三角形内角和练习题

合集下载

三角形的内角和练习题

三角形的内角和练习题

2023年人教版小学数学四年级下册5.3 三角形的内角和同步练习一、单选题1.下面说法错误的是()。

A.三角形具有稳定性B.任何一个三角形都有两个锐角C.三角形的内角和是180°D.钝角三角形的两个锐角和大于90°2.把一个10°的角先扩大6倍后,再用6倍的放大镜来看,看到的角是()A.10°B.60°C.120°D.3603.如果一个三角形最小的一个内角大于45°,这个三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定4.一个三角形中的最大的一个内角是70°,那么最小的一个内角不可能是()。

A.50°B.43°C.30°D.41°5.用一副三角尺,不能拼出下面的角是()。

A.65°B.105°C.75°D.135°二、判断题6.一个三角形可能有两个钝角。

7.在等腰三角形中,有一个内角是40°,另外两个内角一定是70°。

()8.一个等腰三角形的底角是92°.(判断对错)9.长方形的内角和是三角形内角和的2倍。

()10.钝角三角形三个内角度数和比锐角三角形内角和大。

()三、填空题11.三角形最多有个锐角,最多有个直角,最多有个钝角。

12.等腰三角形一个底角45°,它的顶角是°,它又是角三角形.13.一个三角形一个内角的度数是100°,这个三角形是三角形,一个等腰三角形的底角是65°,顶角是,等边三角形的每个内角都是。

14.用四个完全一样的等边三角形拼成一个大三角形,这个大三角形的内角和是。

15.一个三角形的三个内角分别是∠A,∠B,∠C。

∠A的度数是∠B的2倍,∠C的度数是∠B的3倍,这是一个三角形。

四、计算题16.求下面三角形中未知角的度数。

已知:∠1=80°,∠2=68°。

人教版四年级下册数学 三角形的内角和 同步练习

人教版四年级下册数学  三角形的内角和   同步练习

人教版四年级下册数学三角形的内角和同步练习一.填空。

1.等腰直角三角形的一个底角是()度。

2.等边三角形的三个内角都是()度。

3.在三角形中,已知∠1=67°,∠2=35°,那么,∠3=(),这是一个()三角形。

4.杨阿姨有一块漂亮的三角形玻璃摆件,三角形摆件中最小的角是25°,最大的角是105°,那么第三个角是()°。

5.琪琪把一个三角形的三个角剪下来后,发现其中两个角拼在一起正好和第三个角相等,这个三角形是()三角形。

6.一个三角形,它的两个内角度数和是110°,它的第三个内角是()度。

7.等一个等腰三角形,它的一个底角是50°,那么它的顶角是()度。

8.腰三角形的一个底角是45°,则顶角是(),它同时也是一个()三角形。

9.9.把在一个三角形中,如果两个锐角的和小于90°,那么这个三角形一定是()三角形。

10.一个等边三角形沿一条边上的高剪成两个三角形(如图)。

每个直角三角形的内角和是()°,其中最小的一个内角是()°二.判断。

11.三角形画得越大,它的内角和就越大。

()12.最两个锐角的和大于90°,这个三角形一定是锐角三角形。

()13.三个角都是60°的三角形,一定是等边三角形。

()14.小角是46°的三角形,一定是锐角三角形。

()15.等腰三角形沿底边上的高对折,每个三角形的内角和是90°。

()三、选择。

16.等一个三角形的三个内角的度数不可能是()。

A.90°60°30°B.120°40°20°C.50°50°50°17.腰三角形的一个底角是30°,这个三角形又是()。

A.锐角三角形B.钝角三角形C.直角三角形18.如果一个等腰三角形中有一个角是100°。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

(完整版)三角形内角和外角练习题

(完整版)三角形内角和外角练习题

规律方法指导1.三角形内角和为180°,三角形三个外角的和是360°,这是在做题时题设不用加以说明的已知条件;在三个角中已知其中两个角的度数便能求第三个角的大小。

