水库水雨情自动测报系统方案
水库水情测报系统设计方案

目录第1章概述 (4)1.1工程概况 (4)1.2王瑶水库水情测报系统现状 (4)1.3王瑶水库水情测报系统更新改造的必要性 (5)第2章总体设计 (6)2.1设计目标 (6)2.2设计原则 (6)2.3设计依据 (7)2.4系统组成 (8)2.4.1 信息采集系统 (8)2.4.2 信息化网络系统 (8)2.4.3 土建、供电、防雷 (8)2.4.4 数据库系统 (9)2.4.5 应用软件系统 (9)第3章信息采集系统 (10)3.1系统概述 (10)3.2站点分布 (10)3.3系统组成 (11)3.3.1 雨量站 (11)3.3.2 水位雨量站 (11)3.3.3 蒸发站 (12)3.4通信信道 (13)3.5工作体制 (13)3.5.1 自报体制 (13)3.5.2 自报-确认体制 (14)3.5.3 召测体制 (14)3.5.4 工作体制选择 (15)3.6主要设备技术指标 (15)3.6.1 遥测终端机(RTU) (15)3.6.2 雨量计 (15)3.6.3 水位计 (16)3.6.4 蒸发计 (16)3.6.5 溢流计 (17)3.6.6 GSM通信终端 (17)第4章信息化网络系统 (19)4.1系统概述 (19)4.2系统拓扑结构 (19)4.3主要设备技术指标 (20)4.3.1 工控机 (20)4.3.2 交换机 (20)4.3.3 VPN网关/防火墙 (21)4.3.4 服务器 (21)4.3.5 工作站 (21)4.3.6 笔记本电脑 (21)第5章应用软件系统 (22)5.1软件系统组成结构 (22)5.2中心站应用软件系统 (23)5.2.1 信息接收处理系统 (23)5.2.2 汛情动态监视系统 (24)5.2.3 信息查询系统 (25)5.3洪水预警预报系统 (27)5.3.1 系统概述 (27)5.3.2 系统功能 (28)5.3.3 水文预报模型库 (29)5.3.4 基于洪水预报的洪水调度 (30)5.4综合数据库系统 (31)5.4.1 综合数据库组成 (31)5.4.2 数据库管理系统 (32)第6章电源和防雷设计 (34)6.1电源系统设计 (34)6.1.1 遥测站供电 (34)6.1.2 中心站、分中心站供电 (34)6.2防雷设计 (35)6.2.1 防雷系统总体要求 (35)6.2.2 防雷地网的制作 (35)第7章土建工程 (37)7.1雨量站土建 (37)7.2水位雨量站土建 (37)7.3蒸发站土建 (37)第1章概述1.1工程概况王瑶水库位于延安市安塞县杏子河流域中游,是一座以防洪和供水为主,兼发电、灌溉、养殖等综合利用的大(Ⅱ)型水利枢纽工程,主要建筑物为2级,设计总库容2.03亿立方米。
水库雨水测报方案

水库雨水测报方案1. 背景随着气候的变化,极端天气现象如暴雨成灾的频率不断增加,水库雨水测报成为了水利管理中不可或缺的一环。
水库雨水测报方案的制定与实施对于及时发现降雨形势、预警洪水灾害、保障人民生命财产安全具有重要意义。
2. 目标水库雨水测报方案的目标是准确监测降雨情况,预测洪水灾害风险,提前采取有效措施,最大程度保护水库和周边地区的安全。
3. 测报方法为了实现水库雨水测报的目标,我们将采用以下几种方法:3.1. 雨量监测通过建立雨量测报站点网格,安装自动雨量计设备进行实时监测,获取雨量数据。
在选取测报站点时,应考虑地理位置分布均匀,具有代表性,并能覆盖水库流域范围。
3.2. 降雨预报根据气象学原理和气象卫星、雷达等现代科技手段,结合历史气象资料和模型预报方法,进行降雨量的预测。
预报结果应及时准确,并按照不同预报时段、不同降雨强度制定相应的预警等级。
3.3. 水位监测利用水位测报站点的水位监测设备,实时记录水库水位变化。
同时,根据历史水文资料和数学统计方法,进行水位的预测和模拟。
水位的监测和预测是洪水灾害预警的重要依据。
3.4. 水库防洪应急预案制定水库洪水预警等级与相应的防洪应急预案,根据水库实际情况和历史洪水数据建立不同预警等级,明确防洪责任与任务分工,以便在洪水来临时能够及时、有序地组织应对。
4. 数据处理与分析采集到的雨量和水位数据将进行处理和分析,以便得出相应的结论和判断。
数据处理包括数据清洗、校正,以及数据变化趋势的分析等。
数据分析主要包括趋势分析、周期性分析和异常值检测等,以便更好地理解和预测雨水情况。
5. 信息发布与共享为了提高水库雨水测报方案的效果和应用价值,及时将测报结果和预警信息发布给相关单位和人员。
建立信息共享的平台,包括网络平台和手机APP等,便于各级水利部门、水库管理人员和周边居民了解降雨情况和洪水灾害风险。
6. 响应与处置根据测报结果和预警信息,及时采取相应措施,包括但不限于启动水库泄洪、转移周边居民、加强巡查等。
江河水库流域或水电厂水情自动测报系统设计方案

