2 控制系统的状态变量法建模(2.3)

合集下载

(整理)自动控制系统的数学模型

(整理)自动控制系统的数学模型

第二章自动控制系统的数学模型教学目的:(1)建立动态模拟的概念,能编写系统的微分方程。

(2)掌握传递函数的概念及求法。

(3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。

(4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。

(5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。

(6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力教学要求:(1)正确理解数学模型的特点;(2)了解动态微分方程建立的一般步骤和方法;(3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数;(4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入下的闭环传递函数、误差传递函数,能够熟练的掌握;(5)掌握运用梅逊公式求闭环传递函数的方法;(6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函数的方法。

教学重点:有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。

教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式。

的余子式k教学方法:讲授本章学时:10学时主要内容:2.0 引言2.1 动态微分方程的建立2.2 线性系统的传递函数2.3 典型环节及其传递函数2.4系统的结构图2.5 信号流图及梅逊公式2.0引言:什么是数学模型?为什么要建立系统的数学模型?1. 系统的数学模型:描述系统输入输出变量以及各变量之间关系的数学表达式。

1) 动态模型:描述系统处于暂态过程中个变量之间关系的表达式,他一般是时间函数。

第2章 自动控制系统的数学模型

第2章 自动控制系统的数学模型

二、一阶惯性环节(一阶滞后环节)
1、数学表达式 :
2、特点 一阶惯性环节含有一个储能元件,输入 量的作用不能立即在输出端全部重现出来, 而是有一个延缓,即有惯性。 3、实例
例2-2 如图2-2所示的RC串联电路,以总电压ur 为输入,电容上电压uC为输出,试建立其微分方程。
图2-2 RC网络
解(1)确定系统的输入、输出变量,如图已知ur为输入,电 容电压uC为输出; (2)列微分方程组: 由基尔霍夫第二定律有: uR +uC =ur ① 由欧姆定律有: uR=R i ② 1 由电容充放电特性,有:uC= ∫idt ③ c (3)消去中间变量
n υ 他激直流电动
五、振荡环节(二阶滞后环节)
1、自动控制原理的研究对象是自动控制系统 的基本结构,这是本章的重点,要求通过实例掌 握自动控制系统各组成部分及其功能。 2、经典控制理论讨论的是按偏差进行控制的 反馈控制系统,应该了解其控制的目的、控制的 对象和控制的过程;熟悉对控制系统动态性能的 基本要求,即稳、快、准;为进一步掌握控制系 统的性能指标打好基础。
d n c(t ) d n 1c(t ) dc(t ) a0 a1 a n 1 a n c(t ) n n 1 dt dt dt d m r (t ) d m 1 r (t ) dr (t ) b0 b1 bm 1 bm r (t ) m m 1 dt dt dt
第2章 线性系统的数学模型
第2章 线性系统的数学模型
六、纯滞后环节(纯延迟环节)
表达式: c(t)=r(t-τ) 特点:输出比输入滞后一个时间τ。 实例:延时继电器。
2-2 传递函数
传递函数是线性定常连续系统最重要的数 学模型之一,是数学模型在复频域内的表示形 式。利用传递函数,不必求解微分方程就可以 求取初始条件为零的系统在任意形式输入信号 作用下的的输出响应,还可以研究结构和参数 的变化对控制系统性能的影响。经典控制理论 的主要研究方法——根轨迹分析法和频域分析 法都是建立在传递函数基础上的。

系统建模

系统建模

现代制造技术系统建模第一章 建模简述1.1系统建模概述系统的定义:具有一定功能,相互间具有有机联系,由许多要素或构成部分组成的整体。

系统建模的定义:系统建模就是建立一个新系统,用来模拟或仿真原有系统。

模型是对实际系统的简化表示,它提取和反映了所研究系统的基本性质。

模型的表现形式:直觉模型、实物模型、模拟模型、图表模型、数学模型。

数学模型的种类:参数模型、非参数模型、模糊及神经元模型、区域规划模型、网络模型、黑箱模型、黑板模型、遗传算法模型等。

1.2系统建模要素(1)目的要明确:同一个系统,不同的研究目的所建立的系统模型也不同。

(2)方法要得当:逻辑方法归纳移植类比推演机理模型综合模型实验模型建模方法图 1-1 建模方法(3)结果要验证:验证所建立的模型能够“真实反映”实际系统。

1.3系统模型分类(1) 综合模型与分解模型 (2) 时域模型与频域模型 (3) 确定性模型与随机模型(4) SISO模型与MIMO模型(5) 连续模型与离散模型(6) 参数模型与非参数模型1.4系统建模意义(1)把世间的现象/问题上升到“数学抽象/数学模型”的理论高度是现代科学发现与技术创新的基础。

