实数第一课时课件
合集下载
华师版八年级上册数学第十一章第二节实数(第一课时)

无限不循环小数叫做无理数。如
2 =1.414 213 56…, 3 =1.732 050 80…,
7 =—2.645 751 31…,
3
2
=1.259 921 0….
π=3.141 592 65…,
1.01001000100001…(两个1之间依次多一个0)
判断下列数哪些是有理数?哪些是无理数? 22 6, , 1. 2 3, , 36 2 7
复习回顾
什么叫有理数?
有理数如何分类?
整数
有理数 分数
正有理数
或 有理数 0 负有理数
分数都可以化成有限小数或者无限循 环小数。反之也成立。
把下列有理数写成小数的形式,你有什么 发现?
3 47 9 11 5 3, , , , , 5 8 11 90 9
3 47 3 3.0, 0.6, 5.875, 5 8 9 11 5 0. 81, 0.1 2, 0. 5 11 90 9
随堂练习 一、判断以下题目:
1.实数不是有理数就是无理数。( 2.无理数都是无限不循环小数。( 3.无理数都是无限小数。( ) 4.带根号的数都是无理数。( × ) 5.无理数一定都带根号。( × ) 6.两个无理数之积不一定是无理数。( 7.两个无理数之和一定是无理数。(× ) 8.数轴上的任何一点都可以表示实数。( ) ) ) )
7
1 , 3
,
3
2,
0. 3,
中,9 , 整数有
3
8, 0
3
9,
7
8, 0
9,
3
有理数有 22 , 1 , 0. 3 ,
无理数有 , 实数有
3
人教版《实数》优秀课件初中数学ppt

品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
人教版七年级数学下册实数《平方根(第1课时)》示范教学课件

平方根
(第1课时)
人教版七年级数学下册
学校要举行美术作品比赛,小鸥想裁出一块面积为 25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
你一定会算出边长应取 5 dm,说一说,你是怎样算出来的?
因为 52=25,所以这个正方形画布的边长应取 5 dm.
填表:
你能指出它们的共同特点吗?
例3 计算:(-1)2 023-|-5|×(-6)+ .
解:原式=-1-5×(-6)+7=-1+30+7=36.
综合计算题的运算顺序解决综合计算题要从高级运算到低级运算,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
例4 已知 ,求 x+y+z 的值.
被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立.
求一个数的算术平方根与求一个非负数的平方恰好是互逆的运算.因此,求一个数的算术平方根的运算实际上可以转化为求一个非负数的平方的运算.
通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?
平方运算
例2 求下列各式的值:(1) ;(2) ;(3) .
算术平方根
算术平方根的应用
算术平方根的相关概念
算术平方根的非负性
பைடு நூலகம்
正方形的面积 / dm2
1
9
16
36
正方形的边长 / dm
1
3
4
6
上面的问题,实际上是已知一个正数的平方,求这个正数的问题.
规定:0 的算术平方根是 0.
a
(1)a 的取值范围是什么? (2)算术平方根 x 的取值范围是什么?
a 是非负数,即 a≥0.
(第1课时)
人教版七年级数学下册
学校要举行美术作品比赛,小鸥想裁出一块面积为 25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
你一定会算出边长应取 5 dm,说一说,你是怎样算出来的?
因为 52=25,所以这个正方形画布的边长应取 5 dm.
填表:
你能指出它们的共同特点吗?
例3 计算:(-1)2 023-|-5|×(-6)+ .
解:原式=-1-5×(-6)+7=-1+30+7=36.
综合计算题的运算顺序解决综合计算题要从高级运算到低级运算,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
例4 已知 ,求 x+y+z 的值.
被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立.
求一个数的算术平方根与求一个非负数的平方恰好是互逆的运算.因此,求一个数的算术平方根的运算实际上可以转化为求一个非负数的平方的运算.
通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?
平方运算
例2 求下列各式的值:(1) ;(2) ;(3) .
算术平方根
算术平方根的应用
算术平方根的相关概念
算术平方根的非负性
பைடு நூலகம்
正方形的面积 / dm2
1
9
16
36
正方形的边长 / dm
1
3
4
6
上面的问题,实际上是已知一个正数的平方,求这个正数的问题.
