状态空间分析法
自动控制原理课件8状态空间分析法

1 2 3
解析法
通过解状态方程和输出方程,得到系统的状态和 输出响应。
数值法
采用数值计算方法,如欧拉法、龙格-库塔法等, 对状态方程和输出方程进行离散化求解,得到系 统的离散时间响应。
线性时不变系统的性质
分析线性时不变系统的稳定性、可控性和可观测 性等性质,为系统设计和控制提供依据。
状态空间模型的求解方法
在处理高阶系统时,计算量较大,需要借助计算机进行数值计算。 在实际应用中,可能需要对系统进行适当的简化或近似处理,以降低
计算复杂度和提高计算效率。
状态空间分析法的优势与局限性
01 02 03 04
局限性
对于非线性系统和时变系统,建立状态空间模型可能较为复杂。
在处理高阶系统时,计算量较大,需要借助计算机进行数值计算。 在实际应用中,可能需要对系统进行适当的简化或近似处理,以降低
描述输入对状态变量的影响。
状态方程的建立
状态变量的选择
选择系统的状态变量,通常基于系统 的物理性质和动态特性进行选择。
建立状态方程
根据状态变量和系统的动态特性,建 立状态方程,描述系统内部状态的变
化规律。
确定系统矩阵
根据状态方程,确定系统矩阵A和B, 其中A描述状态变量的时间导数,B
描述输入对状态变量的影响。
计算复杂度和提高计算效率。
02 状态空间模型的建立
02 状态空间模型的建立
状态方程的建立
状态变量的选择
选择系统的状态变量,通常基于系统 的物理性质和动态特性进行选择。
建立状态方程
根据状态变量和系统的动态特性,建 立状态方程,描述系统内部状态的变
化规律。
确定系统矩阵
根据状态方程,确定系统矩阵A和B, 其中A描述状态变量的时间导数,B
现代控制理论基础_周军_第二章状态空间分析法资料

zn an1zn1 a1z a0z u
y n1zn1 1z 0z
(2-17)
定义如下一组状态变量
x1 z,x2 z, ,x0 zn1
(2-18)
可得状态方程
x1 x2
x2 x3
xn a0z a1z
它便于在模拟计算机上进行仿真,是向量-矩阵形式状态方 程的展开图形,揭示了系统的详细的内部结构。
状态变量图中仅含积分器、加法器、比例器三种元件及一 些连接线。积分器的输出均为状态变量。输出量可根据输出方 程在状态变量图中形成和引出。
例2-1的状态变量图见图2-3,图中s 为拉普拉斯算子。
图2-3 状态变量图
x2
x3
a2
y
2u
yn2
an1 yn3
un3
n2
an2
yn4
n2un4
a2 y 2u
x1 x2 a1 y 1u yn1 an1yn2 n1un2 an2 yn3 n2un3 a1 y 1u
考虑式(2-11)可得
x1 a0 y 0u a0xn 0u
故有状态方程:
x1 a0xn 0u
线性定常连续系统的动态方程的形式: ➢ 一般形式
x Ax Bu,y Cx Du
➢ 典型形式
一 物理系统动态方程的建立
实际物理系统动态方程的建立的原则: ➢根据所含元件遵循的物理、化学定律,列写其微分方程; ➢选择可以量测的物理量作为状态变量。
例2-1 设机械位移系统如图2-1 所示。力F及阻尼器汽缸速度v 为两种外作用,给定输出量为 质量块的位移x及其速度 x、加
1
b 2
n1
x1
x2
x x3
xn
c 0
状态空间分析与设计

状态空间分析与设计状态空间分析与设计是系统工程与控制工程中常用的分析和设计方法。
它通过建立系统的状态空间模型,对系统的动态行为进行定性和定量分析,并在此基础上进行系统设计和优化。
本文将深入介绍状态空间分析与设计的相关概念、原理和应用。
一、状态空间分析与设计概述状态空间是系统在任意时刻的状态所组成的集合。
在状态空间中,系统的每个状态都可以由一组状态变量完全描述。
因此,状态空间分析与设计的核心是建立系统的状态方程和输出方程,并利用这些方程进行性能分析和控制器设计。
二、状态方程与输出方程状态方程描述了系统状态的演变规律。
它是一个一阶微分方程,用矩阵形式表示为:x' = Ax + Bu其中,x是状态向量,A是系统的状态转移矩阵,B是输入矩阵,u 是外部输入。
状态方程描述了系统状态变量随时间的变化规律,可以用来分析系统的稳定性、响应速度等性能指标。
输出方程描述了系统输出与状态之间的关系。
它是一个线性方程,用矩阵形式表示为:y = Cx + Du其中,y是输出向量,C是输出矩阵,D是直接传递矩阵。
