脲醛树脂胶使用说明

合集下载

胶合材料学2 脲醛树脂胶粘剂

胶合材料学2  脲醛树脂胶粘剂
• 甲醛水溶液易被氧化,极易聚合,遇冷聚合变混。
在硫酸存在下与变色酸(1,8-二羟基奈一3,6二磺酸)一起加热10min,出现亮紫色,可检出 甲醛的存在。
9
2.1 合成脲醛树脂的原料
• 甲醛溶于水后形成的水合物为甲二醇,甲二醇与
甲醛再聚合生成二聚体的水合物,如此聚合下去 形成多聚体的水合物一多聚甲醛:
温度降至l0℃左右。然后再升温到85~90℃。在
这个阶段,从凝胶色谱分析发现尿素的峰降低
(即含量减少)一羟甲基脲和二羟甲基脲的峰增
高(含量增加),随着羟甲基化阶段的继续进行,
尿素及一羟甲基脲的浓度减少(峰降低),二羟
甲基脲的浓度增加(峰增高),并有缩聚物生成。
pH值下降到6~7。
23
• 二 缩聚反应 • 合成脲醛树脂时的缩聚反应(或树脂化反应)是
10
• 甲醛水溶液在贮存过程中,形成聚合度n>3的聚
甲醛,是微溶于水的沉淀,加热可使其溶解,但 加热温度不要超过50℃,且不可用明火加热。甲 醛水溶液的有效贮存期为3个月。
• 为了防止甲醛聚合常在甲醛水溶液中加入甲醇,
甲醇含量越高,甲醛水溶液贮存期间的容许温度 就越低,但过多会降低甲醛与尿素的反应速度, 一般甲醇含量为8%~12%。
• 脲醛树脂除可用作木材胶粘剂外,还可应用于纺
织品、纸张、乐器、肥料以及涂料等。脲醛树脂 可制成水溶液状、泡沫状、粉末状以及膏状使用。
2
2 脲醛树脂胶粘剂
• 减少木材胶接制品游离甲醛释放量的方法有: • 降低合成树脂的尿素(U)与甲醛(F)的F/U摩
尔比;
• 在脲醛树脂中添加甲醛捕捉剂; • 对木材胶接制品用氨或尿素溶液进行后处理; • 改变树脂的合成工艺。 • 其中降低合成树脂F/U摩尔比的方法被广泛采用。

脲醛树脂胶国家标准

脲醛树脂胶国家标准

脲醛树脂胶国家标准脲醛树脂胶是一种常见的胶粘剂,广泛应用于家具、建筑、包装等领域。

为了规范脲醛树脂胶的质量和使用,国家制定了一系列的标准,以确保产品的安全性和可靠性。

首先,脲醛树脂胶的国家标准主要包括产品分类、技术要求、检验方法、标志、包装、运输、贮存等内容。

在产品分类方面,根据不同的用途和特性,脲醛树脂胶被分为室温固化型和热固化型两大类。

针对不同类别,标准对其技术要求和检验方法进行了详细规定,包括固含量、粘度、凝胶时间、耐水性、耐热性等指标,以确保产品的稳定性和可靠性。

同时,标准还对产品的标志、包装、运输和贮存提出了具体要求,以保证产品在生产、运输和使用过程中的质量和安全。

其次,脲醛树脂胶国家标准的制定对行业发展和产品质量提升起到了积极的推动作用。

标准的实施可以促进行业技术的进步和产品质量的提高,提升企业竞争力和产品市场竞争力。

同时,标准还可以帮助企业规范生产流程,加强质量管理,提升产品质量和品牌形象,提高产品的市场认可度和竞争力。

另外,脲醛树脂胶国家标准的制定也对消费者和社会公众具有重要意义。

标准的实施可以保障消费者的权益,确保他们购买到安全、可靠的产品,降低使用过程中的风险和安全隐患。

同时,标准还可以减少环境污染和资源浪费,促进可持续发展和绿色生产,符合社会的可持续发展和环保要求。

总之,脲醛树脂胶国家标准的制定和实施对行业、企业、消费者和社会都具有重要意义。

只有严格依照标准要求进行生产、检验和使用,才能确保脲醛树脂胶产品的质量和安全,促进行业健康发展和社会可持续发展。

希望相关企业和机构能够认真遵守标准要求,共同维护行业的良好秩序,为社会和消费者提供更加安全、可靠的产品。

脲醛树脂——精选推荐

脲醛树脂——精选推荐

脲醛树脂胶粘剂是以脲素与甲醛生成的以树脂为主体的胶粘剂,脲醛树脂几乎是所有合成树脂中最廉价的,又因具有较好的性能(如较高的胶接强度,耐热性和耐老化性等),且固化快,毒性低,原料易得,制造工艺简单,使用方便,胶层色浅且不污染板面而广泛应用于刨花板、胶合板、纤维板和细木工板等人造板的制造及矿物棉、矿物纤维和铸体砂型等材料粘接,是竹、木加工纸张粘接,钢化涂料等行业应用广泛的一种胶粘剂,是市场上需求量最大的胶粘剂之一[1]。

本研究采用添加聚乙烯醇对脲醛树脂胶加以改性,得出了其适宜的工艺条件和添加比例,所得改性脲醛树脂胶性能优于一般的脲醛树脂,尤其在粘接速度、耐水性、强度等方面有较大的提高。

