河床演变的基本原理

河床演变的基本原理
河床演变的基本原理

河床演变的基本原理

第二节河床演变的基本原理

自然界的河流无时不刻都处在发展变化过程之中。在河道上修建各类工程之后,受到建筑物的干扰,河床变化将人为加剧。由于山区河流的发展演变过程十分缓慢,因此,通常所说的河流演变,一般系指近代冲积性平原河流的河床演变。

河流是水流与河床相互作用的产物。水流与河床,二者相互制约,互为因果。水流作用于河床,使河床发生变化;河床反作用于水流,影响水流的特性。由因生果,倒果为因,循环往复,变化无穷,这就是河床演变。

水流与河床之间相互作用的纽带—泥沙运动。泥沙有时因水流运动强度减弱而为河床的组成部分,有时又因水流运动强度的增强而成为水流的组成部分。换句话说,河床的淤积抬高或冲刷降低,是通过泥沙运动来达到和体现的。因此,研究河床演变的核心问题,归根结底,还是关于泥沙运动的基本规律问题。

一、河床演变分类

天然河流中,河床演变的现象是多种多样的,同时也是极其复杂的。根据河床演变的某些特征,可将冲积河流的河床演变现象分为以下几类:

(1)按河床演变的时间特征,可分为长期变形和短期变形。如由河底沙波运动引起的河床变形历时不过数小时以至数天;蛇曲状的弯曲河流,经裁直之后再度向弯曲发展,历时可能长达数十年、百年之久。

(2)按河床演变的空间特征,可分为整体变形和局部变形。整体变形一般系指大范围的变形,如黄河下游的河床抬升遍及几百km的河床;而局部变形则一般指发生在范围不大的区域内的变形,如浅滩河段的汛期淤积,丁坝坝头的局部冲刷等。

(3)按河床演变形式特征,可分为纵向变形、横向变形与平面变形。纵向变形是河床沿纵深方向发生的变形,如坝上游的沿程淤积和坝下游的沿程冲刷;横向变形是河床在与流向垂直的两侧方向发生的变形,如弯道的凹岸冲刷与凸岸淤积;平面变形是指从空中俯瞰河道发生的平面变化,如蜿蜒型河段的河弯在平面上的缓慢向下游蠕动。

(4)按河床演变的方向性特征,可分为单向变形和复归性变形。河道在较长时期内沿着某一方向发生的变化如单向冲刷或淤积称为单向变形,如修建水库后较长时期内的库区淤积以及下游河道的沿程冲刷;而河道有规律的交替变化现象则称为复归性变形,如过渡段浅滩的汛期淤积、汛后冲刷,分汊河段的主汊发展、支汊衰退的周期性变化等。

(5)按河床演变是否受人类活动干扰,可分为自然变形和受人为干扰变形。近代冲积河流的河床演变,完全不受人类活动干扰的自然变形几乎是不存在的。

二、影响河床演变的主要因素

影响河床演变的主要因素,可概括为进口条件、出口条件及河床周界条件三个方面。进口条件主要包括:河段上游的来水量及其变化过程;河段上游的来沙量、来沙组成及其变化过程。

出口条件主要是出口处的侵蚀基点条件。通常是指控制河流出口水面高程的各种水面(如河面、湖面、海面等)。在特定的来水来沙条件下,侵蚀基点高程的不同,河流纵剖面的形态及其变化过程会有明显的差异。

河床周界条件泛指河流所在地区的地理、地质地貌条件,包括河谷比降、河谷宽度、河底河岸的土层组成等。

三、河床演变的分析方法

由于天然河流的来水来沙条件瞬息多变,河床周界条件因地而异,河床演变的形式及过程极其复杂,现阶段要进行精确的定量计算,尚有不少困难,但可借助某些手段对河床演变进行定性分析或定量估算。现阶段常用的几种分析途经如下:

(1)天然河道实测资料分析;

(2)运用泥沙运动基本规律及河床演变基本原理,对河床变形进行理论计算;

(3)运用模型试验的基本理论,通过河工模型试验,对河床演变进行预测;

(4)利用条件相似河段的资料进行类比分析。

上述几种分析方法,可以单独运用,也可以综合运用。对于一些重要河流的重要研究课题,有条件时应运用各种方法进行综合研究和论证,以求得到可靠的结论。

上面四种方法中,天然河道实测资料分析方法,是最基本、最常用的方法。这种方法主要包括以下分析内容:

河段来水来沙资料分析:来水来沙的数量、过程;水、沙典型年;水、沙特性值;流速、含沙量、泥沙粒径分布等。

水道地形资料分析:根据河道水下地形观测资料,分别从平面和纵、横剖面对比分析河段的多年变化、年内变化;计算河段的冲淤量及冲淤分布;河床演变与水力泥沙因子的关系等。

河床组成及地质资料分析:包括河床物质组成;河床地质剖面情况等。

此外,还有其它因素,如桥渡、港口码头、取水工程、护岸工程等人类活动干扰影响的分析等等。

在对上述诸多因素的分析后,再由此及彼、由表及里地进行综合分析,探明河床演变的基本规律及主要影响因素,预估河床演变的发展趋势,为制订合理可行的整治工程方案提供科学依据。

四、河床演变的基本原理

河床演变的具体原因尽管千差万别,但根本原因可归结为输沙不平衡。考察任意一条河流的某一特定区域BL(B、L分别为河宽及河长),当进出这一特定区域的沙量Go、G

i

不等时,河床就会发生冲淤变形,写成数学表达式应为

G

i Δt― G

o

Δt =ρ,BLΔy

o

(5-1)

式中,G

o 、G

i

分别为流入及流出该区域的输沙率;Δy

o

为在Δt时段内的冲淤厚

度,正为淤,负为冲;ρ,为淤积物的干密度。

显然,如果进入这一区域的沙量大于该区域水流所能输送的沙量,河床将淤积抬高;相反,如果进入这一区域的沙量小于该区域水流所能输送的沙量时,河床将冲刷降低。这就说明,河床演变是输沙不平衡的直接后果。引起河流输沙不平衡的原因是异常复杂的,主要涉及到上游来水来沙条件、出口侵蚀基点条件以及河床周界条件等方面。