水库流域或水电厂水情自动测报系统设计方案1.概述1.1 流域及工程概况XX流域发源于赣、闽边界武夷山西麓广昌县灵华峰,自南向北流经广昌、南丰、南城、金溪、临川、进贤、南昌等县(市),在南昌县青岚湖注入鄱阳湖,河流全长344km。
抚河控制站李家渡水文站集水面积15811km2,李家渡以上河长275km,河道平均坡降2.11‰,流域形状呈菱形。
海拔高程在17~1800m之间。
流域内山地约占27%、丘陵约占63%、平原约占10%。
河源至南城称盱江,为上游河段,属山区性河流,河宽300m左右,河道平均坡降3.41‰;支流黎滩河在南城以下与盱江汇合后称抚河,南城至临川为抚河中游河段,属丘陵、平原河流,该河段除XX狭谷宽约200余m以外,河谷渐宽可达400~500m,两岸多位丘陵台地,河道平均坡降0.43‰;临川以下为下游河段,是广阔的冲积平原,河床宽达400~800m,河道平均坡降0.24‰,两岸的大片农田靠圩堤保护。
抚河流域支流众多,流域面积大于150km2的支流有13条,其中9条分布在XX坝址以上。
XX水电站位于江西省东南部抚河中游临川市鹏田乡XX村附近,地理坐标为东经116°38′,北纬27°45′,抚河中游XX狭谷段,坝址以上集水面积7060 km2,占全流域(李家渡水文站以上)面积的44.7%。
坝址以上河长187 km,河道平均坡降2.95‰,坝址以上流域主要由盱江和支流黎滩河组成,盱江流域集水面积4159 km2,黎滩河集水面积2478 km2。
流域内已建大型水库1座、中型水库7座,XX 水库位于黎滩河,为一座大一型水库,控制集水面积2376 km2,总库容12.14×108 m3,7座中型水库分别位于盱江及黎滩河各支流上,控制集水面积454.8 km2,累计总库容1.87×108 m3。
XX水电站是以防洪、灌溉为主,兼顾发电、供水和航运等综合利用的大二型水利水电枢纽工程,主要建筑物设计洪水标准为100年一遇,校核洪水标准为1000年一遇。
水情自动测报实施方案

水情自动测报实施方案一、前言。
随着社会的发展和科技的进步,水资源的管理变得越来越重要。
而水情自动测报系统的建设和实施,对于水资源的监测和管理具有重要意义。
本文将针对水情自动测报实施方案进行详细的介绍和分析,以期为相关工作提供有效的指导和支持。
二、系统概述。
水情自动测报系统是指通过现代化的传感器和监测设备,对水资源的水位、流量、水质等数据进行实时监测和自动报送的系统。
其主要目的是实现水资源的动态监测和实时报送,为水资源管理部门提供及时、准确的数据支持。
三、系统组成。
1. 传感器设备,包括水位传感器、流量传感器、水质传感器等,用于实时监测水资源的相关数据。
2. 数据采集设备,用于采集传感器设备传输的数据,并进行处理和存储。
3. 通信设备,用于将采集到的数据通过网络传输至监测中心。
4. 监测中心,负责接收、处理和存储传感器设备传输的数据,并进行分析和报告。
四、系统实施方案。
1. 确定监测点位,根据实际情况确定水情自动测报系统的监测点位,包括河流、湖泊、水库等水体。
2. 设计传感器布设方案,根据监测点位的特点和需求,设计合理的传感器布设方案,确保数据的准确性和全面性。
3. 确定数据采集和传输方案,选择合适的数据采集设备和通信设备,确保数据的及时传输和存储。
4. 建设监测中心,建设配套的监测中心,配备专业的技术人员,确保数据的及时处理和分析。
5. 完善管理和应急预案,建立健全的管理制度和应急预案,确保系统的正常运行和数据的安全性。
五、系统运行与维护。
1. 定期巡检和维护,对传感器设备和数据采集设备进行定期巡检和维护,确保设备的正常运行。
2. 数据分析和报告,监测中心对采集到的数据进行分析和报告,及时向相关部门提供数据支持。
3. 应急响应,建立健全的应急响应机制,对突发事件进行及时响应和处理。
六、总结。
水情自动测报系统的建设和实施,对于水资源的监测和管理具有重要意义。
通过本文的介绍和分析,相信能够为相关工作提供有效的指导和支持,推动水情自动测报系统的建设和应用,为水资源的保护和管理做出贡献。
江河水库流域或水电厂水情自动测报系统设计方案