输出方程可以用来分析系统的可控性和可观性,以及设计满足特定输出要求的控制器。
三、状态空间分析方法1. 稳定性分析利用状态方程,可以通过特征值分析判断系统的稳定性。
对于线性时不变系统,当所有特征值的实部小于零时,系统是稳定的。
通过分析系统的特征值,可以设计出稳定性更好的控制器。
2. 响应分析利用状态方程和输出方程,可以分析系统的响应特性。
包括阶跃响应、脉冲响应、频率响应等。
通过分析系统的响应,可以评估系统的性能,并设计出满足要求的控制器。
3. 控制器设计状态空间方法可以直接用于控制器设计。
常见的控制器设计方法包括状态反馈控制、最优控制和鲁棒控制等。
这些方法都是基于状态空间模型进行的,可以根据系统的要求选择合适的控制器设计方法。
四、状态空间分析与设计应用状态空间分析与设计在工程实践中得到广泛应用。
例如,它可以用于电力系统的稳定性分析和控制、飞行器的自动控制系统设计、机械振动控制等。
第9章 状态空间分析法

根据A和b的上述特征,一般只要对微分方程式或传递
函数的观察,就能直接写出矩阵A和b及对应的动态方程。
第二节 传递函数与动态方程的关系
能控标准形状态图
第二节 传递函数与动态方程的关系
例9-3 已知一系统的传递函数为
试写出能控标准形的状态空间表达式。 解:根据矩阵A和b的特征,直接写出系统能控标准形的 状态空间表达式为:
第二节 传递函数与动态方程的关系
3、对角标准型实现
当系统的传递函数只含有相异的实极点时,还可化为 对角标准型实现。 设系统的传递函数为:
令 则上式变为
第二节 传递函数与动态方程的关系
式中: 则 令
Ci lims i W s
s i
则得
i
i
i
对上式取拉氏变换
第二节 传递函数与动态方程的关系
i
或写作
第二节 传递函数与动态方程的关系
上述状态方程的状态变量描述有如下特点: (1)矩阵A对角线上的元素为传递函数的极点,其余元素
全为零,各状态变量间没有耦合,彼此是独立的。
(2)矩阵b是一列向量,其元素均为1;矩阵C为一行向量, 它的元素为W(s)极点的留数。
第二节 传递函数与动态方程的关系
其中
D为m×r型矩阵
m×r
Wij s 为第i个输出与第j个输入间的传递函数。
第二节 传递函数与动态方程的关系
求系统的传递函数。 例9-2 已知系统的动态方程式如下,
解:
-
=
-
第二节 传递函数与动态方程的关系
二、由传递函数列写动态方程 设线性定常系统微分方程的一般形式为:
y为系统的输出量,u为系统的输入量,初始条件为零, 对上式取拉氏变换,得系统的传递函数为: -
状态空间分析方法

状态空间分析方法一、模型的建立则⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=02110010v F m cm x x m cmR x,,ma f =∑ ()y m ky c y v F =--+0则,即:0cv F ky y c ym +=++ 令y x y x ==21,,则⎪⎩⎪⎨⎧++--===m cv m Fm cx m kx y x x x021221,如对()()u b y a ya y a y n n n n 1111...=++++-- ,令()121,...,-===n n y x y x y x 则11121113221x y u b x a x a x a x x x x x x xn n n n n n =⎪⎪⎪⎩⎪⎪⎪⎨⎧+----====--输出方程:,或[]xy u b x a a ax n n 0010001001000010111=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-例1:由传递函数来求()()()()()s U s Q s U s Y a s a sa sb s b sb sb s G nn n n mm m m⋅=++++++++=----1111110 ,则 ()()nn n na s a sa s s U s Q ++++=--1111,()()m m mb s b sb s U s Y +++=-10()()[]()s Q a s a sa s U s Q s n n n n++-=--111则⎪⎪⎪⎩⎪⎪⎪⎨⎧----====--n n n n n n x a x a x a u xx x x x x x 121113221,即 []xb b b y u x a a axm