毕业设计-飞机机翼翼梁的结构分析和修理

毕业设计-飞机机翼翼梁的结构分析和修理
毕业设计-飞机机翼翼梁的结构分析和修理

目录

1 引言 (3)

2 飞机翼梁的结构分析 (3)

2.1 翼梁的结构组成 (3)

2.1.1 翼梁缘条 (4)

2.1.2 翼梁腹板 (4)

2.2 翼梁的受载特点 (5)

2.3 翼梁的布置 (6)

3 故障诊断 (6)

3.1 超声波探伤 (6)

3.1.1 超声波探伤设备 (7)

3.1.2超声波探伤的工作原理 (7)

4 故障修理 (8)

4.1 翼梁缘条的修理 (8)

4.1.1 缺口的修理 (8)

4.1.2 裂纹的修理 (9)

4.1.3 断裂的修理 (10)

4.2 翼梁腹板的修理 (13)

4.2.1 裂纹的修理 (13)

4.2.2 破孔的修理 (14)

4.2.3 切割的修理 (15)

5 校核强度 (16)

5.1 梁缘条修理时的强度计算 (16)

5.2 腹板修理时的强度计算 (19)

结束语 (20)

参考文献 (21)

飞机机翼翼梁的结构分析和修理

【摘要】

本论文主要阐述了飞机翼梁的组成结构及修理方法,其中还包括翼梁的受载特点、翼梁的布置,超声波无损探伤所需设备与工作原理以及校核强度。从而在翼梁出现故障后,能按照适当的修理方法,准确无误地对结构进行修理,以保证翼梁能在飞机上发挥其应有的独特性能。

关键词翼梁维修超声波铆接

【Abstract】

This paper describes the main beam of the structure of the aircraft wing and repair methods, which also includes wing loaded beam characteristics, spar layout, ultrasonic nondestructive testing equipment and the necessary works, as well as checking intensity. Thus spar failure after the repair methods in accordance with appropriate, accurate structural repairs to ensure that the aircraft wing beams can play a unique performance of its due.

Keywords Spar Maintenance Ultrasound Riveting

1引言

与漫长的人类文明史相比,200余年的航空发展史只能算是历史长河中短暂的一瞬。人类实现了飞行的愿望,是20世纪最伟大的科技成就之一,而且只有很少几项科学技术成果能与之媲美。飞机是一个庞大而复杂的,驶离地面的飞行器系统,是人类制造的最复杂的产品之一。飞行自诞生以来,结构形式在不断变化,但到目前为止,除了极少数特殊形式的飞机之外,大多数飞机都是由机翼、尾翼、机身、起落架、操纵系统、动力装置和机载设备等几个部分组成。

机翼的主要功用是产生升力,以支持飞机在空中飞行,它还起一定的稳定和操纵作用。通常在机翼上还装有副翼、襟翼、起落架、武器及副油箱等。机翼构件包括蒙皮,骨架(包括翼梁、桁条、纵墙、普通翼肋和加强翼肋)及与机身相连接的接头。在飞机机翼中,翼梁是最主要的受力构件之一,一般由缘条和腹板等组成。主要功用是承受弯矩和剪力。梁的上下缘条承受由弯矩引起的轴向力。剪力则主要由腹板承受。

2飞机翼梁的结构分析

2.1 翼梁的结构组成

翼梁一般由梁的腹板和缘条(或称凸缘)组成。翼梁是单纯的受力件,主要承受剪力和弯矩。在有的结构形式中,它是机翼主要的纵向受力件,承受机翼的全部或大部分弯矩,翼梁大多根部与机身固接。翼梁的构造形式主要有组合式(图1-a)、构架式(图1-b)和整体锻造式(图1-c)。其中,组合式翼梁和整体锻造式翼梁统称为腹板式翼梁。现代飞机上普遍采用的是腹板式翼梁。它构造简单,受力特性好,同时还可以作为整体油箱的一块隔板来使用。构架式翼梁则构件多,制造复杂,没有或只有很少的超静定度,安全性低,又不能构成整体油箱,现已很少采用。本文仅就腹板式翼梁作以较为详细的阐述。

(a)腹板(组合)式翼梁

(b)构架式翼梁

(c)整体式翼梁

图1 翼梁的构造形式

(a)腹板(组合)式翼梁:1—上缘条;2—腹板;3—下缘条;4—支柱

(b)构架式翼梁:1—上缘条;2—下缘条;3—斜支柱;4—直支柱

(c)整体式翼梁:1—机翼与机身接头的耳片;2—锉修垫板;3—固定座

2.1.1翼梁缘条

翼梁的缘条由高强度钢或铝合金制造,经常采用开剖面、厚壁、挤压型材。在选择缘条截面形状时,要遵照制造简便、便于沿翼展长度保持翼型、便于蒙皮与腹板固定的原则。按宽度方向伸展的缘条截面形状,不仅有助于增大翼梁的惯性矩,而且还可降低用于承受轴向力的缘条所需面积,从而减小翼梁的质量。又由于存在缘条上的弯边,所以蒙皮与腹板和缘条的固接得到了简化,从而使孔造成的截面损失较小。

2.1.2翼梁腹板

翼梁腹板由板材制成。薄腹板有时用角形截面的型材加强支持,以便把腹板

分成单个的壁板,从而提高相对厚度。起支持作用的角形截面型材和翼肋腹板弯边,用来把翼肋固定在翼梁腹板上。腹板可以制成波纹板或三层板的形式。在翼梁结构中可能是一块,也有可能是两块腹板,两块腹板能够保证更大的生存性(如果其中每一块都保证承受通过翼梁腹板的载荷),此外,分置的腹板与缘条在形成闭室的同时,也使翼梁产生抗扭刚度。

2.2 翼梁的受载特点

当空气动力载荷传递到机翼上后,蒙皮受载并把此载荷传递到翼肋和桁条上,桁条受蒙皮加载并把此载荷传递到翼肋上,翼肋由蒙皮和桁条加载并将此载荷分配到翼梁腹板上,由翼肋传递到翼梁腹板上的剪流,在翼梁腹板上产生沿翼梁长度的阶梯式累积剪力。图2(a)所示为前(第1)梁腹板的受载情况,后(第

2)梁也是如此。梁腹板接受从翼肋传来的剪力i i i i H Q q q 111'1?=?-=和i i i i H Q q q 222'2?=?-=,该力和翼梁与机身隔框固定接头上的反力平衡。

如图2(a~c )所示为腹板的受载和宽度为z ?的一个小单元翼梁腹板的受力平衡状况。沿这个单元的右边缘作用一个从翼梢到翼根方向累积的剪流'1i q ?,左边缘上将作用有同样的剪流'1i q ?(因为Z ?值很小),但方向相反。腹板单元在这两个剪流的作用下不能平衡。为了让其平衡,连接上下缘条的铆钉应向腹板提供剪流f q 。

由腹板单元的平衡条件可知f q =i q 1?,并且,在这些载荷作用下翼梁腹板受剪,翼梁缘条上的铆钉受水平方向的剪切。

通过连接缘条和腹板的铆钉,使缘条内产生轴向力f s ,它沿机翼向根部累积,在翼根剖面处与前后梁固定接头的支反力1s 和2s 平衡,如图2(d 、e )。

翼梁腹板传递到缘条上的剪流在向机翼根部累积的过程中,使壁板受到轴向载荷,壁板也以此形式承受弯矩。此时轴向载荷在纵向构件(翼梁缘条和壁板)之间按抗弯刚度分配。

图2 翼梁腹板和缘条(机翼壁板)受载图

2.3 翼梁的布置

翼梁应尽可能布置在剖面高度较大的部位,同时轴线尽量不要转折,以便传力直接、连续,这样对结构的强度、刚度有利,可减轻结构重量。一旦有转折,必须布置另一构件(如另一梁或加强肋)来承受由此出现的弯矩分量。其次翼梁沿展向最好按弦长的等百分比线布置,否则缘条表面可能为双曲面,给工艺带来困难。然而实际情况是,翼梁的布置很大程度上容易受机翼平面布局和内部装载的影响,如前、后梁一般应照顾前、后缘的襟翼、缝翼、副翼等增升装置,另由于内部空间的需要,例如为了安置起落架,为扩大翼盒空间以增大整体油箱容积或增大扭转刚度,一般难以将翼梁布置在机翼剖面的最大高度处,有时还可能向前或向后转折。