规定:0 的算术平方根是 0.
a
(1)a 的取值范围是什么? (2)算术平方根 x 的取值范围是什么?
a 是非负数,即 a≥0.
《实数》示范课教学课件【数学八年级上册北师大】

做一做 (1)分别写出 6 ,π 3.14 的相反数;
(2)求 5 ,1 3 3 的倒数;
(3)求 3 64 的绝对值.
解:(1)若a是一个实数,它的相反数为-a;
∴ 6 的相反数是 6 ;π-3.14的相反数是3.14-π.
(2)∴当a≠05时的,倒它数的是倒数15为;a11
; 3
3
的倒数是
正无理数
1 , 5, 3 8,
42
94,0,
有理数集合
3 2, 7,π, 2, 20,
3
5,0.3737737773
负无理数
无理数集合
无理数和有理数一样,也有正负之分.
议一议
把下列各数分别填入相应的集合内.
3 2, 1 ,
4
7,
π,
5, 2
2,
20, 3
5, 3 8,
4, 9
0, 0.3737737773 (相邻两个3之间的7的个数逐次加1).
1 , 5, 3 8,
42
94,0,
有理数集合
3 2, 7,π, 2, 20,
3
5,0.3737737773
无理数集合
归纳
实数的定义
有理数和无理数统称为实数,
即实数可以分为有理数和无理数.
正整数
整数 0
有理数
负整数
实数
分数 无理数
正分数 负分数
议一议 下面集合内的数还可以怎样分?
正有理数
负有理数
等这仍些然数适的小用数.位数都是无限的,,又不是循环的,而
议一议
(1) 如下图,OA=OB,数轴上点A对应的数是什么?
它介于哪两个整数之间?
B
1
第1课时 实数的有关概念优秀课件

考点 4 乘方、开方
1.正数的任何次幂是__正__数_;负数的偶次幂是__正_数_,负数的奇次幂是_负__数_;0的任何 正数次幂是_0___。 2. 实数a(a≥0)的平方根是_____ ,算数平方根是_____;实数a的立方根是_____。
第8页
第9页
第10页
第11页
第12页
第13页
(1)实数 0 (既不是正数,也不是负数)
返回思维导图
负数(<0)
(2)正负数的意义
正负数可以用于表示相反意义的量.如:规定“盈(+)”则“亏(-)”,“胜(+)”则“负 (-)”,“收入(+)”则“支出(-)”,“零上(+)”则“零下(-)”,“上升(+)”则“下降(- )”等.
考点 2
1. 数轴 (1)三要素:
3.绝对值 a(a>0)
(1)|a|= 0(a=0) -a (a<0)
返回思维导图
(2)几何意义:数轴上表示这个数的点到原点的距离, 离原点越远的数的绝对值越
____大____.
4((12. ))倒实非数数零实a、数b互a的为倒倒数数是⇔__a_b_=1_______._1_特_.别注意:0没有倒数,倒数是它本身的数是
数轴、相反数、绝对值、倒数
返回思维导图
(2)实数与数轴上的点是一 一对应的. 2. 相反数 (1)非零实数a的相反数为___-__a___,特别地,0的相反数为0; (2)实数a,b互为相反数⇔a+b=____0____; (3)几何意义:互为相反数的两个数分别位于数轴上原点的两侧,且到原点的距离 ___相__等___;
第1课时 实 数的有关概念
按定义分 实数的分类
按大小分
科学记数法
数轴 相反数 绝对值
《实数》课件

这种无限不循环小数称为无理数.
有理数与无理数统称为实数,实数集记为R.
一条有原点、正方向和长度单位的直线称为数轴 x -3 -2 -1 0 1 2 3 实数与数轴上的点一一对应 正整数 正有理数 有理数 实数 无理数 零 负有理数 正无理数 负无理数 (无限不循环小数) 正分数 负整数 负分数
二、实数的绝对值
它们的几何解释是很直观的.例如性质(5),在数 轴上|x|< a表示所有与原点距离小于a的点x构成的点 集,–a<x<a表示所有位于点– a 和点a之间的点x构成 的点集,它们表示同一个点集.性质(6)—(8)可作类似的 解释. 由性质(5)可以 推得不等式|x–A|<a 与A – a<x<A+a是等 价的,其中A为实数, a为正实数.