(2)实验、归纳、推演”是建立系统“数学模型”的重要手段/方法/途径。

(3)数学模型”是人们对自然世界的一种抽象理解,它与自然世界/现象/问题具有“性能相似”的特点,人们可利用“数学模型”来研究/分析自然世界的问题与现象,以达到认识世界与改造。

第二章系统建模方法及步骤2.1常见建模方法分类(1)机理分析建模方法(白箱):依据基本的物理、化学等定律,进行机理分析,确定模型结构、参数;使用该方法的前提是对系统的运行机理完全清楚。

(2)实验统计建模方法:基于实验数据的建模方法(白箱、灰箱、黑箱)辨识建模:线性、非线性,动态、静态统计回归:一般是静态的线性模型神经网络:理论上可以对任何数据建模,但学习算法是关键模糊方法实验统计建模方法使用的前提是必须有足够正确的数据,所建的模型也只能保证在这个范围内有效;足够的数据不仅仅指数据量多,而且数据的内容要丰富(频带要宽),能够充分激励要建模系统的特性;(白噪声、最优输入信号设计、数据的质量)要清楚每种方法的局限性,掌握适用范围;在实际应用中往往组合采用、互补。

《控制系统模型》课件

《控制系统模型》课件

离散时间模型
总结词
描述离散时间系统的动态行为
详细描述
离散时间模型是针对离散时间系统建立的数学模型,它描述了离散时间系统的动态行为 。离散时间模型通常采用差分方程或离散状态方程的形式,适用于数字控制系统的分析 和设计。离散时间模型与连续时间模型相比,具有更好的实时性和稳定性。在离散时间
模型中,需要特别考虑采样周期和量化误差等因素对系统性能的影响。

建立系统数学模型
要点一
总结词
根据系统的输入、输出和动态特性,利用数学工具建立系 统的数学模型,为后续的分析和设计提供基础。
要点二
详细描述
在明确了系统的输入、输出和动态特性后,需要利用数学 工具建立系统的数学模型。这可以通过建立传递函数、状 态方程、频率响应等数学表达式来实现。建立的数学模型 应能够准确描述系统的动态行为,为后续的控制系统的分 析和设计提供基础。同时,建立的数学模型也可以用于仿 真实验和预测系统的性能。
02
控制系统模型的种类
传递函数模型
总结词
描述系统输入与输出之间的关系
详细描述
传递函数模型是控制系统中最常用的模型之一,它描述了系统输入与输出之间的传递关系,通常用于 线性时不变系统的分析。传递函数采用复数形式,能够全面反映系统的动态性能和稳定性。
状态空间模型
总结词
描述系统状态变量随时间的变化规律
在控制系统仿真中的应用
模拟实验
通过建立系统模型,可以在计算机上进行模拟实验,模拟实际系统 的运行情况,对控制策略和控制算法进行测试和验证。
优化算法
利用系统模型可以对控制算法进行优化,通过模拟实验来测试和改 进算法的性能,提高控制系统的效率和精度。
方案比较
通过建立多个系统模型,可以对不同的控制方案进行比较和分析, 选择最优的方案进行实施。

