paper outlines the development process of radar and summarizes the causes of the development of radar technology,then briefly introduces the basic principle of radar and basic radar equation.Finally, introduces several kinds of practical radar and points out the future development direction of radar. Key words: radar technology; working principles; radar applications; trend in development 引言 雷达是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达最先是作为一种军事装备服务于人类,主要用来实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器。随着雷达技术的不断改进,如今雷达被广泛用于民航管制、地形测量、气象、航海等众多领域。随着高科技的不断发展,雷达技术将在21世纪得到更广泛的应用。 1 雷达的发展历程 雷达诞生于20世纪30年代,从美、欧等发达国家的雷达装备技术发展来看,雷达的发展历程大致经历了4个阶段:第1个阶段是从20世纪30年代到50年代,为实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器(高炮、高射机枪、探照灯等),西方大量研制部署米波段雷达和以磁控管为发射机的微波雷达。当时雷达探测目标的种类简单,主要是飞机,此外还有少量的飞艇和气球,雷达的典型技术特征是电子管、非相参,这种雷达被称为第1代。 第2个阶段是从20世纪50年代到80年代,防空作战对雷达提出了由粗略

相关文档
最新文档