m n n 00100010010000100111--=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=例2:()()()()35222112167201742232+++++-=+++++==s s s s s s s s s U s Y s G ,有:⎪⎪⎩⎪⎪⎨⎧+-=+-=+-=+-=321332221152322x x x y u x x u x x x x x 即:[]⎪⎪⎩⎪⎪⎨⎧-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=x y u x x 512110300020012 可见-2为重根,则此为约当标准型。
第九章_状态空间分析方法

第九章状态空间分析方法第9章状态空间分析方法基本要求9-1 状态空间方法基础9-2 线性系统的可控性和可观性9-3 状态反馈和状态观测器9-4 有界输入、有界输出的稳定性9-5 李雅普诺夫第二方法引言:前面几章所学的内容称为经典控制理论;下面要学的内容称为现代控制理论。
两者作一简单比较。
经典控制理论(50年代前)现代控制理论(50年代后)研究对象单输入单输出的线性定常系统可以比较复杂数学模型传递函数(输入、输出描述)状态方程(可描述内部行为)数学基础运算微积、复变函数线性代数、矩阵理论设计方法的特点非唯一性、试凑成份多, 经验起很大作用。
主要在复数设计的解析性,与计算机结合,主要在时间域进行。
基本要求①掌握由系统输入—输出的微分方程式、系统动态结构图、及简单物理模型图建立系统状态空间模型的方法。
②熟练掌握矩阵指数的计算方法,熟练掌握由时域和复数域求解状态方程的方法。
熟练掌握由动态方程计算传递函数的公式。
③正确理解可逆线性变换, 熟练掌握可逆线性变换前、后动态方程各矩阵的关系。
④正确理解可控性和可观测性的概念,熟练掌握和运用可控性判据和可观性判据。
⑤熟练掌握可逆线性变换矩阵的构成方法, 能将可控系统化为可控标准形。
能将不可控系统进行可控性分解。
⑥正确理解对偶原理, 会将原系统的有关可观测性的问题转化为对偶系统的可控性问题来研究。
⑦正确理解单变量系统零、极点对消与动态方程可控、可观测的关系。
熟练掌握传递函数的可控性标准形实现、可观性标准形实现的构成方法。
⑧正确理解状态反馈对可控性,可观性的影响, 正确理解状态反馈可任意配置闭环极点的充要条件。
⑨熟练掌握全维状态观测器的公式和设计方法, 熟练掌握由观测器得到的状态估计值代替状态值构成的状态反馈系统, 可进行闭环极点配置和观测器极点配置。
⑩正确理解系统齐次方程渐近稳定和系统BIBO稳定的概念, 熟练掌握判别渐近稳定的方法和判别系统BIBO稳定的方法。
11正确理解李雅普诺夫方程正定对称解存在的条件和解法, 能通过解李雅普诺夫方程进行稳定性分析。
现代控制理论基础 第7章 状态空间分析法在工程中的应用

h2
特征多项式
1 0
0 1
1
w
0
u
h02 h1 h0h1 h2
y
11 0 1 h0h2 11h1
h0
x1
w
h1
y
h2
I (A11 hA21) 3 h02 (11 h1) (11h0 h2 )
期望极点-3, -2+j, -2-j;期望特征方程
g0 9, g1 42, g2 148, g3 492
状态反馈
12
五、降维观测器设计
由于小车位移z可测,无需估计,可用降维观测器进行设计。重新排列系统状 态变量次序,把需由降维观测器估计的变量与可观测的变量分开,则状态方程 和输出方程为
d dt
•
z
•
--z--
0 1 0 0
第七章 状态空间分析法在工程中的应用
第一节 单倒置摆系统的状态空间设计 第二节 大型桥式吊车行车系统的状态空间设计 第三节 液压伺服电机最优控制系统
1
线性控制理论在工程设计中应用最广泛的是状态空 间综合方法,也就是状态反馈与状态观测器的相关理论 与方法。本章通过三个工程实例予以说明状态空间分析 方法的具体应用。
3
若不给小车施加控制力,是一个不稳定系统。 控制的目的是,当倒置摆无论出现向左或向右倾倒时,通过控制直
流电动机使小车在水平方向运动,将倒置摆保持在垂直位置上。
4
一、倒置摆的状态空间描述
根据牛顿定律
M d 2z m d 2 (z l sin ) u
dt 2
dt 2
由于绕摆轴旋转运动的惯性力矩应与重力矩平衡,因而有
(6-3) (6-4)
联立求解
..