3故障诊断

检查构件裂纹有两种方法:一种是用放大镜进行目视检查,这种方法的优点是简单方便,随时随地可以检查,而且不受被检测材料的限制。另一只共检测方法是使用专门的探伤设备进行无损检测,它包括射线检测、超声波检测等。

3.1 超声波探伤

超声波是频率大于20000Hz的机械波,超声波探伤是利用超声波在不同介质

中的传播、反射和衰减等物理特性的不同来发现缺陷的一种探伤方法,又称超声波检验,主要用于工件内部缺陷的检验。超声波探伤具有穿透力强、无污染、效率高、成本低等优点。

3.1.1超声波探伤设备

超声波设备主要包括超声波探伤仪和探头。

超声波探伤仪的主要功能是产生与超声波频率相同的电震荡,激励探头发生超声波。同时,它又将探头接收到的回波转换成电信号并予以放大、处理,再以一定方式在示波屏上显示出来。

超声波探头又称电压超声换能器,是实现电—生能量相互转换的能量转换器件。常用的探头有直探头、斜探头和表面探头等。主要由保护膜、压电晶片和吸收块等组成。其中,压电晶片是由单晶(石英、硫酸锂和碘酸锂等)或多晶(钛酸钡等)材料切割成薄片而制成。晶片两表面敷有银层作电极,“-”极引出的导线接发射端,“+”极接地。吸收块的作用是吸收杂波,并使晶片在激励电脉结束后将声能很快损耗而停止振动,以便接收反射声波。保护膜可使压晶片免于和工件直接接触磨损,匹配电感可使探头与超声波探伤仪的发射电路匹配,以提高发射效率。

当高频电压加于晶片两面电极上时,由于逆压电效应,晶片会在厚度方面方向产生伸缩变形的机械振动。如果晶片于工件表面良好耦合时,机械振动就以超声波形式传播进去,即发射超声波。反之,当晶片受到超声波作用而发生伸缩变形时,正电效应又会使晶片两表面产生不同极性电荷,形成超声频率的高频电压,即接收超声波。因此,一个探头即可用于单独发射超声波或接收超声波,也可同时兼有发射和接收超声波的功能。

3.1.2超声波探伤的工作原理

超声波探伤仪由触发电路、时基电路、发射电路、接收电路和显示器等部分组成。工作时,触发电路发出电脉冲。时基电路产生锯齿电压,在荧光屏的横坐标(X1-X2)上产生一条相当于时间坐标的水平扫横线。发射电路产生调频脉冲电压,加在发射探头上。探头将电波转变成超声波,并传入工件中。超声波经缺陷或工件底面反射后,传回接收探头,探头再将超声波转变为电波,经接收电路检波、放大后,在荧光屏的纵坐标(Y1-Y2)上显示出来。荧光屏上T波为反射波,F波为缺陷波,B波为底波。各脉冲波的高度与接收到的超声波的能量成正比。显然,T波最高,而F波河B伯最低。根据F波在横坐标上的位置,可以对缺陷的深度定位。根据F波德高度,可以估计缺陷的大小。如果缺陷在垂直于超声波传递的方向上面积比较大,则荧光屏上没有B波出现。如果缺陷方向与超声波传递方向平行,则对此缺陷探测的灵敏度大大降低。因此,对同一工件的同一部位,有时需要从不同方向多次探测,或利用两个或多个探头从不同方向进行探测。

4故障修理

4.1 翼梁缘条的修理

翼梁缘条的损伤类型主要有缺口、裂纹和断裂等。修理时,应根据损伤的实际情况,采用不同的修理方法。

4.1.1缺口的修理

翼梁缘条边缘产生缺口时,需根据缺口宽度的大小(沿构件的截面测量),采用不同的修理方法。宽度较窄的缺口(一般小于5mm),只需将缺口锉修成光滑的弧形,用砂纸打光后涂上底漆即可。锉修后的弧形应当符合图4所示的要求。当缺口宽度较宽时,需把缺口切割整齐,用填片填上缺口,并铆上加强片,如图5所示。加强片的材料和厚度应与原构件相同,宽度则比缺口的宽度稍大。

图4 缺口锉修法

图5 缺口的修理

4.1.2裂纹的修理

翼梁缘条在使用过程中出现裂纹,说明构件在该处承担的载荷过大,需根据裂纹的长短(沿构件截面的方向)采用不同的修理方法。当构件边缘出现长度不超过2mm的裂纹时,可采用锉修法修理;当裂纹长度大于2mm,但小于构件一边宽度的2/3时,可在裂纹末端钻直径为2~2.5mm的止裂孔,再用加强片加强,如图6所示;当裂纹的长度超过构件一边宽度的2/3时,在裂纹末端钻止裂孔

后,用与构件相同的型材进行加强,如图7所示。

图6 加强片加强

图7 加强型材加强

4.1.3断裂的修理

翼梁缘条断裂后,如果断裂的构件便于整根取下,可采用更换的方法进行修理。即取下断裂构件,用材料相同、规格相等的型材,制作新构件,按原孔铆接。

如果断裂的构件不便于整根取下,修理时,首先将构件的断裂部分切割整齐,

用与切割部位相适应的填补型材填平切割处,然后铆接一条接补型材,将断裂的

构件重新连接成一体,如图8所示。这样,在断裂处作用于构件一端的载荷,即

可通过接补型材,传至构件的另一端,使断裂构件的强度得到恢复。这种修理方

法,通常称为接补修理。

图8 断裂构件的接补

接补修理的要求是:在恢复构件抗拉和抗压强度的前提下,尽可能减轻构件

的重量,并力求施工方便。接补修理的工艺过程,主要包括构件损伤部位的切割、接补型材的选择和安装,以及接补型材的铆接。

(1)损伤部位的切割

切割损伤构件时,切割线应超出损伤范围5 mm,并且切割线应与构件垂直。切割后,用锉刀锉平切割缝,并涂刷防锈底漆。若结构中有几根构件同时断裂,需事先用托架将损伤部件托住,再进行切割。切割时,必须使各构件的切割缝彼此错开,不要在结构的同一截面上,以防止结构接补后,在该截面处的面积突然增大,引起应力集中,降低结构的强度。一般切割缝错开的距离尽量大于l00mm。

(2)接补型材的选择

接补型材通常选择与构件材料相同、截面积相等的型材。如果没有同样的型

σ)和弹性系数(E)要大材,也可以用其它型材代替。但代用型材的抗拉强度(

b

于或等于构件材料的抗拉强度和弹性系数。不同构件材料的代用材料见表1。

表1 代用材料表

代用型材的截面形状应与损伤构件的截面形状相同。

(3)接补型材的安装

接补型材的安装方法通常有三种:一种是接补型材安装在构件的外侧,简称外侧接补;一种是接补型材安装在构件的内侧,简称内侧接补;一种是接补型材安装在构件的两侧,简称两侧接补,如图9所示。

构件不论用哪种接补方法,施工时,应将接补型材的两端削斜(一般为45°),如图10(a)所示。采用内侧和两侧接补时,应将接补型材外棱角倒角,以保证接补型材与构件贴合紧密,同时,两侧接补时,还要使两根接补型材的端面彼此错开,不要在同一截面上,见图10(b),这与切割面要彼此错开的道理是一样的。