1实验1.1原料及仪器原料:(1)脲素;(2)甲醛,化学纯;(3)六次甲基四胺,分析纯;(4)氢氧化钠;(5)聚乙烯醇。

仪器:250mL三颈烧瓶,球形冷凝管,电动搅拌器,200℃温度计,粘度计,电热套。

1.2实验原理1.3步骤①在带有电动搅拌器的250ml的三颈烧瓶中,加入1g PVA和30g质量分数为35%甲醛水溶液。

加热至4O℃左右,反应5min,使PVA基本溶解,溶液透明,允许有少量悬浮物;②升温至5O℃左右,加1.5g六次甲基四胺,全溶后用质量分数为2O%的氢氧化钠调pH值至8.0左右;③尿素5O g,按7:2:1质量比,分3次投料,升温至6O℃,投入第一批,并加0.5g PVA,缓缓升温到8O℃,反应30min;④用氢氧化钠调节pH=7.0,加入第二批尿素,保持温度8O℃以上。

反应30min;⑤再用氢氧化钠调节pH=8.0,加入第三批尿素,反应2O min;⑥降温至4O~5O℃,用NaOH调pH值至7.5-8.0,冷却出料得产品[2]。

2结果与讨论2.1各因素对反应的影响2.1.1原料量比(A)的影响固定其他条件,选定不同的甲醛与脲素的质量比,得实验数据见表1。

甲醛/脲素的量比降低,则胶粘剂羟甲基及游离醛含量降低,导致产品粘接力下降,储存稳定性下降。

脲醛树脂胶黏剂

脲醛树脂胶黏剂

脲醛树脂胶黏剂脲醛树脂胶黏剂的改性研究09应化卢琼32号一、脲醛树脂的特点脲醛树脂胶黏剂我国木材工业用量最大合成树脂胶黏剂,占木材加工业胶黏剂总消耗量60%多,占人造板用胶量90%左右。

脲醛树脂胶黏剂的主要优点是在固化之前具有水溶性,对许多基材使用都很方便,并且能同其他许多材料一起使用,它也可以使染料和颜料任意着色,耐溶性能好,硬度高。

胶接强度高、耐冷水性能、耐热水性能高;固化迅速;与水混溶性好,易调制合适黏度浓度等;但脲醛树脂也有其弱点:在固化时收缩率较大,胶层易产生裂缝,耐水性差;含有游离甲醛,在使用脲醛树脂或使用脲醛树脂胶黏剂制备的产品过程中,会释放出甲醛的恶臭味,并强烈地刺激人的视黏膜、鼻黏膜和上呼吸道,严重危害人的身体健康。

只有对脲醛树脂进行改性,降低游离甲醛含量,才能使之符合日益严格的环保法规的要求,保障消费者的身体健康。

所以,新的环保型脲醛树脂是脲醛树脂发展的方向[1]。

当前脲醛树脂黏胶剂的改性研究主要从以下几个方面入手:降低游离甲醛含量;提高脲醛树脂的耐水性;改进树脂稳定性;提高脲醛树脂胶粘接强度;减小脲醛树脂胶收缩性;改善脲醛树脂胶脆性;提高脲醛树脂胶初粘性等二、脲醛树脂的改性a、降低脲醛树脂毒性随着改性脲醛树脂胶黏剂研究的不断深入,树脂综合性能的到明显提高。

应用领域也随之拓宽。

但随着应用领域的不断扩展,脲醛树脂胶黏剂中游离甲醛含量高,以及在生产过程中交接制品散发出来的游离甲醛对环境造成的污染,成为严重的社会问题,越来越引起环保专家和消费者的关注。

所以,在不断降低产品综合性能的前提下生产和使用低毒脲醛树脂胶黏剂势在必行。

脲醛树脂中游离甲醛含量一般依据欧洲标准制定,利用钻空法测量板材中游离甲醛含量,据此判定脲醛胶中游离甲醛含量,分为E1级(<10mg/100g)、E2级(<30mg/100g)、E3(<60mg/100g),其中E1级和E2级属于环保型[2]。

(1)胶接制品甲醛释放的原因根据甲醛释放机理不同,游离甲醛存在方式分为两种:单体游离式及复合分解式。

脲醛树脂固化机理及其应用

脲醛树脂固化机理及其应用

脲醛树脂固化机理及其应用
脲醛树脂是一种常用的热固化树脂,具有优良的物理和化学性能,被广泛应用于涂料、胶粘剂、塑料、纸张等领域。

脲醛树脂固化机理是通过加热使脲醛树脂中的脲醛基发生缩聚反应,形成三维网络结构。

脲醛基的缩聚反应是一个复杂的化学反应过程,包括三个主要的步骤:甲醛与脲的加成反应、脲醛缩合反应和脲醛交联反应。

甲醛与脲的加成反应是将脲醛树脂中的脲醛基与甲醛分子发生加成反应,形成部分甲醛加成产物。

脲醛缩合反应是指部分甲醛加成产物之间的缩合反应,生成链状的脲醛聚合物。

脲醛交联反应是指脲醛聚合物之间的交联反应,形成三维网络结构,从而固化树脂。

脲醛树脂具有优异的性能,主要应用于以下几个领域:
1. 涂料:脲醛树脂可以用作涂料的主要成膜物质,具有优良的耐磨性、耐化学品性和耐候性,可以广泛应用于金属、木材、玻璃等表面的保护和装饰。