状态空间分析法的特点及其应用

状态空间分析法的主要特点及其应用1.引言60年代以前,研究自动控制系统的传统方法 主要使用传递函数作为系统的数学描述,研究对象是 SISO 系统,这样建立起来的理论就是现在所说的“古典控制理论”。
随着宇航和生产技术的发展及电子计算机的出现,控制系统日渐复杂(MIMO ,时变,不确定,耦合,大规模),传统的研究方法难以适应新的形势。
在 50s'后期,Bellman 等人提议使用状态变量法,即状态空间法来描述系统,时至今日,这种方法已成为现代控制理论的基本模型和数学工具。
所谓状态空间是指以状态变量n 21X X X ,为轴所构成的n 维向量空间。
这样,系统的任意状态都可以用状态空间中的一个点表示。
利用状态空间的观点分析系统的方法称为状态空间法,状态空间法的实质不过是将系统的运动方程写成一阶微分方程组,这在力学和电工上早已使用,并非什么新方法,但用来研究控制系统时具有如下优点。
1、适用面广:适用于 MIMO 、时变、非线性、随机、采样等各种各样的系统,而经典法主要适用于线性定常的 SISO 系统。
2、 简化描述,便于计算机处理:可将一阶微分方程组写成向量矩阵方程, 因而简化数学符号,方便推导,并很适合于计算机的处理,而古典法是拉氏变换法,用计算机不太好处理。
3、内部描述:不仅清楚表明 I-O 关系,还精确揭示了系统内部有关变量及初始条件同输出的关系。
4、有助于采用现代化的控制方法 :如自适应控制、最优控制等。
上述优点便使现代控制理论获得了广泛应用,尤其在空间技术方面还有极大成功。
状态空间法的缺点:1、不直观,几何、物理意义不明显:不象经典法那样, 能用 Bode 图及根轨迹进行直观的描述。
对于简单问题,显得有点烦琐。
2、对数学模型要求很高:而实际中往往难以获得高精度的模型,这妨碍了它的推广和应用。
2.状态空间分析法在部分系统中的应用2.1状态空间分析法在PWM 系统中的应用状态空间分析法不仅适用于时变系统(例如PWM 系统),而且可以将其简化,同时便于计算机处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 线性系统的状态空间分析与综合重点与难点一、基本概念1.线性系统的状态空间描述(1)状态空间概念状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。
状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。
状态向量 以状态变量为元素构成的向量。
状态空间 以状态变量为坐标所张成的空间。
系统某时刻的状态可用状态空间上的点来表示。
状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是关于系统的一阶微分(或差分)方程组。
输出方程 输出变量与状态变量、输入变量之间的数学关系。
状态方程与输出方程合称为状态空间描述或状态空间表达式。
线性定常系统状态空间表达式一般用矩阵形式表示:⎩⎨⎧+=+=DuCx y Bu Ax x & (9.1) (2)状态空间表达式的建立。
系统状态空间表达式可以由系统微分方程、结构图、传递函数等其他形式的数学模型导出。
(3)状态空间表达式的线性变换及规范化。
描述某一系统的状态变量个数(维数)是确定的,但状态变量的选择并不唯一。
某一状态向量经任意满秩线性变换后,仍可作为状态向量来描述系统。
状态变量选择不同,状态空间表达式形式也不一样。
利用线性变换的目的在于使系统矩阵A 规范化,以便于揭示系统特性,利于分析计算。
满秩线性变换不改变系统的固有特性。
根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵A 化为三种规范形式:对角形、约当形和模式矩阵。
(4)线性定常系统状态方程解。