仅就结论(1)进行证明. 证:由性质(4),有
− | x |≤ x ≤| x | 及− | y |≤ y ≤| y |,
从而有 − (| x | + | y |) ≤ x + y ≤| x | + | y |
根据性质(6),由于 | x | + | y |≥ 0 (相当于性质(6)中a ≥ 0 ),得
实数x的绝对值,记为|x|,它是一个非负实数.即
x,
|x|=
x≥0 , x < 0.
− x,
例如,|2.78|=2.78,|–9|=9,|0|=0 . 几何意义: |x|表示点x到原点0的距离. 而| x-y |表示点x与点y的距离
实数的绝对值有如下性质: (1)对于任意的 x ∈R,有 x ≥ 0 .当且仅当x=0时,才有 |x|=0. (2)对于任意 x ∈R,有|–x|=|x|. (3)对于任意 x ∈R,有 x = x 2. (4)对于任意 x ∈R ,有 − | x |≤ x ≤| x |. (5)设 a > 0,则| x |<a 的充要条件是 –a<x<a . (6)设 a ≥ 0 ,则 | x |≤ a的充要条件是 − a ≤ x ≤ a . (7)设 a ≥ 0,则 | x |>a 的充要条件是x<–a或者x>a. (8)设 a ≥ 0,则 | x |≥ a 的充要条件是 x ≤ −a或者 x ≥ a.
人教版七年级数学下册第六章《实数》公开课 课件1
6.3 实数
Z
L
lb
神奇的π
阿基米德(古希腊)
神奇的π
祖冲之 (南北朝)
刘徽 (魏晋时期)
至2002年底,科学家们用超级计算机已把 的值算到小数点后12411亿位. zxxk
π----无限不循环的数字,无限不循环的 神秘,无限不循环的樂趣,无限不循环 的享受。
很早很早以前,人们就看出,圆的周长 和直经的比是个与圆的大小无关的常 数,并称之为圆周率.
15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
继续探索:
因为
π=3.1415926535897932384626…
, , 2 1
所以像
2
即π的某种形式
的数都是什么数?
常见的一类无理数是:
2. 圆周率π及一些含有π的数
例如: , , 2 1
2
那这种形式的数呢?你们认识他们吗?
1. 0.101001000… (两个“1”之间依次多一个0), 2. 7.2121121112… (两个“2”之间依次多一个1) 3. 5.123112233111222333-----(依次多个123)
17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/202021/7/202021/7/202021/7/20
2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
Z
L
lb
神奇的π
阿基米德(古希腊)
神奇的π
祖冲之 (南北朝)
刘徽 (魏晋时期)
至2002年底,科学家们用超级计算机已把 的值算到小数点后12411亿位. zxxk
π----无限不循环的数字,无限不循环的 神秘,无限不循环的樂趣,无限不循环 的享受。
很早很早以前,人们就看出,圆的周长 和直经的比是个与圆的大小无关的常 数,并称之为圆周率.
15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
继续探索:
因为
π=3.1415926535897932384626…
, , 2 1
所以像
2
即π的某种形式
的数都是什么数?
常见的一类无理数是:
2. 圆周率π及一些含有π的数
例如: , , 2 1
2
那这种形式的数呢?你们认识他们吗?
1. 0.101001000… (两个“1”之间依次多一个0), 2. 7.2121121112… (两个“2”之间依次多一个1) 3. 5.123112233111222333-----(依次多个123)
17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/202021/7/202021/7/202021/7/20
2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
《实数》实数PPT教学课件
倒数是 2 - 2 ,绝对值是 2 - 2
课堂小结
1.在实数范围内,相反数、倒数和绝对值的 意义和有理数范围内的相反数、倒数和绝对 值的意义完全一样. 2.实数和有理数一样,可以进行加、减、乘、 除、乘方运算,而且有理数的运算法则和运算 律对实数仍然适用.
课堂小结
3.每一个实数都可以用数轴上的一个点来表 示;反过来,数轴上的每一个点都表示一个 实数,即实数与数轴上的点是一一对应的.
解:(1) 3 - 27 =-3,3 - 27 的相反数是3,
倒数是 1 ,绝对值是3.
3
巩固练习
2.求下列各数的相反数、倒数和绝对值.