2. 胶粘剂:由于脲醛树脂具有良好的粘接性能和高温抗剪强度,可以用于制备高性能胶粘剂,广泛应用于家具、汽车、船舶等领域。

3. 塑料:脲醛树脂可以与聚酯、酚醛等树脂共混制备复合材料,具有优异的绝缘性能和耐热性能,适用于制备电气绝缘材料和耐高温构件。

4. 纸张:脲醛树脂可以用作纸张的增强剂和表面涂层剂,可以提高纸张的强度、耐水性和耐久性。

总之,脲醛树脂固化机理的研究和其在不同领域的应用,为生产和应用提供了重要的理论和实践基础。

树脂胶的正确使用方法

树脂胶的正确使用方法

树脂胶的正确使用方法
嘿,咱来说说树脂胶的正确使用方法哈。

我记得有一次我想修补一个有点裂缝的小摆件,就用到了树脂胶。

那树脂胶就像一个神奇的小魔法师。

首先呢,得把要粘的东西准备好。

我把那个有裂缝的小摆件拿出来,裂缝就像小摆件受伤的口子。

然后要把裂缝周围清理干净,不能有灰尘或者杂物。

我就像一个小医生,拿着小刷子轻轻地把裂缝周围的灰尘刷掉,就像在清理伤口周围的脏东西。

接着就是打开树脂胶的包装啦。

那树脂胶一般是两种成分,就像两个小伙伴要一起合作。

把它们分别挤出来,就像挤出两管牙膏。

然后把这两种成分按照一定的比例混合在一起。

这就像在做一个特殊的小点心,比例得调好。

我慢慢地把它们搅拌均匀,那搅拌的过程就像在搅拌面糊,要让它们充分地融合在一起。

搅拌好之后,就可以把树脂胶涂到裂缝上啦。

我用一个
小木棒蘸了点树脂胶,然后小心翼翼地把胶涂到裂缝里。

那树脂胶就像胶水一样慢慢地渗进裂缝里,就像给小摆件的伤口抹药。

我记得有一次,涂的时候不小心涂多了,树脂胶就流出来了一点,就像药膏抹多了流出来了。

我赶紧用纸巾擦掉,就像擦掉多余的药膏。

涂完树脂胶后,要把粘好的东西放在一个地方让它固化。

这就像让小摆件在病床上休息。

不能去动它,不然树脂胶还没干,就会影响效果,就像小孩伤口还没愈合就乱动一样。

从准备工作到最后固化,这就是树脂胶的正确使用方法。

就像我修补小摆件的时候做的那样,这样就能把东西粘得很牢固啦。

脲醛树脂胶粘剂

脲醛树脂胶粘剂是一种开发应用较早的热固性高分子胶粘剂[1 ]。

由于其工艺简单,原料廉价,粘接强度高,无色透明等优点,广泛应用于胶合板、刨花板、中密度纤维板、人造板材的生产及室内装修等行业,占木材胶粘剂总产量的80 %左右[2 ]。

但是,随着对室内环境意识的日益提高,人们越来越注意到脲醛树脂胶粘剂在使用过程中会放出甲醛,损害身体健康。

甲醛是具有强烈刺激性的有毒气体,并被认为是致癌物质,这将危害人类健康和生态环境。

因此,脲醛树脂胶粘剂游离甲醛的污染和危害问题备受关注。

国内外研究表明,三聚氰胺在合成过程中既可以参与共聚来改性脲醛树脂胶,还可以在反应后期作为甲醛捕捉剂达到改性效果[3~6 ]。

本文选用三聚氰胺作为改性剂,分别用这2 种方法对传统的脲醛树脂胶粘剂的合成路线进行改性,制备出符合国家标准( GB/ T 1473221993“木材工业胶粘剂用脲醛,酚醛,三聚氰胺甲醛树脂”) 的低醛胶粘剂,同时研究了改性剂以及改进的新工艺对脲醛树脂各项性能的影响。

1 实验材料和方法1.1 材料尿素(98 %,工业品) 、甲醛(37 %,工业品) 、氢氧化钠(分析纯) 、甲酸(分析纯) 、三聚氰胺(工业品) 、聚乙烯醇(工业品) 。

1.2 仪器普通三口烧瓶(1000 mL) 、水浴锅、电动搅拌器、温度计(0~50 ℃,0~100 ℃) 、pHs23C 酸度计、玻璃搅拌棒、分析天平。

1.3 合成工艺本实验最终选取尿素/ 甲醛摩尔比范围为1.1到2.0 进行实验,合成过程采用碱-酸-.碱路线。

第一阶段控制pH 值为8.5~8.8 ;第二阶段控制pH值在4.5~5.0 ;第三阶段pH值为7.5~8.0 。

甲醛在合成前期一次加入,尿素分3次加入。

共聚实验中,改性剂三聚氰胺在前期加入;而作为游离醛捕捉剂时,三聚氰胺分别在反应的3个不同时期加入,选取尿素/ 甲醛摩尔比为1∶1.2 。

1.4 制品性能测试样品的性能检测中,密度、pH 值、固含量、水混和性、固化时间、适用期、游离甲醛等均按照GB/ T14074 测定;粘度采用涂4 粘度杯(25 ℃) 检测。