河道演变规律

河道演变规律及其机理研究 摘要:我国河流分布广泛,与人们生活和国民经济建设密切相关。河道演变是河流动力学一个重要的研究方向,其相关研究对于整治河道,航运,水利工程,生态保护等方面有着重要的意义。本文从河道演变基本概念入手,对河道演变的影响因素及各种不同天然河道的演变规律进行了比较全面的描述,并对河道整治提出了相关的建议。 关键词:河道演变;关键因素;演变规律 引言 天然河流总是处在不断发展和变化之中,在河道上修建水利工程、治河工程或其他工程后,受建筑物的干扰,河床变化将更为显著。人类在开发利用河流的过程中,要有成效地兴利除弊,必须采取整治措施。要有效地整治河流,必须充分认识河道演变的基本原理及各类河床特殊的演变规律。 1.河道演变的基本概念 河道演变系指在自然情况下或者在受人工建筑物干扰情况下所发生的变化。这种变化是水流和河床相互作用的结果,河床影响水流结构,水流促使河床变化,两者相互依存,相互制约,经常处于运动和发展的状态之中。水流和床沙的相互作用是以泥沙运动为纽带的。在一种水流的情况下,通过泥沙的淤积使河床升高;在另一种水流的情况下,通过泥沙的冲刷,使河床降低。因此,河道演变的规律是以泥沙运动的规律为基础的。但是,自然河道的演变过程极为复杂,往往不能直接从泥沙运动的基本规律得到充分解释。因此我们必须更进一步对河道演变的基本规律进行探讨,才能解决我们所面临的各种河道演变的预测问题。 河道演变的对象有广义和狭义之分。广义的方面在时间应包括河道生成和发展的历史过程,在空间上应包括河道所流经的河谷的各个部分;而狭义的方面只限于近代的、河道本身的变化。河道演变发生演变的根本原因是输沙的不平衡造成的河床变形长期积累的结果。所谓的输沙平衡是对时间或空间的平均情况而言,即使在这种情况下的的输沙平衡,也只是相对的,绝对的输沙平衡在自然界中是不存在的,所以河床总是处在不断发展变化中。 2.河道演变的影响因素 影响河道演变的因素是极为复杂的,但归结起来,最主要的因素不外乎气象、地质、地理等方面。在研究这些因素最河道演变的影响时应该区别两个问题。一个是河流形成的历史过程,另一个是河流目前的河道演变特性。 就河流形成的历史过程来看,其主要作用的动力因素有如下四种:地壳的构造作用、水流作用、冰川作用和风化作用,其中最主要的因素是水流作用,其他因素不能单独创造河道,它们只能在在河道形成过程中配合水流的侵蚀、搬运和堆积作用,对河道产生一定程度的影响。 就河道目前的演变特性而言,与河道的形成不同,完全取决于上述动力因素在现阶段的情况。由于冰川作用仅限于部分河流的河源地区,地质构造运动和风化作用进行的异常缓慢,因此在研究河流目前的河道演变特性,可以只着眼于现阶段的水流作用,尤其是水流与河床的相互作用。 对于任意具体河段,影响水流与河床相互作用的因素主要由以下四点:

《河床演变与整治》

《河床演变与整治》课程教学大纲 课程编号:030163 学分:2 总学时:34 大纲执笔人:匡翠萍大纲审核人:刘曙光 一、课程性质与目的 《河床演变与整治》是港口航道与海岸工程专业的一门重要的专业课程,它是研究自然情况下或修建整治建筑物后河流河床发生冲淤变化的过程的一门科学,根据河床冲淤变化采用科学的整治手段来调整河流的来水来沙过程,以达到防洪抗旱、疏通航道、围垦灌溉、稳定河床、蓄水发电多功能地利用河流,并兼顾水利水产等其他事业,以及环境与生态保护,以获得合理的最大经济效益,生态效益和社会效益。因此河床演变及整治在河流的开发、利用与治理特别是港口与航道工程建设中起着重要的作用。同时与土木工程、交通工程和环境工程等学科也有着密切的联系。 通过《河床演变及整治》的教学,使得学生了解和掌握与河床演变及整治相关的河流动力和泥沙运动方面的理论知识,了解河流治理的主要措施和手段。 二、课程基本要求 《河床演变与整治》作为一门工程运用学科,要求学生具有一定的水力学(或流体力学)、河流动力学的基础知识;要求教师具有全面的流体力学和河流动力学知识,全面的河流治理知识和工程经验。 三、课程基本内容 1.绪论:河流治理工程的基本性质、国内外河流治理工程的历史和现状等。 2.河床演变与整治的一般问题: (1)河流的一般特性:山区河流和平原河流的一般特性,包括河床形态、水流及泥沙运动、河床演变等。 (2)河床演变的基本原理:包括河床演变分类、影响河床演变的主要因素、河床演变的基本原理、河流的自动调整作用等。 (3)河流的水力几何形态:包括河床的稳定性、造床流量、河相关系和河流纵剖面等。 (4)整治建筑物及整治手段:包括河道整治及规划、洪水河床整治、枯水河床整治、河床整治建筑物及其材料和构件。 3.自然河流河床的演变及整治: (1)顺直型河流的演变及整治:顺直型河段特性、演变规律、形成条件及整治工程。 (2)蜿蜒型河段的演变及整治:蜿蜒型河段特性、演变规律、形成条件及整治工程。 (3)分汊型河段的演变及整治:分汊型河段特性、演变规律、形成条件及整治工程。 (4)游荡型河段的演变及整治:游荡型河段特性、演变规律、形成条件及整治工程。 (5)浅滩演变及整治:浅滩特性、演变规律、形成条件及整治工程。

河流演变

第六章河流演变 第一节河流地质作用及其发育过程 一、河流地质作用 1.侵蚀作用 河道水流在流动过程中,不断冲刷破坏河谷、加深河床的作用,称为河流的侵蚀作用。按侵蚀作用方向,又分垂向侵蚀(下蚀)、侧向侵蚀(旁蚀或侧蚀)和向源侵蚀(溯源侵蚀)三种情况。 2.搬运作用 河流携带大量的物质(泥沙),不停地向下游方向输送的过程,称为河流的搬运作用。河流的搬运能力巨大。据统计,全世界河流每年输入海洋的物质总量约200亿吨。 3.沉积作用 河水在搬运过程中,一部分泥沙从水中沉积下来,此过程称为河流的沉积作用。其堆积物叫河流的冲积物。 二、河流的发育过程 在地貌学领域,河流发育和水系形成的时间尺度一般是以地质年代计。一条完整的河流水系,从初生到趋向成熟,是在漫长的历史年代中缓慢形成的。河流的发育过程,大致可分为幼年期、壮年期、老年期三个阶段。 图6-1可用来说明河流的一般形成过程。其中,图(a)表示在陆面上受近代地壳活动的地形控制而形成的一条河流,水流在阶梯状瀑布中,强烈地磨蚀着基岩河床,此时的河流发育属于幼年期阶段。随着流水侵蚀的均夷作用的进行,湖泊、沼泽消失,峡谷加深,支谷延展,河床坡降逐渐减缓(图(b)),河流发育处于青年时期。往后,泛滥平原逐渐发育,河谷进一步拓宽,干流显现均衡河流特征,此时接近壮年期阶段(图(c))。随着侧蚀的不断进行,泛滥平原带宽扩大,形成冲积性准平原,曲流河型形成,河流地貌发育进入相对成熟期或称老年期(图(d))。再往后,又可能由于地壳运动、气候等因素影响,使河流侵蚀作用而重新“复活”,河谷地貌又现出幼年期的特征,表现出地貌上的“回春”现象。 (a)幼年期(b)青年期 (c)壮年期(d)老年期 图6-1 河流形成一般过程示意图