2.在一个三角形中最多只能有一个钝角或者一个直角,最少有两个锐角。

3.三角形内角和定理和三角形外角的性质是求角度数及有关的推理论证时经常使用的理论依据.外角的性质应用:①证明一个角等于另两个角的和;②作为中间关系式证明两角相等;③证明角的不等关系。

4.利用作辅助线求解问题,会使问题变得简便。

经典例题透析类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,则其最大内角的度数为( )A.60° B.75° C.90° D.120°举一反三:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为( )A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。

类型二:利用三角形外角性质证明角不等2.如图所示,已知CE是△ABC外角∠ACD的平分线,CE交BA延长线于点E。

求证:∠BAC >∠B。

举一反三:【变式】如图所示,用“<”把∠1、∠2、∠A联系起来________。

类型三:三角形内角和定理与外角性质的综合应用3.如图,求∠A+∠B+∠C+∠D+∠E的度数.举一反三:【变式】如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°。

类型四:与角平分线相关的综合问题4.如图9,△ABC中,∠ABC、∠ACB的平分线相交于点D.(1)若∠ABC=70°,∠ACB=50°,则∠BDC=________;(2)若∠ABC+∠ACB=120°,则∠BDC=________;(3)若∠A=60°,则∠BDC=________;(4)若∠A=100°,则∠BDC=________;(5)若∠A=n°,则∠BDC=________.举一反三:【变式1】如图10,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC= 140°,∠BGC=110°,求∠A的大小.80【变式2】如图11, △ABC的两个外角的平分线相交于点D,如果∠A=50°,求∠D.【变式3】如图12,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,则∠AEB的度数是_____.【变式4】(2009北京四中期末)如图所示,△ABC的外角∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠F的度数。

四年级三角形内角和奥数练习题

四年级三角形内角和奥数练习题

四年级三角形内角和奥数练习题[问题一] 一个三角形的两个内角和是85,你知道这是一个什么三角形吗?想:根据两个内角和是85和三角形的内角和是180,可知第三个内角是180-85=95,所以这是一个钝角三角形。

解:180-85=95答:这是一个钝角什么三角形。

[试一试]1、一个三角形的两个内角和是110,你知道这是一个什么三角形吗?000000000002、在△ABC中,已知∠A是∠B的3倍,且∠A比∠B 大60,这个三角形各个角是多少度?你知道这是一个什么三角形?3、一个等腰三角形的顶角是一个底角的2倍,这个三角形各个角是多少度?[问题二]在一个三角形中,已知∠1是∠2的2倍,∠2是∠3的这是一个什么三角形?想:根据∠2是∠3的001。

这个三角形各个角是多少度?31,可知∠3是∠2的3倍,而且∠1是∠2的2倍,因为三角形的内300000角和是180,所以∠2=180÷=30,∠1=30×2=60,∠3=30×3=90。

解:∠2=180÷=30 ∠1=30×2=60 ∠3=30×3=90答:这个三角形各个角分别是30、60和90,这是一个直角三角形。

[试一试]1、一个三角形的最大角是最小角的5倍,另一个角是最小角的3倍,这是一个什么三角形?2、在一个三角形中,已知∠1的度数是∠2的2倍,∠2的度数是∠3的3倍。

这个三角形各个000000000 角是多少度?这是一个什么三角形?3、已知一个三角形的一个内角是72,是另外一个内角的4倍,这个三角形是什么三角形?[问题三]同学们知道三角形的内角和是180,你能运用这个知识分别求出四边形、五边形、六边形的内角和吗?想:如图,把四边形、五边形、六边形分成若干个三角形,因为一个三角形的内角和是180,所以四边形、五边形、六边形分别是180×2、180×3、180×4。

解:四边形的内角和:180×2=360五边形的内角和:180×3=540六边形的内角和:180×4=720答:四边形、五边形、六边形的内角和分别是360、540、720。