接补型材的三种安装方法各有其优缺点。外侧接补与内侧接补、两侧接补相比,操作比较简单,但是,外侧接补其接补型材的截面重心和构件的截面重心之间的距离较大(如图11中的e),接补后的构件在传递载荷时,由于作用在构件和接补型材上的力(P)都将分别通过它们各自的截面重心,这样一来,作用在构

p?)。这个偏弯件和接补型材上的载荷不在一条直线上,因而出现一个偏弯矩(e

矩,对受拉的构件来说影响不大,对受压的构件来说,容易使构件失去稳定,产

生纵向弯曲。由此可见,外侧接补的特点是施工比较简单,但使构件受压的稳定性变差。

图9 接补型材的安装

图10 接补型材的两端削斜和端面错开

图11 构件外侧接补后的受力情形

内侧接补和两侧接补,施工虽然比外侧接补复杂,但接补型材的截面重心和构件的截面重心之间的距离较小,构件受力时产生的偏弯矩也较小,因此,受压构件接补后不易失去稳定性,这就是内侧接补和两侧接补的特点。所以,修理时应根据损伤构件的受力特点、截面形式和安装位置等特点来合理地选择接补方法。

(4)钻孔铆接

为了保证翼梁缘条修理后具有应有的强度,一般规定,钻孔使构件强度削弱的程度,不得超过构件原来强度的8%~l0%。但是翼梁缘条的宽度较窄,截面面积较小,即使在截面上多增加一个铆孔,也容易超过规定,因此,修理时应尽量利用构件原来的铆孔,不钻或少钻新孔。如果需要钻制新孔,新孔的位置必须与原孔错开,不要在构件的同一截面上。钻好孔后,将填补型材安装在损伤部位,先把接补型材铆在构件上,再将填补型材铆在接补型材上。

4.2 翼梁腹板的修理

腹板由薄板制成,通常用螺栓或铆钉与缘条连接,承受剪力。腹板可能产生典型的损伤为破孔、裂纹等。修理时,必须根据腹板损伤的轻重程度,损伤的具体部位,采用不同的修理方法。

4.2.1裂纹的修理

裂纹通常出现在工艺孔或紧固件孔边。修理时,在裂纹端头钻止裂孔,用与腹板同材料同厚度的板材加强。加强片的尺寸根据铆钉的数量和布置确定。当加强片与缘条连接时,紧固件要加大一级;当修理结构油箱处的翼梁腹板时,加强片与腹板贴合面要涂胶,紧固件也要浸密封胶安装,并且还要在加强片周围涂密

封胶。另外,加强片安装前表面要喷漆。

4.2.2破孔的修理

(1)锉修法

锉修法就是将腹板上的破孔锉修成光滑的圆孔或椭圆孔。锉修后,在孔的四

周涂上油漆,以防腐蚀。锉修法不能恢复腹板损失的强度,因此,这种方法的使

用有以下限制:

a.只适用于修理直径较小的破孔。一般规定,破孔的直径应小于40mm。

b.锉修后的圆孔或椭圆孔,其边缘与其它孔边缘的距离不宜过小。因为距离

过小,腹板受剪力时容易在该部位失稳而产生变形。为此,通常规定,破孔边缘

与附近其它孔的边缘距离不得少于40mm。

c.用锉修法修出的圆孔或椭圆孔,其边缘与缘条的距离不宜过小。因为缘条

受拉或受压时,容易使腹板失稳而变形。因此,通常规定,破孔边缘与缘条的距

离也不得少于40mm。以上限制如图12。

图12 腹板锉修的规定

(2)盖板补法

盖板补法如图13所示,将腹板上破孔切割、锉修成规则形状后,铆上一块与腹板材料相同、厚度相等的盖板,以弥补腹板损伤处的强度。

图13 盖板补法

当破孔靠近一侧缘条时,应钻去腹板损伤处与缘条连接的铆钉,将盖板、腹

板和缘条三者铆在一起,如图14所示。当破孔直径较大时,上下两端与缘条连接,中部与腹板铆接,以增加修理部位的稳定性,如图15所示。

图14 破孔靠近缘条的修理

图15 破孔直径较大时的修理

4.2.3切割的修理

当腹板上有密集的破孔或裂纹时,需要更换一段新腹板。首先全部切割腹板的损伤部分,再用与腹板材料相同、厚度相等的板材制作一段新腹板,将新腹板填入切割口,代替已切除的腹板,然后在接缝处铆接X形连接片,使新腹板与原来腹板连成一体,如图16所示。

图16 腹板切割修理

5校核强度

5.1 梁缘条修理时的强度计算

梁缘条经加强修理或接补修理后,作用于构件一端的载荷是通过接缝一边的铆钉传递给加强型材或接补型材,然后通过加强型材或接补型材将载荷传至构件的另一端。接缝一边的铆钉数过少,构件受力时,铆钉容易被剪断,接缝一边的铆钉数过多,加强型材或接补型材的长度就要相应地增强,这样,不仅增加了结构的重量,而且往往给施工带来困难。因此,对接缝一边的铆钉数需要进行计算,其中方法可分为设计载荷计算法和等强度计算法两种。

(1)设计载荷计算

梁缘条加强或接补时的设计载荷计算方法接缝一边的铆钉数用下式计算

n=p dI/q bs (式—1)

式中:——梁缘条的设计载荷,N 。

①设计载荷的确定

由式(4-31)可以看出,要计算接缝一边的铆钉数,关键在于确定设计载荷(p dI),下面分几种情况来研究设计载荷的确定方法。

a .直接从修理资料中差得p dI。

b .当从修理资料中差得不是p dI,而是σ时,可根据损伤构件的截面面积(F)按下式计算

p dI= Fσds (式—2)

c. 从修理资料中不能直接差得p dI或σ时,可按相邻构件的p dI或σ进行计算,或者用直线插入法近似地求出损伤构件的p dI或σ。如图17所示,用直线插入法求得构件B 处的设计载荷为

p dI=p2+(p1-p2)l1/ l (式—3)式中:p1 p2——A B处构件的设计载荷,N;

l——A C处构件的距离,mm ;

l1——A B处构件的距离,mm .

图17 直线插入法

图18 组合构件p dI的确定

d.当损伤构件为组合构件中的一个时,如图18所示,可按下式计算损伤构件的设计载荷。

构件1的设计载荷为

p1-=p dI·E1F1/ E1F1+ E 2 F 2 (式—4)式中p dI——组合构件的载荷,N ,

E1——构件1的材料弹性模量;

E 2——构件2的材料弹性模量;

F1——构件1的截面面积,m㎡;

F 2——构件2的截面面积,m㎡;

构件2的设计载荷为

p2= p dI·E 2 F 2/ E1F1+ E 2 F 2 (式—5)

②计算步骤

第一步,根据构件的损失部位,确定其设计载荷

第二步,确定铆钉的材料和直径;

第三步,确定铆钉的破坏剪力;

第四步,按(式—1) 计算铆钉数;

第五步,确定加强型材或接补型材的长度。加强型材或接补型材的长度可以在布置铆钉的过程中求出,也可由下列公式计算

L=2[2c+(n/m-1+k)t]+l C (式—6)

—构件损伤部位的切割长度;

k—系数,当铆钉的排数m=1或并排列时,k=0;

当铆钉交错排列时,k=0.5;

5.2 腹板修理时的强度计算

腹板损伤修理时,裂纹一边的铆钉数、盖板中心线一侧的铆钉数及切割缝一边连接片上的铆钉数可按实际需要确定,必要时可通过计算确定。计算方法可采用设计载荷计算法或等强度计算方法。其计算公式为

n=Q dl/q bs (式—7)

n=Q bl/q bs (式—8)

其中,Q dl板损伤处的计算载荷。它等于损伤截面积(F s)计剪应力(τds)的乘积;Q bl

是腹板损伤处的破坏载荷,它等于损伤处的实有截面积(F s-mdσ)与破坏剪应力(τbs)的乘积

结束语

经过二个多月的努力,完成了毕业设计。首先,向指导老师汇报前段准备情况,最后确定本次的论文题目,并开始着手整理相关资料。根据整理的相关资料,初步建立起论文的基本框架,并和指导老师讨论是否合适,修改完善。结合自己所学,对所掌握的资料进行合理的筛选后,去图书馆查询资料,之后初步形成论文的初稿,并发送给指导老师,接受老师的指导。

在毕业设计的实践中,我学到很多有用的知识,也积累了很多经验。在设计过程中,不光让我拓展了知识面更重要的是,它提高了我查阅资料,分析解决实际问题的能力,同时也培养了我不骄不躁、严谨求实的工作作风,在以后的生活和工作中我会继续保持这种态度!