surfer河道演变分析

Surfer在河道演变分析中的应用 1.2绘制数字高程模型图 经过前期数据处理后,就可以绘制数字高程模型图了。具体步骤如下: 步骤一,把数据文件转换成grd文件:①打开菜单“网格|数据”在open对话框中选择数据文件;②打开“网格|数据”对话框.在“数据列”中选择要进行grid的网格数据(X和Y坐标)以及格点上的值(Z列)(不用选择,因只有3列数据且它们的排列顺序已经是X,Y,Z了,如果是多列数据,则可在下拉菜单中选择所需要的列数据)。选择好X,Y,Z值后,在“插值模式”中选择一种插值方法(如需要比原始数据的网格X和Y更密的Z数据,或网格为非均匀),则在grid的过程中,Surfer会自动插值计算,生成更密网格的数据。如果只是想绘制原始数据的图,不想插值,则最好选择反距离加权插值法(Inverse Distance To A Power)或克里金法(Kriging Method)。因为这两种方法在插值点与取样点重合时,插值点的值就是样本点的值,而其他方法不能保证如此。在Output Grid File中输入将输出的文件命名,然后在“网格点几何分布”中设置网格点数,确认,画图所需要的grd文件就生成了。不过,为了便于后面对各年地形进行比较分析或冲淤分析,尽量使每个grd文件的几何分布一直,即同样的XY坐标范围和插值的网格密度。 步骤二,将河道边界白化。在Surfer中默认的插值区域为数据文件中离散点坐标x,y 的最小值和最大值所围成的矩形,经过插值生成的图形边界为矩形,但在实际情况下,河道边界可能是不规则的,或者需要显示某些特定区域的形态(如潜洲)、添加图签等,这时就用到Surfer的白化(Grid Blank)功能。 白化文件[.bln]格式 [.bln]文件是以ASCII文件格式存储的用来描述白化边界及白化信息的文件,其格式如下: length,flag″Pname 1″ x1,y1 x2,y2 ... xn,yn x1,y1 length,flag″Pname 2″ x1,y1 x2,y2 ... xn,yn x1,y1 其中,length是一个用来表示组成白化区域定点X,Y坐标对的整数;flag取值为0或1,若flag为1,则白化指定区域内部,若flag为0,则白化指定区域外部;Pname是一个用来指定白化区域ID的可选参数;以下是组成白化区域定点的X,Y坐标对,每行存储一对X,Y坐标,最后重复x1,y1表示所描述的对象是封闭区域。在河道演变分析中,白化边界一般是河道的岸线,通常将DWG格式的河势图存为DXF文件,然后在Surfer中选取地图│基面图(map│base map)命令,将该DXF文件导入Surfer,然后用CS Scripter编程

河道历史演变概况

1河道历史演变概况 嘉陵江是长江上游左岸的一条主要支流,发源于陕西风县东北的秦岭山脉,经阳平关流入四川。经南充、武胜至合川,在重庆朝天门汇入长江,全长1119km,落差2300m,平均比降为2.05‰,流域面积159800km2,占长江流域的9%。嘉陵江为长江右岸较大的支流,为典型的山区河流,其河岸组成较为坚硬,河床变形主要以推移质运动为主,悬移质几乎不参加造床。河床年际间变化不大,年内冲淤演变较为明显,浅滩演变遵循“洪淤枯冲”的规律,深槽表现为“洪冲枯淤”。山区河流典型的特征是水流急、流量变幅大,使得河床受到较大的水流作用力,上游来沙不易在河床中淤落,一般是通过河床断面向下游输送。山区河流在构造初期河床一般表现为不同程度的下切,直至冲淤基本平衡。总的看来,工程河段河型河势较为稳定,冲淤变化基本平衡。 2河道近期演变分析 工程河段属于嘉陵江下游河段,河床组成大多为基岩,并夹有少量卵石,河床组成较为坚硬,水流对其侵蚀作用比较缓慢,对河床的演变起着一定的制约作用,所以多年来河床相对稳定。 工程河段河床覆盖层主要是沙卵石,冲淤变化以悬移质为主,一般汛期6~9月是悬移质集中淤积的时段,主要淤积部位在工程上游弯道的凸岸边滩、下游左岸积坝、宽阔河段的缓流区;汛后10月开始走沙,随着水位的消落,水流归槽,淤积泥沙逐渐被冲刷,年际间冲淤相对平衡,基本无累积性变化。 从实地勘踏以及地质钻孔资料来看,工程河段河床、河岸组成大多为基岩,并夹有少量卵石,河床组成较为坚硬,因而河道深泓平面摆动及纵向下切都受到了较大的制约。由该段河道的河势、水势分析可知,嘉陵江河道比降较大,洪水期主流流速较大,泥沙难于在深槽内大量淤积,淤积部位主要还是在凸岸边滩或者回流区内。近年来河道深泓线平面及纵向变化较小,基本保持稳定。 实地勘踏表明,河道深泓线以及主流线基本在河心靠近凹岸(右岸)一侧。由于曲率半径较小,洪水期水流在此形成大片回流区,泥沙容易落淤,另外弯道环

弯曲河道的河床演变浅析

弯曲河道的河床演变浅析 港航0902班王海翔 200919040517 【摘要】河床演变是河床受自然因素或水工建筑物的影响而发生的冲於变化。自然条件下的河床总是在不断变化,如河湾的发展,汊道的兴衰,浅谈的冲於等。弯曲型河道由正反相间的弯道段和介乎期间的过渡段连接而成,由于水流离心力和重力的作用,形成的一系列水力现象在弯曲河道表现的尤为明显,使弯曲河道的河床演变更加明显。 【关键词】弯曲河道离心力河床演变 【正文】 1.弯道水流的受力分析 当水流由直段进入弯道后,由于离心离德存在而使自由的水面的平衡状态遭到破坏,结合弯道水流的实验可知,进入弯道己有从凸岸向凹岸的横比降Jr出现,直至弯段出口处仍有一定数值,出弯后又迅速消失。因此,凹岸的水位线常形成凸曲线,凸岸的水位线常形成下凹线,即水面是凹高凸低,成一上凸曲线,整个水面为一扭曲面。 a op V cp/r×?(2h+Jr) 离心力:F1= 两侧水压力之差:△p=?ρgh2-?ρg(h+Jr)2 =-ρghJr+?ρgJr2 ≈-ρghJr 河底之横向阻力τr0 水流流到弯曲河道处主要受到离心力、重力和河道横向阻力的作用,而由水面横比降所引起的横向压差则沿水深不变,与离心力合成之后,上层水体所受的力指向凹岸,下层水体所受的力指向凸岸,从而是上层水体向凹岸流动,下层水体向凸岸流动,形成环流。 2.弯曲河道泥沙运动特点 河道中,明渠轴线和渠壁的不断改变,迫使进入弯道的水流质点做曲线运动。因为弯道水流质点受重力作用和向心加速度而受到离心惯性力作用,而离心惯性力的方向从凸岸指向凹岸,水流在弯道内运动时,有纵向流速和横断面的断面环流,形成弯道螺旋流,使得弯道凹岸冲涮,凸岸淤积,从而使弯道演变发展,使弯道更加弯曲,水流阻力进一步加大。 泥沙随着水流进入弯曲河道,根据水流在弯道运动特性(即水流在弯道中会出现横向的流速,在水面由凹岸流向凸岸,在水底由凸岸流向凹岸。)因此降低了泥沙在凹岸的稳定性,提高了泥沙在凸岸的稳定性,泥沙总体表现为在凹岸冲刷,在凸岸淤积,因此蜿蜒河道的发展在向着蜿蜒程度增加的方向发展的。 3.弯曲河道河床演变的基本原理 河床演变的基本愿意是属啥的不平衡,进一步的深层原因是动床水沙两相流的内在矛盾和不恒定流外部条件(进口水沙、出口侵蚀基点条件和河床周界条件)。而弯曲河道中,纵向输沙不平衡将引起纵向变形,横向输沙不平衡将引起