3 脲醛树脂胶粘剂

Δ
HOCH2NHCONHCH2OCH2NHCONHCH2OH HOCH2NHCONHCH2NHCONHCH2OH + CH2O
29
(三)树脂的固化
脲醛树脂为分子量400-600并相互间不能分离的不同低分子 聚合物的混合物。它可长期贮存或在温度和促进剂或仅在促 进剂的作用下,树脂从线型结构转化为体型结构,即转变成 不溶、不熔的热固性脲醛树脂。热固性UF的体型结构目前 还不十分清楚,但一般认为是下面的结构(见下页):
20
3.1.3 脲醛树脂形成机理
1mol尿素与<1mol的甲醛反应
一羟甲基脲
O
O
H 2 N C N H 2 H O C H 2 O H H 2 N C N H C H 2 O H H 2 O
尿素
水合甲醛
一羟甲基脲
白色固体,熔点111-113℃
21
1mol尿素与>1mol的甲醛反应
二羟甲基脲 三羟甲基脲
32
脲醛树脂经典理论--小结
脲醛树脂的生成分两个阶段:加成阶段和缩聚阶段。 第一阶段:碱性介质中甲醛与尿素的加成阶段,它取
决于尿素与甲醛的摩尔比,可生成一羟甲基脲、二羟 甲基脲、三羟甲基脲(四羟甲基脲从未被分离出来) 羟甲基化合物进一步反应生成具有二亚甲基醚链节的 二聚体或多聚体和Uron环衍生物。 第二阶段:酸性介质中羟甲基脲的缩聚阶段,生成具 有亚甲基链节的高分子化合物(水溶或水不溶的预聚 物)。
4
3.1 脲醛树脂胶粘剂(UF)
3.1.1 概述
脲醛树脂胶粘剂(Urea-Formaldehyde Resin Adhesives):是尿素与甲醛在催化剂(碱性或酸性 催化剂)作用下,缩聚而成的初期脲醛树脂;在固 化剂或助剂作用下,形成不溶、不熔的末期树脂。