三角形内角和练习题

三角形内角和练习题

三角形内角和练习题在几何学中,三角形是一个基本的图形,它由三条边和三个内角组成。

三角形的内角和是指三个内角的度数总和。

本文将提供一些关于三角形内角和的练习题,旨在帮助读者加深对此概念的理解和运用。

练习题一:计算三角形内角和1. 已知三角形ABC的三个内角分别为60度、70度和x度,求x的值。

解析:根据三角形内角和的性质,三个内角的和必须等于180度。

因此,我们可以列出等式:60 + 70 + x = 180。

解方程得到x的值。

2. 已知三角形DEF的三个内角分别为2x度、3x度和4x度,求x的值。

解析:同样地,根据三角形内角和的性质,三个内角的和必须等于180度。

我们可以列出等式:2x + 3x + 4x = 180。

解方程得到x的值。

练习题二:应用三角形内角和1. 已知三角形PQR的内角和为180度,且两个内角的度数比为3:5,求这两个内角的度数。

解析:设其中一个内角的度数为3x度,另一个内角的度数为5x度。

根据题意,我们可以列出方程:3x + 5x = 180。

解方程得到x的值,进而计算出两个内角的度数。

2. 已知三角形STU的内角和为180度,且其中一个内角的度数为3x度,另一个内角的度数为4x度。

求三角形STU的另一个内角的度数。

解析:根据题意,我们可以列出方程:3x + 4x + 另一个内角的度数= 180。

解方程得到另一个内角的度数。

练习题三:图形中的三角形内角和1. 如图所示,ABCD是一个四边形,角A和角B的度数已知,求角C和角D的度数。

解析:根据四边形的性质,四个内角的和为360度。

由此我们可以列出等式:角A + 角B + 角C + 角D = 360。

已知角A和角B的度数,可以通过解方程计算出角C和角D的度数。

[插入示意图]2. 如图所示,在平行四边形EFGH中,AB是平行于CD的一条线段,角A的度数已知,求角F的度数。

解析:由于AB与CD平行,根据平行线性质,角A和角F是对应角,它们的度数相等。

三角形内角和定理练习题(供参考)

三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,那么△ABC是三角形.2.如图,在△ABC中,BE、CF别离是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,那么∠BIC =.3.如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,那么∠A =.4.如图,假设AB=AC,BG=BH,AK=KG,那么∠BAC的度数为.5.假设等腰三角形一腰上的高和另一腰上的高的夹角为58°,那么那个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC的一角折叠,折痕为EF,假设∠A=80°,∠B=68°,∠CFB=22°,那么∠CEA =.7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,假设∠ABE=135°,∠CDE=110°,那么∠DEF=.9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,那么∠EDF等于( )A.64°B.65°C.67°D.68°10.如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,那么∠E是( )A.锐角B.直角C.钝角D.无法确信11.如图,已知在△ABC中,AD平额外角∠EAC,AD∥BC,那么△ABC的形状是( ) A.等边三角形 B.直角三角形 C.等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,那么∠D等于( )A.180°-2∠αB.180°-∠αC.90°-∠αD.90°-2∠α13.若是三角形的一个外角等于与它相邻的内角,那么那个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.如图,∠1=20°,∠2=25°,∠A=35°,那么∠BDC的度数等于( )A.60°B.70°C.80°D.无法确信15.如图,∠A=32°,∠B=45°,∠C=38°,那么∠DFE等于( )A.108°B.110°C.115°D.无法计算16.如图,在△ABC中,D是BC边延长线上的一点,连接AD,∠BAC=∠BCA,∠B=∠D=∠α,∠CAD=∠β,那么∠α与∠β之间的关系是( )A.∠α+∠β=180°B.3∠α+2∠β=180°C.∠α=2∠βD.3∠α+∠β=180°17.如图,在△ABC中,AD⊥BC,∠DAC=∠B,判定△ABC是什么形状的三角形,并写出你的判定理由.18.在△ABC中,∠B=∠C,BD是AC边上的高,∠ABD=20°,求∠C的度数.19.如图,已知E是BC上一点,且∠1=∠2,∠3=∠4,且AB∥CD.求证:AF⊥DE.20.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AE=AD.求∠EDC的度数.21.如图,点D是△ABC中∠ACE的外角平分线与BA延长线的交点.求证:∠BAC>∠B.类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,那么其最大内角的度数为()A.60° B.75° C.90° D.120°触类旁通:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,那么∠B的度数为()A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。