没有研究探索就不会有新的突破。在本次设计的所学习的经验和知识将会我

在今后的工作和学习起到不可估量的作用。

机翼的分类和构造

机翼的分类和构造 机翼是飞机的重要部件之一,安装在机身上。其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。飞机的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不例外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼下,因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,同时也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。 机翼的分类 机翼的分类方法有很多种,常用的分类方法有: *按机翼的数量分类:可分为单翼机、双翼机、多翼机等; *按机翼的平面形状分类:可分为平直翼、后掠翼、前掠翼、三角翼等等; *按机翼的构造形式分类:可分为构架式、梁式、壁板式、整体式等等。 此外,机翼的剖面形状也是多种多样,随着生产技术以及流体力学的发展,从早期的平直矩形机翼剖面到后来的流线形剖面、菱形剖面,机翼的升力性能越来越好,相反受到的空气阻力越来越小,也就是说机翼的升力系数越来越大,相同面积的机翼所产生的升力就越来越大。 机翼的构造 机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼(如美国的B-2隐形轰炸机),则根本就没有接头。以下是典型的梁式机翼的结构。 一、纵向骨架:机翼的纵向骨架由翼梁、纵樯和桁条等组成,所谓纵向是指沿翼展方向,它们都是沿翼展方向布置的。 *翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示)。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。

飞机维修专业毕业设计_毕业设计

飞机维修专业毕业设计_毕业设计 飞机维修专业毕业设计 摘要为了实现中华民族的伟大复兴,中国梦•强军梦战略目标的完成,本着更好的修理好飞机,保障飞行安全,来实现航修报国,建立强大的人民空军的愿望,本人设计了简单实用,操作方便的加力扩散器安装车架,来减少人为的因素差错的可能性,提高生产效率。本人阅读了加力扩散器的大量资料,明晰了扩散器的各个零部件与工艺流程,设计了这个简单实用的车架。随着经济的不断发展,高效率又方便实用的机械越来越受欢迎。关键词:航修报国;加力扩散器;生产效率;和谐某型单转子涡轮喷气式发动机加力扩散器车架设计第1章.航空发动机简介航空发动机共有3种类型 1.1.1活塞式航空发动机活塞式航空发动机是早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。 1.1.2燃气涡轮发动机燃气涡轮发动机这种发动机应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。 1.1.3冲压发动机冲压发动机其特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。 1.2 航空发动机维的发展趋势发动机研究和发展工作的特点是技术难度大、耗资多、周期长,发动机对飞机的性能以及飞机研制的成败和进度有着决定性的影响,而且发动机技术具有良好的军民两用特性,对国防和国民经济有重要意义。因此,世界上几个能独立研制先进航空发动机的国家无不将优先发展航空发动机作为国策,将发动机技术列为国家和国防关键技术,给予大量的投资,保证发动机相对独立地领先发展,并严格禁止关键技术出口。一些航空发动机后起工业国家也已制订了重大的技术发展计划,试图建立独立研制或参与国际合作研制先进航空发动机的能力。为满足21世纪各种航空器发展的要求,航空发达国家从二十世纪80年代末开始实施新的涡轮发动机技术发展计划,其目标是到XX~XX年掌握使发动机能力翻番的技术。所取得的阶段成果已经成功地用于一些在役发动机的改进改型和新型号研制,目前正处于最终目标的验证阶段。鉴于计划的成功实施和发动机对航空发展产生的重要作用,有的国家已经拟订了进一步的发动机技术发展计划。新计划在继续提高能力的同时更强调降低成本,其目标是从XX年到XX年使以发动机能力(推重比/耗油率)与全寿命期成本之比来度量的经济承受性提高到10倍。在高超声速推进方面,重点发展超声速燃烧冲压发动机和脉冲爆震波发动机。其他一些新概念发动机和新能源发动机也在探索之中,如以微机电技术为基础的微型无人机用超微型涡轮发动机和多电发动机,以及液氢燃料、燃料电池、太阳能和微波能等新能源动力。目前航空发动机的发展趋势为发展推重比为15~20的发动机。我国航空发动机“三步走”的发展战略:20年攀登三个技术台阶1.抓紧研制fws-10第三代发动机 2.积极开展推重比10的第四代发动机的研究和发展 3.着手组织推重比12~15的先进航空发动机的基础研究第2章.航空发动机加力扩散器2.1 航空发动机加力燃烧室作用及其构成 2.1.1航空发动机加力燃烧室的作用飞机在起飞时,为了缩短滑跑距离;飞行中,为了增大平飞速度、上升率和升限,提高飞机的起动性能,以利于掌握空战中的主动权,都需要发动机提供更大的推力。但是,当发动机处于

航空电子设备维修毕业设计

陕西航空职业技术学院 毕业设计(论文)论文题目:日历时钟显示系统 所属系部:电子工程系 指导老师:柳铭职称:教授 学生姓名:雷栋班级、学号: 0735118 专业:航空电子设备维修 2010 年06 月20 日 陕西航空职业技术学院 毕业设计(论文)任务书 题目:日历时钟显示系统 任务与要求: 该设计具有现实意义,时间是纪录一切事物的根据,对于任何人任何事,时间都具有非常重要的意义,该设计基于单片机使用日历芯片, 单片机与程序相结合,并且可以修改,具有显示时间和调整时间的功能。时间: 2009 年 12 月 01 日至2010 年 06 月 20 日 所属系部:电子工程系 学生姓名:雷栋学号: 0735118 专业:航空电子设备维修 指导单位或教研室: 指导教师:柳铭职称:教师 2010年 06 月 20 日

摘要 随着微电子技术的高速发展,单片机在国民经济的个人领域得到了广泛的运用。单片机以体积小、功能全、性价比高等诸多优点,在工业控制、家用电器、通信设备、信息处理、尖端武器等各种测控领域的应用中独占鳌头,单片机开发技术已成为电子信息、电气、通信、自动化、机电一体化等专业技术人员必须掌握的技术。 单片机应用技术飞速发展,纵观我们现在生活的各个领域,从导弹的导航装置,到飞机上各种仪表的控制,从计算机的网络通讯与数据传输,到工业自动化过程的实时控制和数据处理,以及我们生活中广泛使用的各种智能IC卡、电子宠物等,这些都离不开单片机。单片机是集CPU ,RAM ,ROM ,定时,计数和多种接口于一体的微控制器。而51系列单片机是各单片机中最为典型和最有代表性的一种。这次毕业设计通过对它的学习,应用,从而达到学习、设计、开发软、硬的能力。 本文通过对一个基于单片机的能实现万年历功能电子时钟的设计,从而达到学习、了解单片机相关指令在各方面的应用。系统由主控制器AT89C51、时钟电路DS1302、显示电路、按键电路、和复位电路等部分构成,能实现时钟日历显示的功能,能进行时、分、秒的显示。 目录 一、介绍 (4) 二、设计部分 (8) 一:方案的论证和比较: (8) 单片机型系统的选择与论证 (8) 显示模块的选择与论证 (8) 时钟实现 (9) 二:系统框图及工作原理 (9) 三、软件编程 (14) 3.1 主程序流程图 (14) 3.2 键盘程序 (15) 3.2.1 按键使用流程图 (18) LCD液晶显示流程图 (19) DS1302时间部分 (22) 附录B (24)

机翼分析

B-2隐形战略轰炸机 一、飞机简介: B-2隐形战略轰炸机是冷战时期的产物,由美国诺思罗普公司为美国空军研制。1979年,美国空军根据战略上的考虑,要求研制一种高空突防隐形战略轰炸机来对付苏联90年代可能部署的防空系统。1981年开始制造原型机,1989年原型机试飞。后来对计划作了修改,使B-2轰炸机兼有高低空突防能力,能执行核及常规轰炸的双重任务。 二、飞机整体结构: 飞机三视图和飞机内部结构剖析(图下)