第2章 生理系统的建模与仪器设计

第2章 生理系统的建模与仪器设计

图2.6 指套式血氧探头及其电路结构图
2.3 构建生理模型的常用方法与实例 2.3.1 理论分析法建模
图2.7 血氧饱和度检测仪原理方框图
2.3 构建生理模型的常用方法与实例 2.3.1 理论分析法建模
仪器采用单片机进行控制和数据处理,系统功能如下: (1)周期性地输出两路脉冲,作为红光和红外光的测量信号源。 (2)通过串行D/A(或PWM)控制基线自动调整电路,使其输出的红光和 红外光脉冲的基线电平恒定。 (3)通过滤波将交直流信号分离。
不受力时,其作用类似于无源机械;
施加一外力使肌肉拉伸,此时肌肉呈现弹性机械的特点; 肌肉组织的伸缩运动常常伴随着热量的产生和温度的增高,这些效应 表现在肌肉组织内有某种类似于摩擦机构的作用,使得肌肉运动时一 部分机械能做功,另一· 部分变为热能。
2.1 系统模型及其分类 2.1.1 物理模型
(a)肌肉在受外力作用时被拉伸 (b)肌肉的力学类比模型 (c)肌肉的电路类比模型
回归系数:
观察值的平均值:
2.3 构建生理模型的常用方法与实例 2.3.3 数据分析法建模
实例5 非线性回归问题 对某些非线性问题,常常在对其进行线性转换后,再进行拟合。
2.3 构建生理模型的常用方法与实例 2.3.3 数据分析法建模
实例5 非线性回归问题 对某些非线性问题,常常在对其进行线性转换后,再进行拟合。
采用波长为 λ 光强为 I0 的近红外光,得透射光强度:
10!
手指动脉搏功时,引起动脉血液吸光度变化为:
2.3 构建生理模型的常用方法与实例 2.3.1 理论分析法建模
动脉血液中的血氧饱和度:
采用另一路波长为的红光λ’对手指组织同时进行透射和测量,可得:
从而求得血氧饱和度:

自动控制系统的数学模型

自动控制系统的数学模型
(3)消去中间变量后得到描述输出量与输入量(包括扰动量) 关系的微分方程,即元件的数学模型。
注:通常将微分方程写成标准形式,即将与输 入量有关的各项写在方程的右边,与输出量有 关的各项写在方程的左边。方程两边各导数项 均按降阶顺序排列。
2.1.1 机械系统
• 机械系统指的是存在机械运动的装置,它们遵循物理学的力 学定律。机械运动包括直线运动(相应的位移称为线位移) 和转动(相应的位移称为角位移)两种。
2.为什么要建立数学模型:对于控制系统的性能,只 是定性地了解系统的工作原理和大致的运动过程是不 够的,希望能够从理论上对系统的性能进行定量的分 析和计算。要做到这一点,首先要建立系统的数学模 型。它是分析和设计系统的依据。
另一个原因:许多表面上看来似乎毫无共同之 处的控制系统,其运动规律可能完全一样,可以 用一个运动方程来表示,我们可以不单独地去研 究具体系统而只分析其数学表达式,即可知其变 量间的关系,这种关系可代表数学表达式相同的 任何系统,因此需建立控制系统的数学模型。
黑盒
输出
但实际上有的系统还是了解一部分的,这时称为灰盒, 可以分析计算法与工程实验法一起用,较准确而方便地建立 系统的数学模型。
实际控制系统的数学模型往往是很复杂的,在一般情况 下,常常可以忽略一些影响较小的因素来简化,但这就出现 了一对矛盾,简化与准确性。不能过于简化,而使数学模型 变得不准确,也不能过分追求准确性,使系统的数学模型过 于复杂。一般应在精度许可的前提下,尽量简化其数学模型。
TmddtKuuaKmM c
TmddtKuuaKmM c
如 果 取 电 动 机 的 转 角 θ ( rad ) 作 为 输 出 , 电 枢 电 压 ua
md2xFf dxkx
dt2

第02章 控制系统基本组成环节特性分析

a t
1
h(t) Ka (1 e
) 0 . 632 Ka

t T
)
其阶跃响应曲线
h(t)
0.632h()
h()
T
(2)时间常数T对过渡过程的影响
一般用时间常数T来描述对象对输入响应的快慢程度,不同对象, 时间常数T不同。
qi
以一阶线性水槽为例,其传递函数:
H(s) K Ts 1
2.1.4 描述对象特性的参数及其对过渡过程的影响
对象模型由三个基本参数决定:放大系数K、时间常数T、滞后时间τ 一、放大系数 K及其对过渡过程的影响 典型的微分方程
(1)放大系数K基本概念 以一阶线性对象为例 典型的阶跃响应曲线
qi
a
T
dh dt
h K qi
典型的传递函数
H (s) Q i (s ) K Ts 1
二、建模的方法:机理建模、实验建模、混合建模
实验建模 ——在所要研究的对象上,人为的施加一个输入作用, 然后用仪表记录表征对象特性的物理量随时间变化的 规律,得到一系列实验数据或曲线。这些数据或曲线 就可以用来表示对象特性。 这种应用对象输入输出的实测数据来决定其模型的方法, 通常称为系统辨识。 其主要特点:是把被研究的对象视为一个黑箱子,不管其内部 机理如何,完全从外部特性上来测试和描述对象的动态特性。 对于一些内部机理复杂的对象,实验建模比机理建模要简单、 省力。
问题:求右图所示的对象模型(输入输出模型)。 解: 该对象的输入量为qi 被控变量为液位h2 (同样利用物料平衡方程)
槽1: A1 槽2: A 2
qi
A1 h1
R1 q1
d h1 dt
q i q1