河床演变基本原理

河床演变基本原理 王浩霖 201101021530 摘要:河床演变是指自然情况下及修建整治建筑物后河床发生的冲淤变化过程。广义上是指河流形成和发展的整个历史过程;狭义方面则仅限于近代冲积河床的演变发展。天然河流总是处在不断发展变化过程之中。而且天然河流的河床形态复杂,演变规律差异很大。人类在开发利用河流的过程中,要有效地整治河流,必须充分认识河床演变的基本原理及各类河床特殊的演变规律。本文着重讨论平原冲积河流的问题,但所阐明的基本原理对具有一定冲积层的山区河流也是适用的。 关键字:河床演变基本原理平原冲积河流河型 一、平原冲积河流的一般特性 1.河床形态 与山区河流不同,平原河流的河床形态是在特定条件下水流与河床相互作用的结果,因而具有较强的规律性。平原河流在平面上具有顺直、弯曲、分汊、散乱等四种外形。其横断面可概括为抛物线形、不对称三角形、马鞍形和多汊形等四类。河漫滩和成型堆积体是河床形态中涉及的两个基本概念。 河漫滩是位于中水河槽两侧,在洪水时能被淹没的高滩。河漫滩既有由侵蚀作用造成的,如石质河漫滩,多见于山区河流,滩面较窄,且向中水河槽一侧倾斜;更多的是由堆积作用造成的,如冲积河漫滩,多见于平原河流,滩面较宽,左右河漫滩分别向两侧倾斜,这是洪水漫滩落淤的结果。 成型堆积体是冲积河流的河底分布着各种形式的大尺度沙丘(尺度远大于沙坡)的统称。成型堆积体的尺度,包括宽度、深度和长度,和河流的尺度(河宽和水深),是同数量级的。成型堆积体经常处于发展变化之中,是平原河流河床演变中最活跃的因素。 2.河道水流的一般特性 2.1河道水流的基本性质 (1)河道水流的二相流特性。天然河道的明渠流是挟带着泥沙的水流运动,本质上属于二相流。 (2)河道水流的三维性。河道水流的过水断面一般是不规则的,因此河道水流为三维流动。过水断面的宽深比愈小,三维性愈强烈。 (3)河道水流的不恒定性。一方面,来水来沙情况随时空的变化;另一方面,由于河床经常处于演变之中,因此河道水流的边界也随时空变化。 (4)河道水流的非均匀性。涉及运动的各物理量沿流程不变的水流为均匀流。达到均匀流的条件是水流为恒定流、水流边界是与流向平行的棱柱体。河道的来水来沙和边界是不满足这些条件的,因此河道水流一般为非均匀流。 2.2河道水流的水流结构 (1)河道水流的流型。在水力学中将流体运动区别为紊流和层流两大类型,在紊流中又分为光滑区、粗糙区(或阻力平方区),以及介于层流和紊流、光滑区和粗糙区之间的两个过渡区。河道水流的雷诺数一般都比较大,其流型一般居于阻力平方区。 (2)河道水流的主流与副流。主流是水流沿着河槽总方向的流动,由河床纵比降的总趋势决定;副流是在水流内部产生的一种大规模的水流旋转运动,由纵比降以外的其他因素所促成。河流中的横向输沙的方向主要是靠有关的环流造成的。因此,一个河段的冲淤动态,

浅谈河床演变

浅谈河床演变 摘要:河流是水流与河床相互作用的产物。水流与河床,二者相互制约,互为因果。水流作用于河床,使河床发生变化;河床反作用于水流,影响水流的特性。由因生果,倒果为因,循环往复,变化无穷,尤其河道上修建各类工程之后,受到建筑物的干扰,河床变化将更为加剧。 关键词:河床演变均衡稳定演变类型 河床演变是指河床在自然条件下或受人工建筑物影响而发生的变化。这种变化是水流、泥沙与河床相互作用的反映。河流存在两个反馈系统:水流挟带泥沙,泥沙的存在又影响水流结构;水流作用于河床,使河床发生变化,河床形态反过来又影响流速分布。它们相互依存、相互影响又相互制约。水流与河床的相互作用是通过河流中泥沙的冲刷、搬运和堆积而实现的,泥沙在其中起着纽带作用。当流速增加,组成河床的泥沙遭到冲刷,使河床降低或拓宽;当流速减小,水中挟带的泥沙沉积于河床上,使河床抬高或束窄,河床就会发生相应的变化。 一、河床演变理论研究进展综述 河床演变是一门新兴学科。目前尚无统一理论如何表达河床演变自动调整作用基本原理是河床演变学研究的难题之一,前人进行了长期艰苦的研究,提出了很多极值理论和假说,主要研究成果如下: (1) Leopold(1962)提出河流能量沿程均匀分布的最大统计熵理论[1]:相当于UJ=常数。Leopold最先提出应用统计熵理论来研究河床演变,由于沿河各段的能量分布受地质地貌条件控制不能沿河自由调整,能量沿程分布不满足构造统计熵的条件,因而河流能量难以达到沿程均匀分布。 (2)窦国仁(1964)提出最小河床活动性假说[2]:在给定的来水来沙和河床边界条件下,不同的河床断面具有不同的稳定性或活动性,而河床在冲淤变化过程中力求建立活动性最小的断面形态。由于河床活动性指标为经验表达式,难以在理论上阐明,也缺乏实测资料进行严格的验证。 (3)Langbein(1964)提出最小方差假说[3]:随着上游来水来沙条件的变化,当地的水力因子将发生调整以趋于平衡,这种平衡状态对应的是使各水力因子变化的方差达到最小。最小方差假说在理论上符合统计熵的最概然分布定理,但统计方差的变量不明确,各人构造的方差可能互不相同。 (4)张海燕(1979)提出河流系统的最小河流功假说[4]:对于一定的水流量和输沙量,当河道可能有几种稳定河床形态和坡降时,河床形态将沿河谷坡降进行调整,使河流系统的单位河长河流功最小,表达式为:γQJ=min。由于造床流量Q给定,即最小比降J=min;对于稳定冲积河流,γQJ的值与输沙率Q s成正比,即得到最小输沙率Q s=min。但河床演变不仅仅是调整比降,而且认为冲积河流的调整是为了满足输沙率最小,这与冲积河流的输沙相对平衡自动调整作用原理相矛盾。 (5)杨志达(1971)提出最小单位河流功理论[5]:对于冲积河道缓流,河道将调整流速、坡降、糙率和河床形态,使输送一定水流量和沙流量的单位河流功率最小,最小值大小取决于河道约束条件,表达式为:γUJ=min。但该公式没有反映河道输沙对河床演变的影响,且河流功在物理概念上不明确,有河道给水流做功之嫌,挟沙水流只能损失自己的能量对运动中的泥沙做功,河床不能对水流做功,河床无能量传递给水流,河床对水流的阻力决定水流能耗的分布