三、飞机机翼结构分析: B-2轰炸机采用翼身融合、无尾翼的飞翼构形,其机体扁平,采用翼身融合的无尾(无垂直尾翼)的飞翼构型,机翼前缘为直线,交接于机头处,机翼后掠33度,飞机头部到翼尖成锐角,机翼后缘成双“W”形(锯齿形)有8个操纵面(6个升降副翼,2个阻流方向舵),巨大的锯齿状后缘由10条直的边缘组成,翼展尺寸为52.43米机翼前缘交接于机头处,机翼后缘呈锯齿形。机身机翼大量采用石墨/碳纤维复合材料、蜂窝状结构,表面有吸波涂层,发动机的喷口置于机翼上方。这种独特的外形设计和材料,能有效地躲避雷达的探 测,达到良好的隐形效果。 形尾翼原始设计 是专门为高空飞 行设计的,能够 满足高空阵风载 荷的需求,但不 适应于低空阵风 载荷的需求。飞 机主翼的设计进 行了重大改动, 因为空军不仅要 求飞机能从高空 突入,而且还要 能超低空突防, 从而带来了提高 飞机升力、增强

机械结构强度、进一步降低其雷达反射截面积等一系列问题,使飞机的设计历经数年才得以定型。B-2飞机的结构设计是基于满足阵风载荷(又称突风载荷)标准进行设计的,航空历史上仅有几种型号的飞机是按阵风载荷需求设计的,大部分军用飞机是根据机动载荷(又称惯性载荷)需求而设计。 机翼结构为单块式。从构造上看,单块式机翼的长桁较多且较强;蒙皮较厚;长桁、蒙皮组成可受轴向力的壁板。当有梁时,一般梁缘条的剖面面积与长桁的剖面面积接近或略大,有时就只布置纵墙。为了充分发挥单块式机翼的受力特点,左、右机翼一般连成整体贯穿机身。但有时为了使用、维护方便,在展向布置有设计分离面。分离面处采用沿翼箱周缘分散连接的形式将机翼连为一体。 单块式机翼的上、下壁板成为主要受力构件。这种机翼比梁式机翼的刚度特性好(这点对后掠机翼很重要)。同时由于结构分散受力,能更好地利用剖面结构高度,因而在某些情 况下(如飞机速度较大时)材料利用率较高,重量可能较轻。此外单块式机翼比梁式机翼生存力强。它的缺点是不便于开口 (Boeing)波音747 SP 一、飞机名称: 波音747 SP 波音747,又称为“珍宝客机”(Jumbo Jet),是一种双层客舱四发动机飞机,是世界上最易识别的客机之一,亦是全世界首款生产的宽体民航客机,由美国波音民用飞机集团制造。波音747原型大小是1960年代被广泛使用的波音707的两倍。1965年8月开始研制,自1970年投入服务后,一直是全球最大的民航机,垄断着民用大型运输机的市场,到A380投入服务之前,波音747保持全世界载客量最高飞机的纪录长达37年。 二、飞机整体结构:

中国民航大学2017年硕士研究生《飞机结构与强度》考试大纲

中国民航大学2017年硕士研究生《飞机结构与强度》考试大纲(原科目名称为《飞机结构力学》代码821) 科目代码:821 适用专业:见当年招生专业目录 一、课程简介 “飞机结构与强度”课程旨在重点培养学生的综合分析问题、解决问题的能力和工程应用能力,使学生为专业课学习做好扎实宽厚的理论准备,同时也为毕业生从事民航领域飞机结构维护和深度维修等工作或继续深造提供必要的理论基础。 “飞机结构与强度”课程包括飞机结构力学和飞机结构强度两方面的教学内容。 飞机结构力学从力学的角度来讲授飞机结构的组成规律,飞机结构在载荷作用下的强度、刚度、稳定性的计算方法,并为飞机结构的受力分析和强度计算提供必要的基础理论知识。要求学生能够正确运用所学知识进行飞机结构强度、刚度、稳定性分析计算。 飞机结构强度通过学生对飞机结构在使用中承受的载荷、载荷传递路线及飞机结构在载荷作用下的强度、刚度、稳定性等力学性能的系统学习,使学生掌握有关飞机结构强度计算的基本概念、飞机结构的传力分析、飞机结构在载荷作用下、内力计算的基本原理和基本方法、以及飞机构件的破坏形式和强度校核方法。 二、课程内容 第1章绪论 1.1飞机结构与强度的任务 1.2飞机结构形式的发展 1.3飞机结构力学的研究对象 1.4飞机结构力学研究的基本原则和基本假设重点:典型飞机结构元件的功用难点:飞机结构的计算模型 第2章能量原理基础 2.1弹性力学问题及基本方程 2.2功和能的概念 2.3广义力和广义位移 2.4虚功原理 2.5余虚功原理 2.6叠加原理和位移互等定理重点:广义力和广义位移难点:余虚功原理,功和能的计算 第3章结构组成分析 3.1结构组成分析的任务 3.2结构组成分析方法 3.3桁架结构的组成 3.4刚架结构的组成 3.5薄壁结构的组成重点:常见飞机结构系统的几何组成分析 第4章静定结构内力与变形 4.1静定结构的特性 4.2静定杆系结构内力 4.3静定薄壁结构内力 4.4计算结构变形的意义 4.5单位载荷法重点:静定结构内力计算的基本原理和基本方法,静定结构变形计算的单位载荷法

飞机结构完整性研究现状及发展方向

第23卷 第3期 2005年9月 飞 行 力 学FL IG HT DYN AM ICS V ol.23 N o.3Sep.2005  收稿日期:2005-02-01;修订日期:2005-07-05 作者简介:屈玉池(1961-),男,陕西长安人,研究员,主要从事航空发动机结构强度与科技情报信息管理研究。 飞机结构完整性研究现状及发展方向 屈玉池1,2,晁祥林2,陈 琪2 (1.西北工业大学航空学院,陕西西安710072;2.中国飞行试验研究院情报档案中心,陕西西安710089) 摘 要:飞机结构完整性是确保飞机安全寿命的重要条件之一。简要介绍了结构完整性在飞机设计中的发展进程及其作用;以F -4C /D 和F -16飞机为例,叙述了结构完整性在飞机结构设计和验证中的应用情况;最后指出 当前我国结构完整性技术的研究现状,以及下一步的研究重点。 关 键 词:飞机结构完整性;军用规范;载荷谱;损伤容限 中图分类号: V 215 文献标识码: A 文章编号:1002-0853(2005)03-0009-04 引言 飞机结构完整性大纲是从1957年B -47飞机出 现疲劳问题后提出的,由此对飞机结构完整性的研究逐步形成并得到发展,在飞机结构分析中的应用于1970年前后发生飞跃。1969年,一架F-111飞机由于机翼关键接头存在漏检裂纹,仅100飞行小时就发生事故;在此期间,C-5A 疲劳试验样机也过早地产生开裂现象。所以,1975年12月发布的《M IL-STD -1530A 美国空军结构完整性大纲(ASIP )》增加了结构损伤容限和耐久性分析以及地面试验要求,提高了对飞机结构完整性要求[1]。在以后的十几年中,结构完整性技术有了进一步的发展,并形成了《M IL -A -87221(U SAF )飞机结构通用规范》和《M IL-A-8860B(AS)飞机强度和刚度系列规范》。这些规范在近十几年来广泛用于飞机结构设计和验证。随着断裂力学、概率断裂力学的发展,在结构完整性要求的损伤容限、耐久性等分析中又融入了概率统计方法,使解决随机因素下结构发生破坏问题成为可能,进一步完善了结构完整性理论和方法。 1 飞机结构完整性研究进展 在1970年以前的结构完整性大纲中,结构分析的重点是静强度和“安全寿命”疲劳设计方法。该方法利用了一种假设,即用疲劳样机代表所有的生产型飞机,假定部队所用飞机的“安全寿命”为疲劳样 机寿命的四分之一。然而,正是在关键结构部位存在没有检测出的较大的初始裂纹引发了F -111飞机事故。该事故说明,所采用的安全寿命疲劳设计分析方法存在缺陷,所做的全部疲劳试验并不能预测出这类飞机结构破坏,因此,所应用的M IL-A-8860系列飞机强度和刚度规范不能满足飞机结构完整性要求,迫切需要一种新的满足结构完整性要求的评估飞机安全寿命的分析方法,由此推动了飞机强度和刚度规范的改进和飞机结构完整性技术的发展。 在1970~1980年执行的飞机结构完整性大纲中,结构安全寿命要求通过损伤容限和耐久性分析体现,并以规范的形式得以贯彻,使飞机结构能承受在制造、维修或服役期间所形成的裂纹而正常服役。美国军用规范M IL -A -83444规定了飞机结构的损伤容限要求;M IL -A -008666B 规定了耐久性要求;M IL -A -8867A 规定了地面试验要求。这三部规范反映了当时有关耐久性、损伤容限和地面试验的技术现状,并与其它结构规范共同构成了M IL-STD-1530飞机结构完整性大纲框架。 M IL-STD-1530A 把损伤容限和耐久性要求分开,损伤容限用破损-安全概念或缓慢裂纹扩展概念设计实现。为了满足耐久性要求,规定试验中所验证飞机的经济寿命必须大于设计服役寿命。在飞机结构评价中,损伤容限和耐久性要求还用来决定部队对飞机结构的维修计划,并提供检查、修理的方法和预期的时间。 近十几年来,结构完整性技术有了更进一步的