脲醛树脂文档

脲醛树脂引言脲醛树脂是一种常见的合成树脂,具有广泛的应用领域。

本文将介绍脲醛树脂的基本特性、制备方法、应用以及市场前景。

通过对脲醛树脂的深入了解,可以更好地利用其优良性能满足各种需求。

基本特性脲醛树脂是一种热固性树脂,具有以下基本特性:1.耐热性:脲醛树脂具有较高的耐热性,可以在高温下保持稳定性。

2.耐腐蚀性:脲醛树脂具有优异的耐腐蚀性,对酸、碱等化学物质具有较好的抵抗能力。

3.耐磨性:脲醛树脂硬度高,具有良好的耐磨性,适用于制造耐磨材料。

4.电气性能:脲醛树脂具有优异的电气绝缘性能,可以用于制造绝缘材料。

5.尺寸稳定性:脲醛树脂收缩率低,具有良好的尺寸稳定性,适用于制造精密模具。

制备方法脲醛树脂是通过脲和甲醛反应合成而来的。

制备脲醛树脂的主要步骤如下:1.预处理脲:将脲与水反应,生成氨水溶液。

2.甲醛缩聚:将甲醛与氨水溶液进行反应,生成脲醛树脂的前驱体物质。

3.热固化:将脲醛树脂前驱体加热,进行热固化反应,形成最终的脲醛树脂产物。

应用领域脲醛树脂具有广泛的应用领域,主要包括以下几个方面:木质板材脲醛树脂是一种常用的胶合剂,可用于制造木质板材,如刨花板、饰面板等。

脲醛树脂能够提高木材的强度、耐久性和耐火性,使其具有更广泛的应用价值。

磨料材料脲醛树脂可以与磨料粒子进行固化,制成高硬度的磨料材料,用于磨削硬质材料,如金属、石材等。

脲醛树脂磨料具有耐磨性好、使用寿命长的特点。

绝缘材料脲醛树脂具有良好的电气绝缘性能,适用于制造绝缘材料,如绝缘子、电线电缆套管等。

脲醛树脂绝缘材料可以在高温高压环境下安全可靠地运行。

精密模具脲醛树脂具有低收缩率和高尺寸稳定性的特点,适用于制造精密模具,如注塑模具、压铸模具等。

脲醛树脂模具具有较高的精度和耐磨性,可以满足高精度产品的制造需求。

市场前景脲醛树脂作为一种功能性合成树脂,具有广阔的市场前景。

随着社会的发展和工业的进步,对于高性能材料的需求越来越大。

脲醛树脂以其优良的物理性能和化学性能,在建材、电子、化工等领域具有广泛的应用前景。

脲醛树脂固化机理及其应用

第29卷 第4期2007年7月北 京 林 业 大 学 学 报JOURNAL OF BEIJING FORES TRY UNIVERSITYVol.29,No.4Jul.,2007收稿日期:2006--09--07http: 基金项目:国家科技支撑计划课题(2006BAD18B09)、 948 国家林业局引进项目(2006--4--107).第一作者:李建章,博士,副教授.主要研究方向:木材胶粘剂与木质复合材料.电话:010--62336092 Email:lijianzhang126@126 com 地址:100083北京林业大学材料科学与技术学院.脲醛树脂固化机理及其应用李建章 李文军 周文瑞 范东斌 高 伟(北京林业大学材料科学与技术学院)摘要:脲醛树脂在人造板生产中的大量使用是室内空气中产生甲醛污染的主要原因.掌握脲醛树脂的固化机理将成为解决甲醛污染问题的关键.该文依据高分子缩聚的经典理论和胶体学说以及一些实验与生产事实,讨论了脲醛树脂中的游离甲醛问题、胶接制品的甲醛释放问题、脲醛树脂的耐水性问题、脲醛树脂固化速度与摩尔比以及固化剂种类的关系问题,分析了脲醛树脂固化的经典理论与胶体学说存在的问题.关键词:脲醛树脂,甲醛释放,经典缩聚理论,胶体学说中图分类号:TQ433 4 文献标识码:A 文章编号:1000--1522(2007)04--0090--05LI Jian -zhang;LI Wen -jun;ZHOU Wen -rui;FAN Dong -bin;GAO Wei.Curing mechanism of urea -formaldehyde resin and its application .Journal o f Beijing Forestry University (2007)29(6)90--94[Ch,11ref.]College of Materials Science and Technology,Beijing Forestry University,100083,P.R.China.The wood -based boards mostly bonded with urea -formaldehyde (UF)resin are the main reasons of formaldehyde pollution of indoor air.To master the curing mechanism of UF resin is the key for resolving the formaldehyde pollution proble m.According to the traditional condensation polymerization theory,colloidal concept of UF resin,and some e xperimental and production facts,this paper discussed the formaldehyde content of UF resin,formaldehyde emission and water resistance of wood -based boards,and the effec ts of molar ratios and catalysts on the curing rate of UF resin,the existent problems of the traditional condensation polymerization theory,and the colloidal concept for explaining the curing mechanism of UF resin were clarified.Key wordsurea -formaldehyde resin,formaldehyde emission,traditional condensation polymerizationtheory,colloidal concept脲醛树脂因其良好的性能和低廉的价格(是合成树脂中价格最低的)而得到广泛应用,它是胶粘剂中用量最大的品种.特别是在木材加工业各种人造板的制造中,脲醛树脂及其改性产品占胶粘剂总用量的90%左右.然而,用脲醛树脂生产的人造板在制造和使用过程中存在着甲醛释放的问题.甲醛为毒性较高的物质,在我国有毒化学品优先控制名单上高居第二位.甲醛对眼、粘膜和呼吸道均有刺激作用,会引起慢性呼吸道疾病、过敏性鼻炎、免疫功能下降等病症;甲醛被认为是潜在的致癌物质,可能是鼻癌、咽喉癌、皮肤癌的诱因,因此释放甲醛问题严重损害着生产者和使用者的身体健康.