关于河道演变的探讨性分析

关于河道演变的探讨性分析 摘要:河道的演变是一个极为复杂的运动过程,在现实生活中难以做到精确的推断。但从河流的分类、河床的组成及形态特性,并利用现有的资料进行对比及综合性分析,还是可以预测其变化过程,对特殊河段采取相应的工程措施,能最大限度的降低洪灾损失造福于地方百姓。 关键词:河流演变;形态;分析;建议 一、河流的特性 1、河流分类 河流按其流经的地区,可分为山区河流和平原河流两大类型。较大河流的上段多为山区河流,下游段多为平原河流,中间段往往兼有山区河流和平原河流的特性。 山区河流流经地势高峻,地形复杂的山区,其河谷由水流不断纵向切割和横向拓宽逐步形成。 平原河流在地势平缓、土质松软的平原地区,其形成过程主要表现为水流的堆积作用。河谷形成深厚的冲积层,河口淤积广阔三角洲。 山区河流与平原河流由于所处的自然地理、地质、地貌和气候条件不同,其特性有自己的特点。 2、河床的组成及形态 山区河流的河床多为基岩、乱石或卵石组成,抗冲性能强,不易冲刷。尽管长时间不断下切,从短时间来看,变形却十分缓慢。 山区河流发育以下切为主,其河床的横断面往往成“V”字形或“U”字形,河槽狭窄,中水河床与洪水河床之间无明显分界线。沿程多为开阔段与峡谷段相间,平面形态极为复杂,岸线极不规则,两岸、河心常有巨石突出,急弯卡口。 山区河流的河床纵坡面比较陡峻,形态极不规则,常出现台阶形,在落差集中处,往往形成跌水甚至瀑布。 平原河流的河床由冲积层的冲积物组成,冲击层一般比较深厚。最深处多为卵石层,在上为粗砂层、中砂及细砂层,在枯水位以上的河漫滩表层有粘土和壤土存在。 平原河流的横断面形式随河段的不同类型而异:顺直过渡段多为抛物线形或

黄河河道变迁

第一次重大改道 春秋战国至西汉末黄河一直保持一定河形,史称为“大河故渎”,或“王莽河”、“王莽故渎”。 战国中期黄河下游大规模筑堤固定下来的河道是《汉书?地理志》河(简称“汉志河”),结束了多股分流局面,可称第一次改道。汉志河走向:古宿胥口(今河南浚县)-今濮阳西南—今馆陶县东北-临清南-德州东南-东光东-孟村北-黄骅西南入海。 第二次重大改道 公元11年(王莽建国三年)黄河在今河北大名东决口,造成第二次重大改道。公元69年王景治河,固定了河道。 王景河走向:今濮阳西南-范县北-莘县东-聊城南-禹城西-滨州北-利津东南入海。 第三次重大改道 1048年(北宋庆历8年)河决澶州商胡埽(今濮阳东),为第三次重大改道。河分北、东两条河道。 北流走向:今濮阳东-清丰东-馆陶东-临清西-故城东-武强东-青县东-静海西-天津西入海。 东流走向: 1 . 京东故道:基本与隋唐同。 2 . 横陇故道:自今清丰县东与京东故道分出-南乐东-高唐西-陵县东-乐陵南-沾化北入海。 3 . 二股河:今南乐西-莘县西-入西汉大河故道-平原西-陵县北-乐陵南-庆云北-无棣入海。 第四次重大改道 1128年(南宋建炎二年)人为决河于今滑县李固渡,大河由泗入淮,这是第四次重大改道。 ?1128年决口河道(北流):滑县-濮阳南-鄄城西-巨野东-嘉祥东-入泗水-由泗入淮。(4/10) ?1168年(金大定八年)黄河再次决口于李固渡,形成南流:长垣东北-东明南-定陶西-曹县南-砀山北-萧县北-经徐州,于邳县由泗入淮。(6/10)?1180年(金大定二十年)河决卫州,东南经延津北-封丘南-兰考北-睢县南-商丘南-砀山北-经徐州由泗入淮。 第五次重大改道 1232年人为决河于归德凤池口(今商丘西北),构成黄河第五次重大改道。这次改道形成多条河道,主要如下: 1. 夺濉入淮。2.夺汴入淮。3. 夺涡入淮。 4.夺颍入淮。此前黄河南徙不超过唐宋汴河一线,至此夺颍、夺涡入淮,黄河下游河道已经到达了这个扇形平原的西南极限。 1351年贾鲁治河,挽河东南走由泗入淮的故道,这就是“贾鲁河”。 贾鲁河走向:今兰考县东-曹县南-商丘北-砀山西-萧县北-经徐州入泗,由泗入淮。 明初黄河基本以贾鲁河为干流,明中叶以后多股并存,其中主要有: 1.夺颍入淮(大黄河)。 2.贾鲁河(小黄河)。 3.夺涡入淮。 4.夺濉入淮。 5.由曹县、沛县入运河。 6.曹县、鱼台入运河。 第六次重大改道 1855年(清咸丰五年)河决铜瓦厢,结束了下游700多年由淮入海的历史,回到渤海湾入海。

河床演变的基本原理

第二节河床演变的基本原理 自然界的河流无时不刻都处在发展变化过程之中。在河道上修建各类工程之后,受到建筑物的干扰,河床变化将人为加剧。由于山区河流的发展演变过程十分缓慢,因此,通常所说的河流演变,一般系指近代冲积性平原河流的河床演变。 河流是水流与河床相互作用的产物。水流与河床,二者相互制约,互为因果。水流作用于河床,使河床发生变化;河床反作用于水流,影响水流的特性。由因生果,倒果为因,循环往复,变化无穷,这就是河床演变。 水流与河床之间相互作用的纽带—泥沙运动。泥沙有时因水流运动强度减弱而为河床的组成部分,有时又因水流运动强度的增强而成为水流的组成部分。换句话说,河床的淤积抬高或冲刷降低,是通过泥沙运动来达到和体现的。因此,研究河床演变的核心问题,归根结底,还是关于泥沙运动的基本规律问题。 一、河床演变分类 天然河流中,河床演变的现象是多种多样的,同时也是极其复杂的。根据河床演变的某些特征,可将冲积河流的河床演变现象分为以下几类: (1)按河床演变的时间特征,可分为长期变形和短期变形。如由河底沙波运动引起的河床变形历时不过数小时以至数天;蛇曲状的弯曲河流,经裁直之后再度向弯曲发展,历时可能长达数十年、百年之久。 (2)按河床演变的空间特征,可分为整体变形和局部变形。整体变形一般系指大范围的变形,如黄河下游的河床抬升遍及几百km的河床;而局部变形则一般指发生在范围不大的区域内的变形,如浅滩河段的汛期淤积,丁坝坝头的局部冲刷等。 (3)按河床演变形式特征,可分为纵向变形、横向变形与平面变形。纵向变形是河床沿纵深方向发生的变形,如坝上游的沿程淤积和坝下游的沿程冲刷;横向变形是河床在与流向垂直的两侧方向发生的变形,如弯道的凹岸冲刷与凸岸淤积;平面变形是指从空中俯瞰河道发生的平面变化,如蜿蜒型河段的河弯在平面上的缓慢向下游蠕动。 (4)按河床演变的方向性特征,可分为单向变形和复归性变形。河道在较长时期内沿着某一方向发生的变化如单向冲刷或淤积称为单向变形,如修建水库后较长时期内的库区淤积以及下游河道的沿程冲刷;而河道有规律的交替变化现象则称为复归性变形,如过渡段浅滩的汛期淤积、汛后冲刷,分汊河段的主汊发展、支汊衰退的周期性变化等。 (5)按河床演变是否受人类活动干扰,可分为自然变形和受人为干扰变形。近代冲积河流的河床演变,完全不受人类活动干扰的自然变形几乎是不存在的。 二、影响河床演变的主要因素