《三角形的内角和》练习题


知识点1:三角形的内角和定理 1.(2016·贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数 C 为( ) A.35° B.40° C.45° D.50°
2.在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠C等于(
A.45° B.60° C.75° D.90°
C
)
80 3.如图,在△ABC中, ∠A=60°,∠B=40°,点D,E分别在BC, AC的延长线上,则∠1=____°.
16.(阿凡题 于O点.
1070204)如图,在△ABC中,∠ABC和∠ACB的平分线交
(1)若∠A=70°,求∠BOC的度数; (2)若∠A=n°,求∠BOC的度数; (3)若∠BOC=3∠A,求∠A的度数.
解:(1)在△ABC 中,由∠A=70°,得∠ABC+∠ACB=110°.∵BO 1 和 CO 分别平分∠ABC 和∠ACB.∴∠OBC+∠OCB= (∠ABC+∠ACB) 2 =55°,在△OBC 中,∠BOC=180°-(∠OBC+∠OCB)=125° (2) 在△ABC 中,由∠A=n°,BO 和 CO 分别平分∠ABC 和∠ACB,∴∠ 1 1 1 OBC+∠OCB= (∠ABC+∠ACB) =90°- n°,∴∠BOC=90°+ n 2 2 2 1 ° (3)由(2)可知,90°+2n°=3n°,解得 n=36,即∠A=36°
13.如图,CD 是∠ACB 的角平分线,DE∥BC,∠B=70°,∠ACB =50°,求∠EDC,∠BDC 的度数.
解:∵DE∥BC,∴∠EDC=∠DCB,∵CD 平分∠ACB,∴∠EDC= 1 ∠DCB=2∠ACB=25°,在△DBC 中,∵∠B=70°,∴∠BDC=85°
14.如图是A,B,C三个岛的平面图,C岛在A岛的北偏东35°方向,B 岛在A岛的北偏东65°方向,C岛在B岛的北偏西40°方向. (1)求C岛看A,B两岛的视角∠ACB的度数; (2)聪明的刘凯同学发现解决第(1)问,可以不用“B岛在A岛的北偏东 65°方向”这个条件,你能求吗?

三角形内角和综合习题精选(含答案)

...三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _________ ,∠XBC+∠XCB= _________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E 在AB 上,CE ,DE 分别平分∠BCD ,∠ADC ,∠1+∠2=90°,∠B=75°,求∠A 的度数.10.如图,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F. (1)当∠OCD=50°(图1),试求∠F .(2)当C 、D 在射线OA 、OB 上任意移动时(不与点O 重合)(图2),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .11.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C;(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.12.已知△ABC 中,∠BAC=100°.(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