(2) 25 =5, 25 的相反数是-5,倒数
是 1 ,绝对值是5. 5
(3) 11 的相反数是 -
11 ,倒数是
1
11 ,
绝对值是 11 .
巩固练习
(4 ) 2 - 2 的相反数是 -( 2 - 2 )= 2 - 2 , 1
,
5,
新知探究
有理数和无理数统称为实数 即实数可以分为有理数和无理数
有理数 实数
无理数
新知探究
2.你能把下面各数填入下面相应的集合内吗?
3
2,
1, 4
4 , 0,
9
7,
,
5 2
,
2,
20 3
,
0.3737737773
5, 3 8,
3 2,
1, 4
7, ,
2,
20 , 4 , 0.3737737773
什么? 它介于哪两个整数之间?
B
1和2之间
1
-2
-1
O
1A 2
(2)你能在坐标轴上找到 5 对应的点吗?
课堂小结
1.在实数范围内,相反数、倒数和绝对值的 意义和有理数范围内的相反数、倒数和绝对 值的意义完全一样. 2.实数和有理数一样,可以进行加、减、乘、 除、乘方运算,而且有理数的运算法则和运算 律对实数仍然适用.
课堂小结
3.每一个实数都可以用数轴上的一个点来表 示;反过来,数轴上的每一个点都表示一个 实数,即实数与数轴上的点是一一对应的.
解:(1) 3 - 27 =-3,3 - 27 的相反数是3,
倒数是 1 ,绝对值是3.
3
巩固练习
2.求下列各数的相反数、倒数和绝对值.
(2) 25 =5, 25 的相反数是-5,倒数
是 1 ,绝对值是5. 5
(3) 11 的相反数是 -
11 ,倒数是
1
11 ,
绝对值是 11 .
巩固练习
(4 ) 2 - 2 的相反数是 -( 2 - 2 )= 2 - 2 , 1
,
5,
新知探究
有理数和无理数统称为实数 即实数可以分为有理数和无理数
有理数 实数
无理数
新知探究
2.你能把下面各数填入下面相应的集合内吗?
3
2,
1, 4
4 , 0,
9
7,
,
5 2
,
2,
20 3
,
0.3737737773
5, 3 8,
3 2,
1, 4
7, ,
2,
20 , 4 , 0.3737737773
什么? 它介于哪两个整数之间?
B
1和2之间
1
-2
-1
O
1A 2
(2)你能在坐标轴上找到 5 对应的点吗?
实数ppt课件
原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称
。
02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。
实数教学课件
感谢您的观看
THANKS
。
04 实数的应用
在数学中的应用
01
02
03
代数运算
实数可用于解决代数方程 、不等式和函数等问题, 如求解一元二次方程、求 函数的极值等。
几何学
实数与几何学紧密相关, 如长度、角度、面积和体 积等都可以用实数表示。
概率论与统计学
在概率论和统计学中,实 数用于描述随机事件发生 的可能性以及数据的分布 和统计分析。
金融与经济
在金融和经济领域,实数被用于描述货币交易、投资回报、成本 和利润等经济活动。
科学实验与工程设计
在科学实验和工程设计中,实数用于测量各种参数、计算结果和评 估设计方案的有效性。
计算机科学
在计算机科学中,实数用于表示数字、编码和算法等,并用于处理 数据和执行计算任务。
05 实数的扩展知识
无理数的定义与性质
无理数
无理数是一些无法表示为两个整数的比的数,如圆周率π、自然对数的底数e等 。无理数在实数中占据了大部分,它们在数学分析和高等数学中有着广泛的应 用。
02 实数的运算
加法运算
总结词
理解加法运算的意义,掌握加法运算的规则和技巧。
详细描述
实数的加法运算是指将两个或多个实数相加,得到一个新的实数。在进行加法运 算时,应遵循实数的加法规则,即同号数相加取相同的符号,异号数相加取绝对 值较大数的符号,并把绝对值相减。
实数集是数学中最基本的概念之一,它具有完备性和连续性 ,是数学分析和高等数学的基础。实数在日常生活中有着广 泛的应用,如长度、重量、时间等计量单位都是用实数来表 示的。
实数的性质
实数的四则运算
实数的连续性
实数的加法、减法、乘法和除法满足 交换律、结合律和分配律,这些性质 使得实数在数学中具有重要的作用。