分汊型河段演变规律

分汊型河段演变规律 关键字:分汊型河道江心洲主汊分汊 1.介绍与分类 分汊型河段是平原冲积河流中常见的一种河流,也被成为辫状河流或相对稳定性分汊型。我国各流域都有这种河型。由于水流和泥沙分股输送,这样的水沙状况往往是很难稳定的,容易引起汊道的变化,从而造成严重的后果。其中从江心洲型到网状河流其稳定性逐渐增强 1.1江心洲 江心洲的形成一般有三种类型:一是泥沙落淤形成心滩,二是边滩切割分离出心滩,三是因水面开阔,入汇顶托等原因河势变缓而落淤的沙滩被多条汊道切割形成多个江心洲。 1.2分类 分汊河段按其平面形态不同可以分为顺直型分汊,微弯型分汊和鹅头型分汊三种。分类标准为弯曲系数,其中顺直型分汊弯曲系数在1.0到1.2之间,汊道基本对称,微弯型分汊在1.2到1.5之间,鹅头型分汊的弯曲系数则超过1.5。一般来说鹅头型分汊这种弯曲系数很大的河道江心洲往往有俩个或俩个以上,弯道的出口和直道的出口交角很大。就单个的分汊河段来说,其平面形态是上端放宽,下端收缩而中间最宽。中间段可能是俩汊,也可以是多汊,各汊之间为江心洲。自分流点到江心洲头为分流区,洲尾到汇流点为汇流区,中间则为分汊段。较长的河段期间常出现几个分汊段,呈单一段与分汊段相间的平面形态,因单一段比较窄,分汊段比较宽,常形象的称其为藕节状

外形。 2. 剖面 分汊型河段的横断面在分流区和汇流区都呈现中间凸起的马鞍形,分汊段则为江心洲分割的复式断面。分汊型河段的纵剖面从宏观上看,呈现俩端低中间高的形态,而几个连续相间的单一段和分汊段则呈现起伏相间的形态。 从局部看,分流区到汊道入口,从分流点开始,俩侧的深泓线先为逆坡而后转为顺坡,为马鞍状。俩汊一高一低,高的为支汊,低的为主汊,支汊的逆坡恒陡于主汊。水下地形也是支汊恒高于主汊。汊道的出口到汇流区,俩侧的深泓线顺坡下降,支汊一侧的纵坡陡于主汊的。就支汊进出口俩个陡坡而言,出口的顺坡往往更陡于进口的逆坡。 3.水流特性 分汊河段水流运动最显著的特征是具有分流区和汇流区。 3.1分流区 分流区的分流点是变化的,一般是高水位下移低水位上移类似于弯道顶冲部位的变化,这是由水流动量的大小所决定的。自分流点起水流分为左右俩支,而流线的弯曲方向往往相反,且表层流线比较顺直,而底层流线由于受到地形的影响往往比较弯曲。 分流区的水位,支汊一侧总是高于主汊一侧的。分流区的纵降比,支汊小于主汊。 在分流区内,水流分汊,恒出现俩股或多股水流,其中居于主导

3 河道演变分析

3 河道演变分析 3.1 河道历史演变概况 流泽桥位于国道105线东平境内,跨越大清河,桥位断面大清河南堤桩号97+950 、北堤桩号1+280。 大清河为大汶河的下游,自戴村坝至东平湖入湖口(马口)河段,全长29km。河道自东向西较为顺直,过马口后主河槽折向西北,进入东平湖。 大清河两岸均筑有堤防,河道纵比降1995年以前约1:3000。1995年以来由于武家漫以上河道内人为挖砂日趋严重,河槽表现为下切,但由于淤积在大清河入湖口附近的泥沙颗粒太细而无人开采,整个河段呈现上冲下淤的特点。2001年以后河道纵比降已降到1:13000左右。 大清河河道内存有生产堤及阻水林带多处。中小水位时可能顺堤行洪的长度计约7420m。有险工4处,工程长度2.75km。控导工程4处,工程长度1.63km。左右堤防上建有排灌涵闸4座。自上而下建有流泽旧桥,流泽新桥,北大桥三座桥梁横跨河道。 由于近几年当地群众在河道内采砂比较混乱,引起了河势变化,又因河床下切,导致回水区上延,当老湖水位40.3m时,左岸大堤98+000(流泽桥下)与老湖水位相同。如遇较大洪水,一旦河势突变,堤线防守将出现十分不利的局面。同时近几年当地群众在入湖口附近大量围湖造田,导致洪水入湖不畅,若黄汶洪水遭遇时,回水区水位增高,北堤相对于南堤薄弱,防守压力很大。 3.2河势变化分析 3.2.1河道平面变化 流泽桥位位于大清河下游的鲁祖屯险工至流泽控导工程之间,桥位上下游的河道整治工程主要有古台寺险工、鲁祖屯险工、大牛村控导、辛庄险工、武家漫险工等。桥位上游右岸是流泽控导工程,下首与鲁祖屯险工相邻,左岸下首是古台寺险工。桥位处于流泽控导工程到鲁祖屯险工的直河段内,东平湖蓄水位较高时,该河段将受壅水影响。分析河道平面变化时,我们主要对桥位上下游河段1985年至2009年的河势演变情况进行研究,重点对来水较大的1990年、1995年、2001年和2003年的河势情况进行对比分析。 1、典型洪水年份的河势情况 (1) 1990年河势情况