继 煤烟型 、 光化学烟雾型 污染后,现代人正身陷于以 室内空气污染 为标志的第三污染时期,其中甲醛是主要污染物之一.使用脲醛树脂生产的人造板及其制品是甲醛污染的主要来源,且具有长期性的特点[1].近几年来,室内空气中的甲醛污染已经给人们的健康带来了严重威胁,解决各类使用脲醛树脂生产的人造板及其制品中严重的甲醛释放问题已经刻不容缓.为此,我国颁布了强制性国家标准GB18580 2001 室内建筑装饰装修材料 人造板及其制品中甲醛释放限量 [2],2002年1月1日开始试行,7月1日强制实施.脲醛树脂的使用已经有100多年的历史,但是其固化及胶接机理研究还不透彻,特别是低摩尔比脲醛树脂的固化及胶接机理还不完全清楚.真正掌握脲醛树脂、特别是低摩尔比脲醛树脂的固化与胶接机理,将成为解决上述问题的关键.本文依据高分子缩聚的经典理论、胶体学说和一些实验与生产事实对脲醛树脂的固化机理以及实际应用中的一些问题进行了分析、探讨.1 脲醛树脂固化的经典缩聚理论经典缩聚理论认为,当甲醛与尿素的摩尔比大于1 0时,脲醛树脂的合成与固化反应属于体型缩聚;一般作为胶粘剂使用时,通过控制反应程度(低于凝胶点)先合成脲醛树脂初期树脂,胶接制品时再进一步缩聚交联成体型结构.经典理论认为,脲醛树脂初期树脂的生成分两个阶段.第一阶段即碱性介质中甲醛与尿素的加成(羟甲基化)阶段,它取决于尿素与甲醛的摩尔比,可生成一羟甲基脲、二羟甲基脲、三羟甲基脲.虽然尿素具有4个官能度,但四羟甲基脲却从未被分离出来.第二阶段即酸性介质中羟甲基脲的缩合(亚甲基化)阶段,生成具有亚甲基键或醚键连接的低聚物,可以是水溶或水不溶的预聚物.传统的化学分析方法与现代的仪器分析基本证实了上述经典理论对脲醛树脂结构的描述.传统的经典理论认为,脲醛树脂是热固性树脂,当树脂的pH值降至3 0~4 0时,立即固化.在固化过程中,树脂的一些具有反应活性的官能团,如 C H2OH、 NH 、 NH2进一步发生反应,使树脂交联形成三维网络结构,变成不溶和不熔的白色块状物.2 脲醛树脂的胶体学说无论是脲醛树脂的性质,还是脲醛树脂生产过程中出现的一些问题,有许多是经典理论无法解释或者解释得十分勉强的[3].如,大部分热固性树脂即使有颜色,也都是透明体系,而合成的脲醛树脂常常一开始或存放一段时间后是乳白、不透明的;大部分热固性树脂固化后的产物为透明的玻璃态,断裂面平滑,而固化后的脲醛树脂为乳白色、不透明,具有结晶构造,断面有球形结构;典型的脲醛树脂可以通过超离心沉降分离出呈球形粒子的固体;脲醛树脂的生产过程中,酸性阶段黏度增长至一定程度加入固体尿素后,树脂的黏度往往会下降很多.针对以上问题,1983年Pratt在WSU胶粘剂年会上第一次提出了脲醛树脂的胶体学说,并随后在Journal Adhesion杂志上发表[4].他认为脲醛树脂是线性的聚合物,在水中形成胶体分散体系,当胶体稳定性遭到破坏时,胶体粒子凝结、沉降,脲醛树脂发生固化或凝胶.脲醛树脂胶体的稳定性是由于粒子周围有一层甲醛分子吸附层或质子化的甲醛分子吸附层,当胶粒凝结时,就有甲醛或氢离子释放出来.胶体学说认为,脲醛树脂的固化是胶体粒子聚结和发展其粒子聚结结构的过程.它要求胶粒有一最低限浓度,在没有达到这一浓度时,黏度增长是有限的(只是粒子的体积效应);达到这一浓度后,由于粒子聚结形成粒子结构,黏度就会突变.脲醛树脂逐渐变混是粒子由小到大发展过程的表现.高摩尔比脲醛树脂由于甲醛的溶剂化使粒子变小,发展成较大粒子需要时间,这就使混浊现象延迟.脲醛树脂胶体学说对低摩尔比脲醛树脂合成、固化过程中的一些问题和现象解释得比较清楚.当前低摩尔比脲醛树脂在工业生产使用中占主导地位,所以,脲醛树脂胶体学说在理论和实践方面均有其现实意义.3 脲醛树脂的经典理论与胶体学说在实际生产中的应用目前,脲醛树脂作为胶粘剂使用存在一些问题,如脲醛树脂的游离甲醛和胶接制品(人造板等)的甲醛释放、耐水性差、低摩尔比脲醛树脂固化速度慢与贮存稳定性差等.在这些问题上,经典理论在实际应用中发挥了较大作用,而胶体学说给我们提出了新思路.3 1 脲醛树脂和胶接制品的甲醛释放问题根据经典理论,甲醛与尿素的反应为可逆反应.甲醛的量越大,甲醛的未反应部分即甲醛的残留就越大,游离甲醛含量就越高;同时,甲醛的量越大,生成的羟甲基和醚键也越多,固化后胶层老化(水解、热解)释放的甲醛量越高,也就是人造板等制品的甲醛释放量越高.因此按照经典理论,通过降低甲醛与尿素的摩尔比、合成后期真空脱水等就能够有效降低脲醛树脂游离甲醛含量以及胶接制品的甲醛释放量,这些方法在工业生产上已经普遍使用[5].另外,通过控制反应条件,在脲醛树脂合成过程中生成较多的稳定的亚甲基键连接以及Uron环状结构,同样可以降低胶接制品的甲醛释放量[6--7].胶体学说则认为,脲醛树脂属于胶体,甲醛有助于胶体的稳定;脲醛树脂凝胶、固化时放出甲醛.如果找到能够替代甲醛作为脲醛树脂树脂稳定剂的物质,就可以解决人造板的甲醛释放问题.胶体学说为解决脲醛树脂甲醛释放问题提供了新思路,但还没有得到很好的实践验证.这方面的研究有待于进一步深入.3 2 耐水性问题经典学说认为,脲醛树脂的耐水性与树脂结构有关,如采用较高的摩尔比(1 5左右)使脲醛树脂91第4期李建章等:脲醛树脂固化机理及其应用具有高的交联度,就能够显示出高的耐水性;反之摩尔比过低(如低于1 05)难以形成交联结构时,耐水性与胶接强度就低.当然,如果摩尔比过高(如高于2 0)时,由于生成较多的醚键和富余较多的羟甲基,反而导致耐水性下降.这些在生产实践中已经得到证实.经典学说还认为,脲醛树脂水解性是脲醛树脂分子主结构即价键的酸水解,改进其耐水性能只能从水解条件方面着手,即降低其酸性.研究发现,将脲醛树脂固化后的胶层调至中性,则表现出非常优越的耐水性.例如,将弱碱性玻璃微粉加入脲醛树脂中或将胶合板用碳酸氢钠水溶液处理,使其固化后的胶层呈现中性或弱碱性,则脲醛树脂能够表现出很高的耐水性、甚至具有一定的耐沸水性.同时,亚甲基键与Uron结构稳定性高、耐水解性强,通过控制反应过程,生成较多的亚甲基连接与Uron结构将有助于提高脲醛树脂的耐水性.这些已有实验证实[8].在耐水性问题上胶体学说则认为,价键酸水解可以放到后一步考虑,脲醛树脂表现出的多级结构和稳定性是主要的.但是,该学说在实际应用中还没有很好地发挥作用.3 3 固化速度问题3 3 1 脲醛树脂摩尔比与凝胶点的关系对于体型缩聚反应的凝胶点预测,Carothers推导出了著名的Carothers方程[9]:P c=(2 f) 100%(1)式中,P c是凝胶点(%),即发生凝胶化时的反应程度(认为此时的聚合度无限大); f是体系平均官能度.