过程控制系统建模方法


容量C
• 含义:生产设备和传输管路都具有一定 的储蓄物质或能量的能力。被控对象储 存能力的大小,称为容量或容量系数, 其意义是:引起单位被控量变化时,被 控过程储存量变化量。
• 种类:有电容、热容、气容、液容等等
阻力R
• 概念:凡是物质或能量的转移,都要克 服阻力,阻力的大小决定于不同的势头 和流率。
压力对象传递函数
气阻R

气压差变化量 气体质量流量变化量
pi po


气容C

容器内气体质量变化量 容器内气体压力变化量
dG dp o
,
dG dt

Cdp o dt
dQ, dQ , RC dpo
dt
po
pi
G(s) po (s) 1 pi (s) RCs 1

K (T1

T2
)s

1
特征方程的根
T1T2s2 (T1 T2 )s 1 0
(2) 具有自平衡能力的多容对象
2-5
多容对象的传函
G(s)
K
(T1 1)(T2 1)(Tn 1)
若T1 T2 Tn T,则
G(s)

K (Ts 1)n
若有纯延迟,则
2.2.2具有纯延迟的单容对象特性
G(s) H (s) K es U (s) Ts 1
2.2.3无自平衡能力的单容对象特性
G(s) H (s) K 1 U (s) T s
2.2.4多容对象的动态特性
• (1) 具有自平衡能力的双容对象 • (2) 具有自平衡能力的多容对象 • (3) 无自平衡能力的双容对象 • (4) 相互作用的双容对象

自动控制原理第2章

传递函数是在拉氏变换基础上的复域中的数学模型。
※传递函数不仅可以表征系统的动态特性,而且可以
用来研究系统的结构或参数变化对系统性能的影响。
微分方程 t (时域)
L
L
1
F
F 1
系统
传递函数
s j
j
频率特性
s
(复域)

s
(频域)
2.3.1拉氏变换相关知识
2.3.2传递函数的定义
线性定常系统在零初始条件下,输出量的拉氏变换
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f 2 ( x1 x10 ) 2 y f ( x10 , x20 ) ( x1 x10 ) ( x2 x20 ) ( x1 x10 )(x2 x20 ) 2 ( x2 x20 ) 2 x 2! x x2 x1x2 x2 1 1
例2.5试建立如图2.4所示系 统的微分方程。
R1
解:根据克希霍夫电压定律, 可写出下列方程组
u1
R2
ur
i1
C1 图2.4
i2
C2
uc
1 ur R1i1 C (i1 i2 )dt 1 1 1 (i1 i2 )dt R2i2 i2 dt C2 C1 1 uc i2 dt C2
用台劳级数展开为
df ( x) 1 d 2 f ( x) y f ( x) f ( x0 ) ( ) x 0 ( x x0 ) ( ) x 0 ( x x0 ) 2 ... dx 2! dx 2

控制系统仿真课件:控制系统模型及转换


x1 0
x2
0
xn
an
1 0 an1
0 1 an2
0 x1 0
0
x2
0
u
a1
xn
1
x1
y 1
0
0
x2
xn
控制系统模型及转换
0
A
0
an
1 0 an1
0 1 an2
0
0
a1
为状态变量系数矩阵。 为输入变量系数矩阵。
a1
d n1 y dt n 1
an1
dy dt
an
y
u
(3-5)
式中:u为系统的输入量;y为输出量。
控制系统模型及转换
现引入n个状态变量,即x1,x2,…,xn,各个状态变量的一 阶导数与状态变量和式(3-5)原始方程中的各导数项的对应
关系
x1
x
x2
x
n
为系统状态变量矩阵。
控制系统模型及转换
x1
x
x
2
x
n
为状态变量的一阶导数矩阵。
控制系统模型及转换
x1 y
x1
x2
x2
x3
x n 1
xn
dy dt d2y dt 2
d n1 y dt n1
xn
xn1
dny dt n
an y an1
dy dt
an2
d2y dt 2
a1
d n1 y dt n1
u
控制系统模型及转换 将上述n个一阶微分方程组成矩阵形式,可以表示为
控制系统模型及转换
3.1.3 系统的状态空间模型 微分方程和传递函数均是描述系统性能的数学模型,它
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档