飞机基本结构123

飞机基本结构 飞机结构一般由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置(主要介绍机翼和机身)。 机翼 薄蒙皮梁式 主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).纵向长桁较少且弱,梁缘条的剖面与长桁相比要大得多,当布置有一根纵梁时同时还要布置有一根以上的纵墙。该型式的机翼通常不作为一个整体,而是分成左、右两个机翼,用几个梁、墙根部传集中载荷的对接接头与机身连接。薄蒙皮梁式翼面结构常用于早期的低速飞机或现代农用飞机、运动飞机中,这些飞机的翼面结构高度较大,梁作为惟一传递总体弯矩的构件,在截面高度较大处布置较强的梁。 多梁单块式 从构造上看,蒙皮较厚,与长桁、翼梁缘条组成可受轴力的壁板承受总体弯矩;纵向长桁布置较密,长桁截面积与梁的横截面比较接近或略小;梁或墙与壁板形成封闭的盒段,增强了翼面结构的抗扭刚度,为充分发挥多梁单块式机翼的受力特性,左、右机翼最好连成整体贯穿机身。有时为使用、维修的方便,可在展向布置有设计分离面,分离面处采用沿翼盒周缘分散连接的形式将全机翼连成一体,然后整个机翼另通过几个接头与机身相连。 多墙厚蒙皮式(有时称多梁厚蒙皮式,以下统简称为多墙式) 这类机翼布置了较多的纵墙(一般多于5个);蒙皮厚(可从几毫米到十几毫米);无长桁;有少肋、多肋两种。但结合受集中力的需要,至少每侧机翼上要布置3—5个加强翼肋。当左、右机翼连成整体时,与机身的连接与多梁单块式类似。但有的与薄蒙皮梁式类似,分成左右机翼,在机身侧边与之相连,此时往往由多墙式过渡到多梁式,用少于墙数量的几个梁的根部集中对接接头在根部与机身相连。 蒙皮

航空电子设备维修》专业人才培养方案探析(25页)

西安航空职业技术学院 2011级《航空电子设备维修》专业人才培养方案 一、指导思想与基本原则 (一)指导思想 本专业人才培养方案制定过程中总的指导思想是:贯彻以服务为宗旨,以就业为导向,走产学结合之路的方针,贯彻“工学结合”的模式,以教育部《关于制定高职高专教育专业教学计划的原则意见》为依据,贯彻和落实《教育部财政部关于实施国家示范性高等职业院校建设计划加快高等职业教育改革与发展的意见》(教高[2006]14号)、《关于全面提高高等职业教育教学质量的若干意见》(教高[2006]16号)等一系列文件精神,根据我院示范建设工作的总体思路,结合我院实际,构建新的人才培养体系,适应新世纪发展对高等职业教育人才培养的要求,培养拥护党的基本路线,适应生产、建设、管理、服务第一线需要的高等技术应用性专门人才。 以人才市场需求为导向,以航空电子设备维修专业领域人才需求调查结果为基本依据,以提高学生的职业能力和职业素质为宗旨,遵循教育教学基本规律,倡导以学生为本的教育培养理念和建立多样性、灵活性与选择性相统一的教学机制,通过综合

和具体的职业技术实践活动,帮助学生积累实际工作经验,突出职业教育的特色,全面加强学生职业素质的培养,提高素质拓展能力。 本专业人才培养方案将贯彻以服务社会为宗旨,以就业为导向,走产学结合的发展道路,以综合素质培养为基础,全面提高学生的职业能力和职业素质,突出职业技能培养为特色,实行“双证书”教育,培养合格的航空电子设备维修技术方面的具有良好职业道德、较强专业技能和较强社会适应能力的高端技能型专门人才。 二、专业基本信息 专业名称:航空机电设备维修专业代码: 520507 教育类型: 高等职业技术教育 办学层次:大学专科 学制:全日制三年 招生对象:普通高中毕业生、职业高中毕业生、中专和技校毕业生 三、培养目标 本专业培养拥护党的基本路线,掌握航空电子设备维修理论知识和航空电子设备维修技能等方面的基本理论与基本技能,具备较强的实际操作能力和较高的职业素质,能适应生产、建设、管理和服务第一线需要的,德、智、体、美全面发展的高等技术应用性专门人才。 专业核心能力是:航空电子设备的基本维护能力。 四、职业面向 主要就业岗位: (一)航空公司和机场的飞机电子设备维修、电子设备维修部门从事航空电子设

航空维修员的职业生涯规划[详细]

航空维修员的职业生涯规划 航空维修员的职业生涯规划 1、前言 又到一年一度的毕业生招聘季,大部分的高等学院将会召开盛大的招聘大会,即将毕业的学生一般都会在这个收获的秋季,找到自己未来奋斗的公司. 职业发展导师,某名企人力资源总监曾先生表示,很多学生更多仅仅希望有一份工作,也有很多机务也仅仅将这份工作当成一个养家糊口的职业,现实中学生迷失自己是学机务的、年轻机务迷失在日程重复的工作中. 在此,我们将对机务工作者的职业规划路线做个大致的介绍和建议,希望大家能够对自己未来的奋斗方向有个清晰的了解. 2、就业单位选择 职业发展导师,某名企人力资源总监曾先生表示,飞机维修专业的学生就业单位选择性应该是比较大的,根据目前的就业形势,概括起来有以下几大类可以选择: 、航空公司,就业传统大户,飞机维修专业通常在航空公司的机务系统,近年来航空公司机队的快速拓展,机务队伍人力缺口很大; 第二、MRO和机场地勤:近年来的就业大户,尤其是MRO行业的飞速发展,中国目前拥有了全世界多的MRO集群,连波音都已经抢滩中

国市场;机场地勤,不容忽视的企业,作为地主不愁业务啊. 第三、部件维修145企业:中国机队的扩张,带来了145维修机构的飞速发展,个人的发展空间与MRO和航空公司的平台相比有所劣势,不过针对个人的成长速度和被企业重视程度则大不相同,待遇其实也没有明显的差距. 第四、通用航空:通航的春天已经悄悄来临,虽然目前很多通航企业经济效益一般甚至亏损,不过这个行业对于机务的需求在持续放大,未来数年机务的就业数量,将会与航空公司、MRO一起三分天下; 第五、航空制造企业:造飞机可能不容易进去,不过制造零部件、PMA等器材,修飞机的专业也是可以考虑的. 第六、航空培训147机构:搞培训,更多的可能需要熟练的机务人员,也是147必不可缺的; 第七、航空器材销售企业:如果学了飞机维修专业做销售员的话,表面看是一种资源浪费,其实业界做得不错的销售员有很多就是飞机维修出身,从飞机租赁业务到普通的航材销售; 第八、其他航空相关企业 3、工作岗位选择 技术路线 技术路线是航企和MRO绝大多数机务工作者选择的职业路线.该路线大致分为学徒工、技师、助理工程师、工程师、高级工程师、专家这几个阶段,当然每个公司对这些阶段的叫法都不同. 用人单位考量这些职称的主要标准还是工作年限,除非某些员工