水库下游水沙变化与河床演变研究综述

地理学报ACTA GEOGRAPHICA SINICA 第66卷第9期 2011年9月V ol.66,No.9Sept.,2011 收稿日期:2011-03-26;修订日期:2011-05-27 基金项目:国家自然科学基金项目(40801218,40788001);云南省中青年学术技术带头人后备人才计划(2009CI050);“十 二五”国家科技支撑计划重大项目(2010BAE00739)[Foundation:National Natural Science Foundation of Chi- na,No.40801218,40788001;The Reservers'Training Projects of Yunnan Mid-Youth Scientific Technical Leader, No.2009CI050;National Key Technologies R&D Program of China during the 12th Five-Year Plan Period, No.2010BAE00739] 作者简介:傅开道(1976-),男,海南陵水人,副研究员,博士,从事水文地理学、河流泥沙与河床演变研究。 E-mail:kdfu@https://www.360docs.net/doc/d114047594.html, 1239-1250页 水库下游水沙变化与河床演变研究综述 傅开道1,黄河清2,钟荣华1,王兴勇3,苏斌1 (1.云南大学亚洲国际河流中心,昆明650091; 2.中国科学院地理科学与资源研究所,北京100101; 3.中国水利水电科学研究院,北京100038) 摘要:水库建设以满足人类日益增长的水资源及其利用的要求仍是当今世界,特别是发展中国 家在水利建设中的一项重要任务。建坝改变了上下游水流边界条件,导致水沙输移变化,同时 也触发了河床形态发生相应的调整。自从20世纪30年代全球大规模修坝后,关于此课题的研 究就层出不穷。本文就此研究主题对国内外研究成果进行梳理与总结,简要综述水库下游水流 挟沙变异以及河床形态演变的研究历史与现状,旨在对该领域的研究进展进行全面的归纳与 总结。 关键词:水沙变化;河床调整;水库下游;研究综述 水库大坝将河流拦腰截断,大坝尤其是梯级电站联合运营后巨大的调度功能对河流的径流起到巨大的调节作用,改变了下游天然的水文循环和泥沙输送过程,而水沙过程对于河流地貌系统结构和功能的维持起着至关重要的作用[1]。水流是塑造河床的基本动力,径流大小、变幅、各流量级持续时间等要素决定了水沙两相流的造床动力特征;泥沙则是改变河床形态的物质基础,沙量的多少、颗粒的粗细影响着河床演变的方向,不同的水沙组合特征决定了河床的平面形态、断面特征、河弯数量、蜿蜒度、植物结构等。水、沙和河床是一个整体,相互作用,相互影响[2]。河流水库的修建改变了下游水沙过程,破坏原有的水文平衡,必然会引起水沙输移特性改变、河道形态的调整[3]。但由于不同区域的河流,同一河流的不同河段存在着地质地貌、植被、人为活动等个体差异及区域气候环境的差异,再加上不同水库的修建目的、规模大小和运行方式不一样,因而所引起的水库下游水沙过程变异与河床响应也不尽相同。有关学者在相关领域开展了大量研究。本文从水库下游水沙过程变化、河床和微地貌演变两大方向的研究动态开展综述。 1水库下游水沙变化 河流上游水库的修建改变了水库下游自然的水文过程,下游河流的各种变化都可归因于水沙过程的改变[3-4]。钱宁等认为上游水库的修建对下游水文过程的影响:在来水条件方面,主要表现为洪峰流量减少,枯水流量增大,径流的年内年际变幅减小,以及接近恒定流状态的流量持续时间延长;在来沙方面,主要变化是下泄沙量减少,下游河道的含沙量将会显 著降低,泥沙组成变细[5]。随着全球大中小河流建库方兴未艾,众多研究聚焦于直接受水库

白马河局部河段河床演变的分析研究

第10卷 第1期 中 国 水 运 Vol.10 No.1 2010年 1月 China Water Transport January 2010 收稿日期:2009-12-21 作者简介:王俭斐(1982-),男,河北鹿泉人,河北省石津灌区管理局助理工程师,研究方向为水利水电工程。 白马河局部河段河床演变的分析研究 王俭斐1 ,任 健2 ,王丽娟3 (1河北省石津灌区管理局,河北 石家庄 050051;2中国水利水电科学研究院,北京 100048; 3河北大学人民武装学院,河北 石家庄 050061) 摘 要:白马河在上游修建水库后,对河道形态的塑造起决定性作用的是极个别年份发生的罕见大洪水。大规模采砂大大改变了原来大洪水塑造形成的河床形态,并使河床演变产生了一些新的特点:纵剖面猛烈下切,且起伏不平;横断面大幅下切和扩宽,河床横断面形态变得极不规整,极大地改变了主槽与边滩的位置关系;深泓点高程大幅度下降,深泓点摆动更加剧烈紊乱。 关键词:采砂;河床形态;白马河 中图分类号:TV147 文献标识码:A 文章编号:1006-7973(2010)01-0122-02 一、前言 长期以来,国内外关于采砂对河床形态及河床演变的研究相对并不十分多见[1,2]。在我国,随着采砂问题的日益严重,对采砂造成的河道及河床演变研究逐步得到重视,但大多是针对长江、钱塘江等南方地区常年有水的河流,分析河道在受到采砂影响下的河床演变[3~6];而对北方地区多年少水甚至多年无水的河流,其受到大规模采砂影响的研究,相对很少。本文以实测资料为依据,分析白马河局部河段受到大规模无序采砂后河床演变的特点,探讨其对河道的影响。 二、河流水文泥沙概况 1.水文概况 白马河是海河流域子牙河水系滏阳河的一条主要支流,发源于河北省邢台县西部山区北小庄乡戈廖,流经内丘、任县,至环水村注入南澧河,全长73.5km,总流域面积485km 2,河道平均比降6.66‰左右。白马河上游建有野沟门及羊卧湾两座小(一)型水库,在非行洪期河床干涸断流。 白马河流域属温带半干旱大陆性季风气候,年内温差悬殊。多年平均降水量601mm,且一年内分配不均,6~9月间降水量约占全年的76%。海河流域内发生“63·8”和“96·8”两次大洪水,暴雨中心均在白马河流域上游附近。 2.泥沙概况 白马河无较大支流,小支流呈单干树枝状。主流在南青山附近出山,并改变流向,由东北转向东南。河道上游为窄深式河槽,过南青山后逐渐扩宽,至铁路桥段约在0.3~2km 之间。在研究河段主流有S 型弯道。该河段为宽浅型河道,滩地上有局部灌木丛等。近年来非汛期河道已不见流水,汛期偶有洪水下泄。 白马河的河床质基本为粗沙、砾石。从研究河段河床0~3m 深的河床质组成看,上游颗粒较粗,平均中值粒径D 50在0.8mm~8mm 左右。白马河沙量主要有两个来源,一是流域上游的土壤侵蚀,二是河道的两岸岸壁坍塌。 三、采砂影响下的河床演变过程 为了分析大规模无序采砂对河床演变的影响,选择白马河局部河段0+000~4+910河道若干年份(1966年,1994年,1996年,2003年)的六个大断面(0+000,1+300,2+710,3+510,4+250,4+910)进行分析计算。 1.横断面形态变化 河道横断面形态反映了河道容蓄和输运水沙的空间,同时也可以反映出滩地与主槽的相对位置关系。图1、图2为白马河局部河段历年典型断面变化情况。 图1 2+710断面 图2 4+250断面