只要计算出 f就可以利用Carothers方程很容易地预测体型缩聚反应的凝胶点.而 f为非过量物质的官能度总量的2倍与单体总物质量之比.表1列出了几个不同摩尔比的脲醛树脂体型缩聚反应的平均官能度和凝胶点预测值.其中,甲醛的官能度为2,尿素的官能度为3(虽然,尿素有2个NH2,总计4个H,但平均只有2 8~3个H是活泼的、可以参与化学反应,因此可以认为尿素的官能度是3).表1 不同摩尔比脲醛树脂体型缩聚反应的平均官能度和凝胶点预测值TABLE1 P c and f of UF resins wi th different molar ratios摩尔比(F U)0 91 01 051 31 5 f1 892 002 052 262 40P c %10610097 688 583 3凝胶点等于100%表示反应程度为100%,也就是所有的官能团全部反应时才能形成凝胶,这种情况是困难与不可能的.因此,摩尔比为1 0的脲醛树脂是难以凝胶化的.同样,摩尔比为0 9的脲醛树脂的凝胶点大于100%表示不能发生凝胶.摩尔比为1 05的反应体系可以发生凝胶,但理论上反应程度必须达到97 6%以上时才出现凝胶化现象;而摩尔比为1 3时反应程度为88 5%就可以了.理论和实践表明,缩聚反应后期,由于体系黏度很高而未反应官能团很少且往往被包埋,从而造成缩聚物后期的反应程度难以提高,因此低摩尔比的脲醛树脂固化速度要比高摩尔比的慢很多.反映到工业生产上,低摩尔比脲醛树脂胶接人造板的热压周期长、生产效率低.当然,凝胶点的预测是在没有被胶接物(如木材)存在的前提下进行的.当用脲醛树脂生产人造板时,由于木材的化学成分中含有大量的羟基、羟甲基等活性基团,这些基团在一定条件下可能与脲醛树脂中的羟基、羟甲基以及氨基、亚氨基等结合形成化学键或氢键.这样,即使脲醛树脂的摩尔比很低,胶接木材时也可能借助于木材中的活性基团而形成化学或物理交联,表现出较高的胶接强度与一定的耐水性.有专利报道,摩尔比低于1 0的三聚氰胺改性脲醛树脂胶粘剂也能制造出内聚强度很高的MDF[10],实际生产中也已经开始应用摩尔比低于1 0的改性脲醛树脂.研究发现,摩尔比为0 8、0 9的脲醛树脂,当使用氯化铵或硫酸铵作为固化剂时,确实如经典缩聚理论预测的那样难以固化.按常规方法测定固化时间时,难以出现凝胶化现象,仅仅是水分挥发而变得黏稠.但是,当使用过硫酸铵、过硫酸钾作固化剂时,则能够很快凝胶变成固体[11].这说明使用不同固化剂时,脲醛树脂的固化机理可能不同.3 3 2 固化促进机理与固化剂种类的影响脲醛树脂胶粘剂调胶时,一般都要加入氯化铵、硫酸铵等强酸弱碱盐作为固化剂.4NH4Cl+6C H2O 4HCl+(C H2)6N4+6H2O(1)NH4Cl HCl+NH3(2)NH4Cl+H2O HCl+NH4OH(3)一般认为,强酸弱碱盐催化的脲醛树脂的固化机理,主要是盐与树脂中的游离甲醛反应放出无机酸,使体系的pH值下降,导致缩合反应加速而使树脂快速凝胶、固化,如反应式(1)所示.研究和实践已经证实,脲醛树脂胶粘剂中游离甲醛含量越低,其固化时间越长,证明反应式(1)起主导作用.虽然铵盐可以加热分解以及在水中水解放出无机酸,如反应式(2)、(3)所示,但是这些反应可能不占主导地位.92北 京 林 业 大 学 学 报第29卷另外,如果在低游离甲醛含量的脲醛树脂胶粘剂中直接加入强酸(如盐酸、硫酸),也可以使树脂的固化时间大为缩短,甚至会使首先接触酸的树脂部分瞬间凝胶、固化而不能使用.强酸能够使低游离甲醛含量脲醛树脂胶粘剂快速固化的现象,说明了体系pH值降低是脲醛树脂胶粘剂固化的关键之一.低游离甲醛含量脲醛树脂胶粘剂用铵盐固化时,固化速度变得很慢,其主要原因之一也是由于体系pH值降低较慢、降幅较小所致.因此,经典理论认为树脂结构、体系pH值是脲醛树脂固化速度的决定因素.实验与生产实践也证明了pH值对脲醛树脂固化速度的重要影响.按照胶体学说,脲醛树脂是胶体,电解质的加入将有助于脲醛树脂的凝胶、固化.据报道,在脲醛树脂中添加食盐既可提高其固化速度,又可降低成本,这已被美国工业界普遍采用.胶体学说认为,添加食盐使胶粒的双离子层变薄,胶粒不稳定,凝结加速,并合理地解释了过程中pH值微小的变化.不过,研究表明氯化钠虽然确实能够加速脲醛树脂的固化,但是效果非常有限[11].另外,在脲醛树脂合成过程中和合成后加入氯化钠,脲醛树脂的贮存期并无很大变化,说明脲醛树脂的胶体成分并不很大.3 4 脲醛树脂固化前后的外观按照胶体学说,由于脲醛树脂属于胶体,即使高摩尔比的脲醛树脂起初是透明的,存放一段时间后应会变成乳白色,脲醛树脂固化后的断面有球形构造.事实上,脲醛树脂即使合成初期是透明的,存放一段时间后都变成乳白色,并且氯化铵、硫酸铵作固化剂的脲醛树脂固化后的外观确实如上所述.但是,研究发现[11],即使脲醛树脂固化前是乳白色的,当使用过硫酸铵作固化剂时,不同摩尔比(0 8~1 2)的脲醛树脂固化后均断面平滑、外观透明.另外,相同摩尔比的脲醛树脂合成工艺不同时,产品的外观也完全不同.如,摩尔比为1 05的脲醛树脂根据合成工艺不同其外观可以是乳白的,也可以是透明的;并且如果合成工艺合适,脲醛树脂贮存1个月后仍然能够保持透明.观测脲醛树脂固化前后的外观可以推断,脲醛树脂具有一定的胶体性质,但可能不完全属于胶体;不同反应条件下合成的脲醛树脂其性质不同、不同固化剂作用下其固化机理可能不同.当然,脲醛树脂的固化过程是很复杂的,其固化速度除了跟体系pH值有关外,还跟树脂的合成工艺、树脂结构等有关.更多的研究、实践还有待于进一步深入.4 脲醛树脂固化的经典理论与胶体学说存在的问题4 1 经典理论存在的问题经典理论虽然在脲醛树脂固化机理解释与实际应用中发挥了重要作用,为解决脲醛树脂存在的问题做出了重大贡献,但是仍然有一些现象难以得到圆满解释,如:摩尔比低于1 0的脲醛树脂在强酸或者过硫酸盐作固化剂时能够快速固化成固体;用氯化铵、硫酸铵作固化剂时,脲醛树脂固化后呈不透明的乳白色、断面粗糙,而当使用过硫酸盐作固化剂时则固化后的树脂透明、断面平滑;摩尔比低于1 0的脲醛树脂胶接的制品仍然具有较高的胶接强度.4 2 胶体学说存在的问题胶体理论虽然对解决脲醛树脂存在的诸如甲醛释放问题、耐水性问题提出了新思路,但是到目前为止还没有充分发挥作用,还有很多问题难以解释,如:较高摩尔比(1 5左右)脲醛树脂与低摩尔比(如1 1以下)脲醛树脂相比,耐水性、胶接强度完全不同;虽然用氯化铵、硫酸铵作固化剂时,脲醛树脂固化后呈不透明的乳白色、断面粗糙,显示了胶体性质,但当使用过硫酸盐作固化剂时则固化后透明、断面平滑;氯化钠加入脲醛树脂中对其贮存期影响不大等.5 结 论脲醛树脂的固化机理主要符合经典缩聚理论,但同时也在一些方面与胶体学说相符.