飞机结构与强度课程设计报告

飞机结构与强度课程设计报告

《飞机结构与强度》 课程设计报告 简单刚架结构受力分析 专业: 学号: 学生姓名: 所属学院:航空工程学院 指导教师: 二〇一四年12月 一、目的与意义

本课题旨在探究限元法在分析飞机结构力学有关问题时的作用,使我们对有限元法有个基本的了解,并锻炼我们的自主分析能力和对有限元分析软件的实际操作能力。 二、有限元分析原理与软件介绍 有限元分析原理 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就能够用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不但计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十

年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛而且实用高效的数值分析方法。ANSYS简介 本文采用ANSYS有限元软件对荷载作用下的结构进行分析。ANSYS是一个具有高度可靠性的结构有限元分析软件,有着四十多年的开发和改进历史,作为世界CAE工业标准及最流行的大型通用结构有限元分析软件,ANSYS的分析功能覆盖了绝大多数工程应用领域,并为用户提供了方便的模块化功能选项。 ANSYS的主要功能模块有:结构分析模块、热分析分析模块、磁场分析模块、流体分析模块、声学分析模块等。它的前后处理系统非常强大,能很好地模拟和分析各种工况条件下的物体受力状态。 ANSYS分析的一般流程能够分为以下几个步骤: (1)进入前处理,设定材料属性; (2)建立构建模型,主要包括: ①建立几何模型; ②分配属性; ③有限元模型网格化分; ④施加约束条件及荷载。 (3)进入后处理

飞机维修专业毕业设计

飞机维修专业毕业设计 摘要 为了实现中华民族的伟大复兴,中国梦?强军梦战略目标的完成,本着更好的修理好飞机,保障飞行安全,来实现航修报国,建立强大的人民空军的愿望,本人设计了简单实用,操作方便的加力扩散器安装车架,来减少人为的因素差错的可能性,提高生产效率。 本人阅读了加力扩散器的大量资料,明晰了扩散器的各个零部件与工艺流程,设计了这个简单实用的车架。 随着经济的不断发展,高效率又方便实用的机械越来越受欢迎。 关键词:航修报国;加力扩散器;生产效率;和谐 某型单转子涡轮喷气式发动机加力扩散器车架设计 第1章.航空发动机简介 航空发动机共有3种类型 活塞式航空发动机 活塞式航空发动机是早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。 燃气涡轮发动机

燃气涡轮发动机这种发动机应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。 冲压发动机 冲压发动机其特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。 航空发动机维的发展趋势 发动机研究和发展工作的特点是技术难度大、耗资多、周期长,发动机对飞机的性能以及飞机研制的成败和进度有着决定性的影响,而且发动机技术具有良好的军民两用特性,对国防和国民经济有重要意义。 因此,世界上几个能独立研制先进航空发动机的国家无不将优先发展航空发动机作为国策,将发动机技术列为国家和国防关键技术,给予大量的投资,保证发动机相对独立地领先发展,并严格禁止关键技术出口。 一些航空发动机后起工业国家也已制订了重大的技术

飞机机翼浅析

飞机机翼结构浅析 摘要 飞机发明人美国人莱特兄弟说“每只鸟都是一名特级飞行员,谁要飞行,谁就得模仿鸟”的论述,对鸟的飞行动作,作了更仔细的观察研究,于1903年成功地发明了世界上有动力、可操纵的飞机,成为世界公认的飞机发明人。飞机机翼结构和升力产生的机理与鸟翼的结构及产生升力的原理基本上是一致的。飞机在发动机驱动下向前飞行时,流过上下翼面气流的流速不一致,上翼面流速快于下翼面,造成上翼面空气压力低于下翼面,从而使机翼产生升力,当升力大于飞机的重力时飞机就能升空飞行了。由此可见机翼的作用非同寻常,下面我们来看一下究竟。本文主要介绍机翼的功用、机翼的设计标准以及对机翼典型零件的分析来对机翼的构造和翼型原理有一个更清楚的认识。 关键词:机翼功用、机翼设计、副翼、机翼元件 Abstract: The Wright brothers invented the airplane who said Americans "Each bird is a super pilot, who will fly, who have to imitate the birds," the exposition of the birds flying, made a more detailed observational study, in 1903 successfully invented the world have power, maneuverability of aircraft, aircraft, the world recognized inventor. Aircraft wing structure and mechanism of lift generated by the structure of bird wings and produce lift are basically the same principle. Engine-driven aircraft in forward flight, the flow velocity of the upper and lower wing surface flow is inconsistent, on the wing faster than under the wing surface flow, causing surface air pressure below the wing under the wing surface, so that the wings produce lift, when greater than the gravity lift aircraft flying off the aircraft will be able to. This shows an unusual wing, let's look at what had happened. This paper describes the function of the wing, the wing's design standards and analysis of typical parts of the wing to the wing structure and airfoil theory have a better understanding. Key words: Function of the wing, wing design, flaps, wing components.

飞机维修专业学生毕业实习报告

飞机维修专业学生毕业实习报告 导语:下面就由小编为大家带来飞机维修专业学生毕业实习报告,大家一起去欣赏一下吧~ 飞机维修专业学生毕业实习报告本人于20XX年7月8日到20XX年8月30日在XX公司(GAMECO)进行技术实习,了解了XX公司的基本情况的同时,对飞机系统有了更清楚的认识,在此介绍一下实习公司的情况,和作者参与协助维修的飞机的基本情况。 XX公司大修部包括高检、客舱和结构车间,其中作者有幸在高检和客舱两个部门学习。大修部主要对飞机进行定期的C检和D检,工作地点在维修机库,其中高检车间涉及到工作包括电气系统、发动机、大翼等部分的维修和先关系统的维护,客舱车间工作包括机上地板、壁板、天花板、厕所、厨房、隔音棉等部分的清洗和维修。 波音777是一款由美国波音公司制造的长程双引擎广体客机,是目前全球最大的双引擎广体客机,三级舱布置的载客量由283人至368人,航程由5,235海里至9,450海里(9,695公里至17,500公里)。波音777采用圆形机身设计,起落架共有12个机轮,是美国波音公司研制的双发中远程宽体客机。波音777在规格上介于波音767-300和波音747-400之间。波音777首飞时是民用航空历史上最大的双发喷气飞机。

波音777 在多方面采取了先进的技术,其中包括动力设计,舱室设计和结构设计三方面。动力方面,波音777采用三种效率更高、噪声更小的涡轮风扇发动机:普拉特?惠特尼公司提供普惠PW4000系列发动机,通用电气公司提供GE90系列发动机,罗尔斯?罗伊斯公司提供遄达800(Trent 800)系列发动机。这三种发动机为世界上最大的双发客机提供了足够的安全和保障。如图1-3所示,为B777普遍采用的GE90,世界上最大的飞机发动机。 舱室设计方面,波音777采用双人制驾驶舱,如图1-4所示。驾驶舱采用了新技术的平面液晶显示系统、数字驾驶舱技术,采用5个LCD显示器取代传统的指针式仪表。同时为了对抗空中客车与麦道,波音777增设了线传飞控技术,成为首款次使用线传飞行控制技术的波音商用飞机,全数字Fly-by-wire线传飞行控制系统既降低重量,又比传统的机械操纵减少了维护了作量。不过777还有液压操纵系统用作备份,所有飞行操纵面都是利用液压驱动,由电脑控制的各种飞行动作可避免飞行员做出过份激烈的飞行动作。777是波音飞机中第一个把增强型近地告警系统(EGPWS)作为标准设备而不是选装设备的机型。增强型近地告警系统能显示可能对飞机造成威胁的地形。 结构方面,起落架上波音777拥有6个机轮的主起落架系统:三轴六轮主起落架系,是由法国和美国两家公司合作