水库流域或水电厂水情自动测报系统设计方案1.概述1.1 流域及工程概况XX流域发源于赣、闽边界武夷山西麓广昌县灵华峰,自南向北流经广昌、南丰、南城、金溪、临川、进贤、南昌等县(市),在南昌县青岚湖注入鄱阳湖,河流全长344km。
抚河控制站李家渡水文站集水面积15811km2,李家渡以上河长275km,河道平均坡降2.11‰,流域形状呈菱形。
海拔高程在17~1800m之间。
流域内山地约占27%、丘陵约占63%、平原约占10%。
河源至南城称盱江,为上游河段,属山区性河流,河宽300m左右,河道平均坡降3.41‰;支流黎滩河在南城以下与盱江汇合后称抚河,南城至临川为抚河中游河段,属丘陵、平原河流,该河段除XX狭谷宽约200余m以外,河谷渐宽可达400~500m,两岸多位丘陵台地,河道平均坡降0.43‰;临川以下为下游河段,是广阔的冲积平原,河床宽达400~800m,河道平均坡降0.24‰,两岸的大片农田靠圩堤保护。
抚河流域支流众多,流域面积大于150km2的支流有13条,其中9条分布在XX坝址以上。
XX水电站位于江西省东南部抚河中游临川市鹏田乡XX村附近,地理坐标为东经116°38′,北纬27°45′,抚河中游XX狭谷段,坝址以上集水面积7060 km2,占全流域(李家渡水文站以上)面积的44.7%。
坝址以上河长187 km,河道平均坡降2.95‰,坝址以上流域主要由盱江和支流黎滩河组成,盱江流域集水面积4159 km2,黎滩河集水面积2478 km2。
流域内已建大型水库1座、中型水库7座,XX水库位于黎滩河,为一座大一型水库,控制集水面积2376 km2,总库容12.14×108 m3,7座中型水库分别位于盱江及黎滩河各支流上,控制集水面积454.8 km2,累计总库容1.87×108 m3。
XX水电站是以防洪、灌溉为主,兼顾发电、供水和航运等综合利用的大二型水利水电枢纽工程,主要建筑物设计洪水标准为100年一遇,校核洪水标准为1000年一遇。
水库流域雨情自动测报系统

水库流域雨情自动测报系统系统概述水文测报的主要任务是测定江河湖库降雨量、水位、流量等水文要素自然变化的情况,它是一项基础和前期工作,是防汛抗旱的耳目和参谋,其质量和精度将直接影响水情信息的实时性和准确性,影响对防汛抗旱决策的科学性,加强报汛站测报基础设施的建设,强化水情信息采集、传输的工作,提高水情测报质量成为当务之急。
由于传统的水位、雨量数据采集设备无法满足遥测系统的需要,必须进行更新或改造,实现水文信息的数字化、自动采集、长期自动存贮以适应现代数字通讯和计算机的应用要求。
大规模的水文数据远程自动测报系统,可以有效提高水雨情实时监测的站点密度和覆盖面,大大提高报汛的时效性,可增加洪水预报的有效预见期和预报精度,争取了防汛的主动性,能在防汛工作中发挥重要作用。
系统结构及工作机制水文数据远程测报系统的建设主要包括以下几个方面:水文数据采集设备,进行雨量采集; GPRS/GSM数据传输终端,完成远程数据传输;水文信息中心站,包括系统软件及数据库,可分析、显示、存储、发布水文信息数据以供决策。
总体结构如下图:雨量站直接测量雨量,是整个遥测系统信息的来源,具有雨量实时发送的功能,雨量站一般处于河流上游或者湖泊边缘,分布分散,可以长期工作在无人值守的环境中,并且无需交流电源提供,靠太阳能电池供电。
对于报汛通信网,中心从遥测站取得各类水情信息,这是最基本、最主要的;通讯方式采用移动通信GPRS/GSM网络,具有稳定可靠、覆盖面较广、网络能力强、通信费用低、不受地域限制的优点,具体包括:·先进性,随着移动通讯技的发展,如今已经实现基于分组的 GPRS 通讯;并且继续向 3G 方向发展。
·可靠性,作为商用的电信运营网络,其可靠性相当高,信息发送和接收安全可靠,不会丢失。
·实用性, GSM 作为一个成熟实用的网络,已经能满足用户需求,实现资源共享,信息交流。
·经济性,首先,采用移动通讯方式在网络建设上不需要投入,也不用租用通信线路、其次,通讯费用低, GPRS 只有产生通信流量时才计费; GSM短消息发送一条信息的费用为 0.1 元,接收者不收费。
江河水库流域或水电厂水情自动测报系统设计方案