三角形的内角精选练习含答案

三角形的内角精选练习含答案11.2.1 三角形的内角一、选择题1.一个三角形的两个内角和小于第三个内角,那个三角形是( )三角形.A .锐角B .钝角C .直角D .等腰2.三角形的三个内角( )A .至少有两个锐角B .至少有一个直角C .至多有两个钝角D .至少有一个钝角3.一个三角形的一个内角等于另外两个内角的和,那个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .何类三角形不能确定4.一个三角形的两个内角之和小于第三个内角,那么该三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .都有可能5.一个三角形的三个内角的度数比是1:2:1,那个三角形是( ).A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A .90°B .100°C .130°D .180°7.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∠A=50°,则∠D=( )A .15°B .20°C .25°D .30°8.如图,直线l1∥l2,∠1=40°,∠2=65°,则∠3=( )A .65°B .70°C .75°D .85°二、填空题9.如图,AE 是△ABC 的角平分线,AD ⊥B C 于点D ,若∠BAC=128°,∠C=36°,则∠DAE 的度数是_______10.如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为_______11.(2008•沈阳)已知△ABC 中,∠A=60°,∠ABC 、∠ACB (第6题) (第7题) (第8题) (第9题) (第10题) (第12题) (第14题)的平分线交于点O ,则∠BOC 的度数为________度.12.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A'重合,若∠A=70°,则∠1+∠2=____________.13.一个角是80°的等腰三角形的另两个角为____________.14.如图,已知,AB ∥CD ,直线EF 分别交AB ,CD 于E 、F ,点G 在直线EF 上,GH ⊥AB ,若∠EGH=32°,则∠DFE 的度数为____________.15.如图,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A′D 重合,A′E 与AE 重合,若∠A=30°,则∠1+∠2=________.16.如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON=30°,(1)当∠A=________时,△AOP 为直角三角形;(2)当∠A 满足________时,△AOP 为钝角三角形.17.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D=________度.18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特点三角形”,其中α称为“特点角”.假如一个“特点三角形”的“特点角”为100°,那么那个“特点三角形”的最小内角的度数为________.三、解答题19.小明在学习三角形内角和定理时,自己做了如下推理过程,请你帮他补充完整.已知:如图,△ABC 中,∠A 、∠B 、∠C 是它的三个内角,那么这三个内角的和等于多少?什么缘故?解:∠A+∠B+∠C=180°理由:作∠ACD=∠A ,并延长BC 到E∠1=∠A (已作)∴AB ∥CD (_________________________)∴∠B=_____(_________________________) 而∠ACB+∠1+∠2=180°∴∠ACB +_____+_____=180°(等量代换) 20.如图,已知△ABC 的AC 边的延长线AD ∥EF ,若∠A=60°,∠B=43°,试用推理的格式求出∠E 的大小.(第15题)(第16题) (第17题)第20题第19题21.如图1,在△ABC 中,OB 、OC 是∠ABC 、∠ACB 的角平分线; ∠A 的度数50° 60° 70° ∠BOC 的度数(3)如图2,△ABC 的高BE 、CD 交于O 点,试说明图中∠A 与∠BOD 的关系.22.将一幅三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F .(1)求证:CF ∥AB .(2)求∠DFC 的度数.23.(1).解方程:3x+1=7;(2).如图,在△ABC 中,∠B=35°,∠C=65°,求∠A 的度数.第21题第22题 第23题11.2.1三角形的内角一、选择题1.B2.A3.A4.C5.D6.B7.C8.C AC二、填空题 9. 10° 10. 70° 11.120 12.140° 13.80°,20°或50°,50°. 14.58° 15.60° 16.60°或90°;小于60°和大于90° 17.36 18.30°三、解答题19.内错角相等,两直线平行;∠2;两直线平行,同位角相等;∠B ;∠A .20.解:∵∠A=60°,∠B=43°,∴∠BCD=∠A+∠B=60°+43°=103°,∵AD ∥EF ,∴∠E=∠BCD=103°21..解:(1)()()().21902190180180=BOC ∠∴,2190180212121212190000000A A OCB OBC A A OCB ABC OCB ABC ACB OCB ABC OBC ACB ∠+∠∠+∠∠-=∠-∠+∠∠+∠∠∠∠∠∴∠∠∆+=∠)=--(=-==,=,=的角平分线;ABC、是ABC中,OB、OC在理由:ABOC(2)猜想:o (3)证明:∵△ABC 的高BE 、CD 交于O 点,∴∠BDC=∠BEA=90°,∴∠ABE+∠BOD=90°,∠ABE+∠A=90°,∴∠A=∠BOD .22.(1)证明:∵CF 平分∠DCE ,∴∠1=∠2=21∠DCE ,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB ∥CF ;∠A 的度数 50° 60° 70° ∠BOC 的度数 115° 120° 125°(2)∵∠D=30°,∠1=45°,∴∠DFC=180°-30°-45°=105°.5.解:(1)移项得,3x=7-1,系数化为1得,x=2;(2)依照三角形的内角和定理,∠A=180°-∠B-∠C=180-35°-65°=80°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档