经典缩聚理论在实际应用中对解决脲醛树脂及其制品的甲醛污染问题、耐水性问题等方面发挥了重要作用,而胶体学说虽然提出了解决脲醛树脂甲醛释放等问题的新思路,但还没有得到很好的实践验证.可以说,脲醛树脂既具有普通热固性树脂的特点,同时某些方面又具有胶体的性质.因此,脲醛树脂固化的经典理论与胶体学说都在一定条件下发挥作用.为了很好地解决脲醛树脂实际应用中存在的甲醛污染等问题,更加深入地进行脲醛树脂固化机理方面的研究是非常必要的.参考文献[1]李建章,周文瑞,张德荣.室内空气中的甲醛污染与解决办法[J].中国林业产业,2004(7):51--55.LI J Z,Z HO U W R,ZHANG D R.Formaldehyde pollution i n indoor ai r and its resolving methods[J].China Forestry Industry,2004(7): 51--55[2]国家质量监督检验检疫总局.GB18580 2001室内建筑装饰装修材料 人造板及其制品中甲醛释放限量[S].北京:中国标准出版社,200293第4期李建章等:脲醛树脂固化机理及其应用General Admi nistrati on of Quality Supervision Ins pection and Quarantine of the People s Republic of China.GB18580 2001 Formaldehyde emission limit o f inne r building deco ration and fitme nt mate rial\-wood based boards[S].Beijing:Standards Pres s of China,2002[3]孙振鸢,吴书泓.脲醛树脂的结构与形态 脲醛树脂胶体理论及其进展[J].林业科学,1993,29(1):49--56.SUN Z Y,WU S H.Structures and morphology of UF resin introduc tion of colloidal theory and its progress of UF resin[J].Scientia Silvae Sinic ae,1993,29(1):49--56[4]PRATT T J,JO HNS W E,RAM MON R M,et al.A novel c oncept onthe s truc ture of cured urea-formaldehyde resin[J].J Adhesion,1985, 17(4):275--295[5]夏至远.木材工业实用大全 胶粘剂卷[M].北京:中国林业出版社,1996.XIA Z Y.Practical technique o f wood industry Wood adhesives[M].Beijing:Chi na Fores try Publishi ng House,1996[6]MYERS G E.Hydrolytic s tabili ty of cured urea-formaldehyde res ins[J].Wood Science,1982,15(2):127--138 [7]GAO W,LI J Z,Z HO U W R.Uron s tructure in reducing freeformaldehyde content and emis sion of UF resin and plywood[C] Proce edings o f the3rd World Congress on Adhe sion and Re late d Phe nomena.Beiji ng:WCAR P,2006[8]黄泽恩,孙振鸢.脲醛树脂模型化合物的水解[J].木材工业,1992,6(1):17--20.HUANG Z E,SUN Z Y.Hydrolysis of the model compounds of urea-formaldehyde resin[J].Wood Industry,1992,6(1):17--20[9]FLOR Y P J.Princi ples o f pol yme r chemist ry[M].New York:CornellUnivers ity Press,2003:478--479[10]MUK HERJEE S.Binder composition with low formaldehyde emis sionand proces s for i ts preparati on:United States,4,992,519[P] 1991--02--12[11]FAN D B,LI J Z,ZHOU W R.Curing charac teristics of low molarratio urea-formaldehyde resins[C] Prec ee dings o f the3rd World Congress on Adhesion and Re late d Phenome na.Beijing:WCARP, 2006(责任编辑 李文军)中国林学(英文版) 征稿启事中国林学(英文版) (Forestry Studies in China)始创于1992年,是一份由北京林业大学主办的全英文刊物,目前为季刊,大16开本.主要发表经同行评议的研究论文、简报、综述.内容包括森林生态学、森林培育学、森林经理学、林木遗传与育种、林木生理学、森林病虫害防治、森林资源信息管理、林业经济学、以及林业相关学科如水土保持科学、木材科学与技术、林产品加工等,面向国内外征稿和发行.中国林学(英文版) 致力于促进国内外林业领域科研人员的学术交流,缩短中国与其他国家在相关领域的差距.本刊从2007年开始与全球著名的学术出版机构 德国Springer出版社正式合作出版,全文链接于SpringerLink数据库,并委托其代理本刊在中国大陆以外地区的发行权,进一步加快了本刊的国际化步伐.详细信息请登录http: journal 11632.中国林学(英文版) 为中国科学技术信息所核心刊物、中国期刊网全文数据库、万方数据库刊源期刊.目前收录、检索本刊的国外著名的检索机构、数据库有CA(美国化学文摘)、JA(俄罗斯文摘杂志)、CABI(国际农业与生物科学中心)等.地址:北京市清华东路35号北京林业大学148信箱 中国林学(英文版) 编辑部邮编:100083电话:010--62337915Email:pjcheng@94北 京 林 业 大 学 学 报第29卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档