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

波音777飞机的机翼结构分析

波音777飞机的机翼结构分析 机翼设计 波音777飞机的机翼是在改进757和767设计的基础上,将777增加了机翼的长度及厚度。这种先进的机翼提高了飞机的巡航速度,增加了飞机的爬升能力和飞行高度,并且能在许多高海拔和炎热地区满载乘客和货物起降。 加仑(117335升),777-200LR环球飞机的载油量为53440加仑(202287升)。 在航空公司的协助下,波音把777的翼展加大到了199英尺11英寸(60.9 米),优化了机翼的性能。

777-200LR和777-300ER的机翼加装了6.5英尺长的斜削式翼尖,提高了机翼的整体气动性能。斜削式翼尖有助于缩短起飞滑行距离、提高爬升性能并降低油耗。 材料 777的几款机型采用了重量轻、成本低的新型结构材料。例如,在机翼上部蒙皮和桁条采用经过改进的7055铝合金,这种材料比其它合金具有更大的抗压强度,能减轻重量,抗腐蚀性和疲劳强度也有所提高。 在 777飞机上,重量更轻的先进复合材料开发和生产取得了明显进展。在垂直和水平尾翼上采用了碳纤维增强型树脂材料。客舱的地板横梁也是由这些先进复合材料制成的。 复合材料还被用于整流罩等辅助结构上。复合材料(包括树脂和粘结剂)占777飞机结构重量的9%,而在其它波音喷气机上约为3%。 波音公司的方案是采用71.30米的加长型机翼,新机翼的翼展将比波音747-8飞机的宽3.05米。另一项新工艺是将原来的金属机翼改为碳纤维增强复合材料机翼。较大的翼展将提高波音777-8X/-9X的升力,复合材料机翼在增加强度的同时也降低了新机型的空重。波音公司初步估计,在航程小于14800千米/时,波音777-9X飞机的最大起飞重量至少能达到753000磅(约342吨)。这将有效地稳固该系列飞机的市场竞争力,并在上述航程区间内保持对现有机型的载运能力的领先优势。 波音777X项目将采用新型碳纤维复合材料制造的机翼,这也包含3中方案:翼展71.1米加后掠式小翼(raked wingtip)、65米翼展加融合式翼梢小翼(blended winglets)、68.6米翼展架融合式翼梢小翼。 碳纤维复合材料机翼可以使机翼面积较波音777-300ER及-200LR增加约10%,从而降低进近时的速度并减少噪音。 如果采用71.1米的翼展,那么波音777对应的机场飞行区等级将由E提高到F,也就是波音747-8及空中客车A380的使用等级。 777飞机的机翼是迄今为止亚音速民用飞机中气动效率最高的。在改进757

飞机机翼结构分析

飞机机翼结构分析 前言 飞机机翼结构分析实根据发《飞机结构强度》一书中第三章的内容,本文主要论述了飞机机翼的功用及翼面结构。机翼由副翼前缘缝翼襟翼扰流板组成,从机翼的空气动力载荷到机翼的总体受力,能够更深入更全面的了解机翼了解航空领域所涉及学科的基础知识基础原理及发展概况,对开拓视野,扩大知识面以及今后的学习和工作都有帮助。 1.1机翼的功用 机翼是飞机的一个重要部件,其主要功用是产生升力。当它具有上反角时,可为飞机提供一定的横侧安定性。除后缘布置有横向操纵用的副翼、扰流片、等附翼外,目前在机翼的前、后缘越来越多地装有各种形式的襟翼、缝翼、等增升装置,以提高飞机的起降或机动性能。机翼上常安装有起落架、发动机等其它部件。现代歼击机和歼击轰炸机往往在机翼下布置多种外挂,如副油箱和导弹、炸弹等军械设备。机翼的内部空间常用来收藏起落架或其部分结构和储放燃油。特别是旅客机,为了保证旅客的安全,很多飞机不在机身内贮存燃油,而全部贮存在机翼内。为了最大限度地利用机翼容积,同时减轻重量,现代飞机的机翼油箱大多采用利用机翼结构构成的整体油箱。此外机翼内常安装有操纵系统和一些小型设备和附件。 1.2翼面结构设计要求 1.气动要求 翼面是产生升力主要部件,对飞行性能有很大的影响,因此,满足空气动力方面的要求是首要的。翼面除保证升力外,还要求阻力尽量小﹙少数特殊机动情况除外﹚。翼面的气动特性主要取决于其外行参数﹙如展弦比、相对厚度、后掠角和翼型等﹚,这些参数在总体设计时确定;结构设计则应强度、刚度及表面光滑度等方面来保证机翼气动外形要求的实现。 2.质量要求 在外形、装载和连接情况一定的条件下,质量要求时翼面结构设计的主要要求。具体地说,就是在保证结构完整性的前提下,设计出尽可能请的结构。结构完整性包含了强度、刚度、耐久性和损伤容限等多方面内容。 3.刚度要求 随着飞机速度的提高,翼面所受载荷增大,特别对于高机动性能歼击机和高速飞行的导弹;由于减小阻力等空气动力的要求,翼面的相对厚度越来越小,再加上后掠角的影响,导致翼面结构的扭转刚度、弯曲度将越来越难保证,这些均将引起翼面在飞行中的变形增加。高速飞行时,很小的变形就可能严重的恶化翼面的空气动力性能;刚度不足还会引起震颤和操纵面反效等严重问题。因此,对高速飞机和导弹,为满足翼面的气动要求,保证足够的刚度十分重要。 4.气动加热要求 一般亚音速飞行器,所选用的结构材料是常用金属及非金属材料,不必考虑温度对材料的影响。高速飞行时,翼面将受到气动加热的影响,尤其是翼面前缘的起动加热问题尤为严重。因此当以大马赫数的速度飞行时,还要考虑气动加热对结构强度和刚度的影响。 5.使用维修要求 翼面结构应便于检查、维护和修理。翼面内部通常铺设有相当数量的操纵系统零部件、燃油管路、电气线路和液压管路等,对这些系统和线路需要经常检查调整。当机翼结构作为整体油箱舱使用时,必须保证燃油系统工作的高度可靠性,包括油箱的密封可靠。对所有要

飞机结构疲劳与断裂分析发展综述

飞机结构疲劳与断裂分析发展综述 领空权对于任何一个国家都是非常重要的,飞机的先进,是领空权的保证.飞机更是国家的国防的重要力量,提高飞机的性能更是每个军事大国追求的目标.飞机的结构抗疲劳强度与断裂强度是飞机性能的重要体现.通过这学期的学习,和老师耐心的讲解,我对我国飞机结构疲劳强度与断裂发展现状与发展趋势有了更进一步的了解. 疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 飞机结构在实际使用中,要不断承受交变载荷的作用。但是,早期设计给及只是从静强度上考虑,只要通过计算和试验证明飞机结构能够承受得住设计载荷(实际使用中所出现的最大载荷乘以安全系数),就认为飞机结构具有足够的强度。由于飞机结构承受交变载荷的作用,某些构建常常出现疲劳性能也较好。因此,飞机结构的疲劳问题并不突出,疲劳强度问题没有引起足够的重视。直到50年代前期,世界各国的飞机强度规范中对疲劳强度都还没有具体要求,不要求进行全尺寸结构疲劳试验。但是,随着航空事业的不断发展,飞机

的性能不断提高,适用寿命延长,新结构、新材料不断出现,飞机结构在使用中疲劳破坏与安全可靠之间的矛盾逐渐显露出来了。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过 程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。 疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。 疲劳失效是金属材料常见的失效形式,特别是轴类,连杆,轴承类 等零件,长期在应力下工作的工件材料都要求较高的疲劳强度,这样 的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标。 疲劳强度是材料能够承受无数次应力循环时的最大应力。疲劳强度关系到零件的寿命以及零件工作时能够承受的最大应力,这对零件的安全设计有重大意义。

相关文档
最新文档