状态转移矩阵)(t φ(即矩阵指数Ate )及其性质:i . I =)0(φii .A t t A t )()()(φφφ==& iii. )()()()()(122121t t t t t t φφφφφ±=±=+iv. )()(1t t -=-φφ v. )()]([kt t k φφ=vi. )( ])exp[()exp()exp(BA AB t B A Bt At =+= vii. )( )ex p()ex p(11非奇异P P At PAPt P --= 求状态转移矩阵)(t φ的常用方法:拉氏变换法 =)(t φL -1])[(1--A sI (9.2)级数展开法ΛΛ+++++=k k At t A k t A At I e !12122 (9.3) 齐次状态方程求解 )0()()(x t t x φ= (9.4)非齐次状态方程式(9.1)求解⎰-+=tBu t x t t x 0d )()()0()()(τττφφ (9.5) (5)传递函数矩阵及其实现传递函数矩阵)(s G :输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系D B A sI C s G +-=-1)()( (9.6)传递函数矩阵的实现:已知传递函数矩阵)(s G ,找一个系统},,,{D C B A 使式(9.6)成立,则将系统},,,{D C B A 称为)(s G 的一个实现。
当系统阶数等于传递函数矩阵阶数时,称该系统为)(s G 的最小实现。
传递函数矩阵的实现并不唯一。
实现的常用标准形式有可控标准形实现、可观测标准形实现、对角形实现和约当形实现等。
(6)线性定常连续系统的离散化及其求解对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描述(9.8)为⎩⎨⎧+=+=+ )()()( )()()()()1(k D k Cx k y k u T G k x T k x φ 其中 T t t T ==)()(φφ⎰=TB T G 0d )()(ττφ 离散状态方程式(9.1)的解为∑-=--+=101)()()()0()()(k i i k ki u T G T x T k x φφ (9.9) 2. 线性系统的可控性与可观测性(1)系统的(状态)可控性。
设系统状态方程为Bu Ax x +=&,若在有限时间间隔],[0f t t t ∈内存在无约束的分段连续控制函数)(t u ,能使系统从任意初始状态)(0t x 转移到任意的终止状态)(f t x ,则称系统是状态完全可控的,简称可控。
线性定常连续系统可控性常用判据:1) rank n B A B A AB B n =-] [12Λ (9.10)2)当A 为对角矩阵且特征根互异时,输入矩阵B 中无全零行(当矩阵A 有相同特征根时不适用)。
当A 为约当矩阵且相同特征根分布在一个约当块内时,输入矩阵中与约当块最后一行对应的行中不全为零,且输入矩阵中与相异特征根对应的行不全为零(当相同特征根分布在两个或两个以上约当块时不适用)。
3)B A sI 1)(--的行向量线性无关。
4)单输入系统},{B A 为可控标准形。
5)单输入单输出系统,当由状态空间表达式导出的传递函数没有零极点对消时,系统可控、可观测(对多输入多输出系统不适用)。
连续系统状态方程离散化后的可控性:连续系统不可控,离散化的系统一定不可控;连续系统可控,离散化后的系统不一定可控(与采样周期的选择有关)。
(2)系统输出可控性。
设系统状态空间表达式为式(9.1),若在有限时间间隔],[0f t t t ∈内,存在无约束的分段连续控制函数)(t u ,能使系统从任意初始输出)(0t y 转移到最终内测量到的输出)(f t y ,则称系统是输出完全可控的,简称输出可控。
输出可控性判据为rank )(]D C CAB [1阵的行数C q B A CB n =-Λ状态可控性与输出可控性是两个不同的概念,其间没有必然联系。
单输入单输出系统,若输出不可控,则系统或不可控或不可观测。
(3)系统状态可观测性。
已知输出)(t u 及有限时间间隔],[0f t t t ∈内测量到的输出)(t y ,若能唯一确定初始状态)(0t x ,则称系统是完全可观测的,简称可观测。
常用可观测性判据:1) rank n C A C A C T n T T T T =-])( [1Λ (9.11)2)当A 为对角矩阵且有相异特征值时,输出矩阵无全零列(A 阵有相同特征值时不适用)。
当A 为约当阵且相同特征值分布在一个约当块时,输出矩阵中与约当块最前一列对应的列不全为零,输出矩阵中与相异特征值对应的列不全为零(相同特征值分布在两个或更多个约当块时不适用)。
3)1)(--A sI C 的列向量线性无关。