河床演变

第六节河床演变 一、河床演变的基本知识 (一)河床形态变化的类型 河床的几何形状,称为河床形态。河床形态变化,称为河床演变,它是河床泥沙运动的结果,可有两种类型: 1.纵向变形 河床沿水流方向的高程变化,称为河床的纵向变形,它是河流纵向输沙不平衡造成的结果。河源与上游的河床下切、下游河床的淤高,均属此类,其变化幅度随岩石性质而异,细沙河床的变化幅度可能很大。它对于桥梁工程设计的影响不可忽视。 2.横向变形 河湾发展、河槽扩宽、塌岸、分汊、改道等河床平面形态的变化,统称为横向变形。河湾的发展与弯段水流离心力有关,它可使凹岸不断受到冲刷,凸岸不断出现淤积,产生横向比降,可导致河流截弯取直或河流改道。 (二)河床演变的影响因素 河床演变的影响因素有很多,主要因素有: 1.流域的产沙条件 流域的产沙量及泥沙组成等对河床演变有很大的影响。例如,黄河及华北地区一些河流,河水含沙量很大,因此下游河道淤积十分严重。 2.流量变化 流量越大,水流的挟沙量就越多。流量变化越大,泥沙运动和河床的变形就越剧烈。设河水的含沙量为ρ,流量为Q,输沙率为Q s,则有 Q s=ρQ (8-17)3.河床土质 土质坚实的河床变形缓慢,土质松软的河床易受冲刷。 4.水流比降 河床比降大,流速大,冲刷力强,河床受冲刷厉害。反之则易于淤积。 5.副流作用 水流中由于纵、横比降及边界条件的影响,其内部形成一种规模较大的旋转水流,如图8-12所示,称为副流。它从属于主流而存在,是河床冲淤的直接原因。 229厚桥涵 图8-12 1-冲刷坑;2-回水区;3-路堤;4-主流 6.人类活动 如兴修水利工程,建造堤坝、桥、涵等活动,都会对河床演变产生重大影响。 二、建桥后对河床演变的影响 建造桥梁后导致的河床演变属人类活动影响因素之一,它只是发生在桥位上、下游不远的范围内。主要为: (一)平原弯曲型河段(属于次稳定河段) 在这类河段上建桥,其孔径一般都大于或等于河槽宽度,建桥对河床的影响小。但是,当桥位通过水深较大的河湾时,因河床自身的天然演变,有可能形成河湾逼近桥台、桥头引道或导流堤,危及桥台基础。 (二)平原顺直河段(属于稳定性河段) 在这类河段上建桥,其孔径一般也不压缩河槽宽度,故对河槽自然演变的影响不会明显,建

河床演变的基本原理

河床演变的基本原理 第二节河床演变的基本原理 自然界的河流无时不刻都处在发展变化过程之中。在河道上修建各类工程之后,受到建筑物的干扰,河床变化将人为加剧。由于山区河流的发展演变过程十分缓慢,因此,通常所说的河流演变,一般系指近代冲积性平原河流的河床演变。 河流是水流与河床相互作用的产物。水流与河床,二者相互制约,互为因果。水流作用于河床,使河床发生变化;河床反作用于水流,影响水流的特性。由因生果,倒果为因,循环往复,变化无穷,这就是河床演变。 水流与河床之间相互作用的纽带一泥沙运动。泥沙有时因水流运动强度减弱而为河床的组成部分,有时又因水流运动强度的增强而成为水流的组成部分。换句话说,河床的淤积抬高或冲刷降低,是通过泥沙运动来达到和体现的。因此,研究河床演变的核心问题,归根结底,还是关于泥沙运动的基本规律问题。 一、河床演变分类 天然河流中,河床演变的现象是多种多样的,同时也是极其复杂的。根据河床演变的某些特征,可将冲积河流的河床演变现象分为以下几类: (1)按河床演变的时间特征,可分为长期变形和短期变形。如由河底沙波运动引起的河床变形历时不过数小时以至数天;蛇曲状的弯曲河流,经裁直之后再度向弯曲发展,历时可能长达数十年、百年之久。 (2)按河床演变的空间特征,可分为整体变形和局部变形。整体变形一般系指大范围的变形,如黄河下游的河床抬升遍及几百km的河床;而局部变形则一般指发生在范围不大的区域内的变形,如浅滩河段的汛期淤积,丁坝坝头的局部冲刷等。 (3)按河床演变形式特征,可分为纵向变形、横向变形与平面变形。纵向变形是河床沿纵深方向发生的变形,如坝上游的沿程淤积和坝下游的沿程冲刷;横向变

河床演变的基本原理

河床演变的基本原理

第二节河床演变的基本原理 自然界的河流无时不刻都处在发展变化过程之中。在河道上修建各类工程之后,受到建筑物的干扰,河床变化将人为加剧。由于山区河流的发展演变过程十分缓慢,因此,通常所说的河流演变,一般系指近代冲积性平原河流的河床演变。 河流是水流与河床相互作用的产物。水流与河床,二者相互制约,互为因果。水流作用于河床,使河床发生变化;河床反作用于水流,影响水流的特性。由因生果,倒果为因,循环往复,变化无穷,这就是河床演变。 水流与河床之间相互作用的纽带—泥沙运动。泥沙有时因水流运动强度减弱而为河床的组成部分,有时又因水流运动强度的增强而成为水流的组成部分。换句话说,河床的淤积抬高或冲刷降低,是通过泥沙运动来达到和体现的。因此,研究河床演变的核心问题,归根结底,还是关于泥沙运动的基本规律问题。 一、河床演变分类 天然河流中,河床演变的现象是多种多样的,同时也是极其复杂的。根据河床演变的某些特征,可将冲积河流的河床演变现象分为以下几类: (1)按河床演变的时间特征,可分为长期变形和短期变形。如由河底沙波运动引起的河床变形历时不过数小时以至数天;蛇曲状的弯曲河流,经裁直之后再度向弯曲发展,历时可能长达数十年、百年之久。 (2)按河床演变的空间特征,可分为整体变形和局部变形。整体变形一般系指大范围的变形,如黄河下游的河床抬升遍及几百km的河床;而局部变形则一般指发生在范围不大的区域内的变形,如浅滩河段的汛期淤积,丁坝坝头的局部冲刷等。 (3)按河床演变形式特征,可分为纵向变形、横向变形与平面变形。纵向变形是河床沿纵深方向发生的变形,如坝上游的沿程淤积和坝下游的沿程冲刷;横向变形是河床在与流向垂直的两侧方向发生的变形,如弯道的凹岸冲刷与凸岸淤积;平面变形是指从空中俯瞰河道发生的平面变化,如蜿蜒型河段的河弯在平面上的缓慢向下游蠕动。 (4)按河床演变的方向性特征,可分为单向变形和复归性变形。河道在较长时期内沿着某一方向发生的变化如单向冲刷或淤积称为单向变形,如修建水库后较长时期内的库区淤积以及下游河道的沿程冲刷;而河道有规律的交替变化现象则称为复归性变形,如过渡段浅滩的汛期淤积、汛后冲刷,分汊河段的主汊发展、支汊衰退的周期性变化等。 (5)按河床演变是否受人类活动干扰,可分为自然变形和受人为干扰变形。近代冲积河流的河床演变,完全不受人类活动干扰的自然变形几乎是不存在的。

相关文档
最新文档