4)单输出系统},{C A 为可观测标准形。
连续系统离散化后的可观测性:连续系统不可观测,离散化后一定不可观测;连续系统可观测,离散化后不一定可观测(与采样周期的选择有关)。
对偶原理:线性系统},,{1C B A S 与},,{2T T T B C A S 互为对偶系统。
若系统1S 可控,则2S 可观测;若系统1S 可观测,则2S 可控。
(4)线性定常系统的规范分解。
从可控性、可观测性出发,状态变量可分解为可控可观测co x 、可控不可观测o c x 、不可控可观测o c x 和不可控不可观测o c x 四类。
以此对应将状态空间划分为四个子空间,系统也对应分解为四个子系统,这称为系统的规范分解。
研究规范分解能更明显地提示系统结构特性和传递特性。
3. 线性定常系统的状态反馈与状态观测器(1)状态反馈与极点配置。
用状态反馈实现闭环极点任意配置的充要条件是被控系统可控。
状态反馈不改变系统的零点,只改变系统的极点。
在引入状态反馈后,系统可控性不变,但其可观测性不一定与原系统一致。
单输入无零点系统在引入状态反馈后不会出现零极点对消,故其可观测性与原系统保持一致。
(2)输出反馈(到状态微分处)与极点配置。
用输出反馈实现闭环极点任意配置的充要条件是被控系统可观测。
输出反馈不改变系统的零点。
在引入输出反馈后不改变系统的可观测性,但其可控性不一定与原系统保持一致。
(3)输出到输入参考点的常值增益反馈可以配置的闭环极点数为}1,min{-+q p n ,式中C q B p rank ,rank ==,故一般情况下不能像输出到状态微分处反馈那样任意配置系统闭环极点。
(4)状态观测器及其设计。
若被控系统},,{C B A 可观测,则其状态可用形如Hy Bu x HC A x++-=ˆ)(ˆ& (9.12) 的全维状态观测器给出估值。
矩阵H 按任意配置极点的需要来选择,以决定状态误差衰减的速率。
分离定理:若被控系统可控可观测,当用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立进行。
即矩阵K 与H 的设计可分别独立进行。
4. 李雅普诺夫稳定性分析(1)李雅普诺夫意义下的稳定性:平衡状态:在无外部激励的条件下,系统能维持在某个状态而不变化,即0==e x x x&则称e x 为一个平衡状态。
零状态是线性系统的平衡状态,且当系统矩阵非奇异时,零状态是唯一的平衡状态。
李雅普诺夫稳定性:若要求0||)(||0>≤-εe x t x ,存在0),(0>t εδ,只要),(||)(||00t t x t x e δ<-,上述条件更可满足,则称系统在e x 处稳定。
(2)李雅普诺夫第二法(直接法):标量函数)(x V (如二次型函数)的定号性:正定、正半定、负定、负半定、不定。
李雅普诺夫稳定性定理:设系统状态方程为),(t x f x=&,其平衡状态满足0),0(=t f ,并设在原点邻域存在),(t x V 对x 的连续一阶偏导数,则有定理1:若),(t x V 正定,),(t x V&负定,则原点是渐近稳定的。
定理2:若),(t x V 正定,),(t x V &负半定,]),,;([00t t x t x V &在非零状态不恒为零,则原点是渐近稳定的。
定理3:若),(t x V 正定,),(t x V&负半定,]),,;([00t t x t x V &在非零状态存在恒为零,则原点是李雅普诺夫意义下稳定的。
定理4:若),(t x V 正定,),(t x V&正定,则原点是不稳定的。
当平衡状态不在原点时,可通过坐标变换将其置于原点上,坐标变换不改变系统的固有性质。
(3)线性定常连续系统的李雅普诺夫稳定性分析。
设系统状态方程为A Ax x,=&为非奇异矩阵,故原点是唯一平衡状态。
取二次型函数)(x V 作为可能的李雅普诺夫函数,即Px x x V T =)(则 x AP P A x Qx x x V TT T )()(+=-=& 系统渐近稳定的充要条件是:给定一正定实对称矩阵Q ,有唯一的正定实对称矩阵P ,Q AP P A T -=+成立。
Px x T 是系统的一个李雅普诺夫函数。
线性定常离散系统)()1(k x k x φ=+,零平衡状态0=e x 渐近稳定的充要条件是:任意给定一个正定实对称矩阵Q ,存在一个正定实对称矩阵P ,满足李雅普诺夫方程。