水库流域或水电厂水情自动测报系统设计方案1.概述1.1 流域及工程概况XX流域发源于赣、闽边界武夷山西麓广昌县灵华峰,自南向北流经广昌、南丰、南城、金溪、临川、进贤、南昌等县(市),在南昌县青岚湖注入鄱阳湖,河流全长344km。
抚河控制站李家渡水文站集水面积15811km2,李家渡以上河长275km,河道平均坡降2.11‰,流域形状呈菱形。
海拔高程在17~1800m之间。
流域内山地约占27%、丘陵约占63%、平原约占10%。
河源至南城称盱江,为上游河段,属山区性河流,河宽300m左右,河道平均坡降3.41‰;支流黎滩河在南城以下与盱江汇合后称抚河,南城至临川为抚河中游河段,属丘陵、平原河流,该河段除XX狭谷宽约200余m以外,河谷渐宽可达400~500m,两岸多位丘陵台地,河道平均坡降0.43‰;临川以下为下游河段,是广阔的冲积平原,河床宽达400~800m,河道平均坡降0.24‰,两岸的大片农田靠圩堤保护。
抚河流域支流众多,流域面积大于150km2的支流有13条,其中9条分布在XX坝址以上。
XX水电站位于江西省东南部抚河中游临川市鹏田乡XX村附近,地理坐标为东经116°38′,北纬27°45′,抚河中游XX狭谷段,坝址以上集水面积7060 km2,占全流域(李家渡水文站以上)面积的44.7%。
坝址以上河长187 km,河道平均坡降2.95‰,坝址以上流域重要由盱江和支流黎滩河组成,盱江流域集水面积4159 km2,黎滩河集水面积2478 km2。
流域内已建大型水库1座、中型水库7座,XX水库位于黎滩河,为一座大一型水库,控制集水面积2376 km2,总库容12.14×108 m3,7座中型水库分别位于盱江及黎滩河各支流上,控制集水面积454.8 km2,累计总库容1.87×108 m3。
XX水电站是以防洪、灌溉为主,兼顾发电、供水和航运等综合运用的大二型水利水电枢纽工程,重要建筑物设计洪水标准为12023一遇,校核洪水标准为102023一遇。
水库水雨情监测方案

水库水雨情监测方案一、概述水安全和水危机已经成为当前制约我国社会和经济发展的突出因素,水库工程对下游的防洪和灌溉意义重大,在促进当地经济发展中,发挥了巨大作用,地位极其重要。
水库安全一直是我国防汛抗洪的难点和重点,而当前大部分中小水库缺少必要的库区水雨情及水库大坝安全检测手段。
水雨情自动监测系统适用于水利部门远程监测水位、降雨量等实时数据。
同时支持远程图像监控,为防汛指挥调度提供了准确、及时的现场信息。
从而使可能受灾区域能够及时采取措施、减少人员和财产损失。
系统由平台管理中心和遥测站(自动雨量站、自动水位站、图像视频站等)组成。
遥测站主要监测各个地区的实时水位、降雨量、现场图像等数据信息,并上传至平台管理中心。
平台管理中心通过水雨情监测预警平台,接收并处理由遥测站发出的数据,根据需求向决策者预警决策信息。
同时系统可通过WEB、移动端、短信等方式快速发布相关水雨情或预警信息。
二、系统结构水库水雨情自动测报系统采用B/S分布式系统结构,根据监测设备安装位置与监测中心(如市水利局)的距离较远、各水库监测点分散等特点,系统采用GPRS/CDMA网络通信方式,灵活构建系统,有效降低系统整体成本,提高系统可靠性,非常适合中小水库信息化建设及水库监测除险加固配套信息化建设。
系统结构示意图如下图所示三建设内容1系统平台建设借助该系统平台,可将每个水库的水雨情信息实时展示与存储。
2传输设备建设通过水文专用RTU,借助运营商移动通讯网络将实时信息实时发送到数据中心。
3自动监测站建设主要监测库区雨量和库水位,根据水库规模设立数量不等的监测点,监测设备采用雷达水位计、翻斗式雨量计、串口摄像头、视频摄像头等设备,4采用无线GPRS通信模式,设备供电可根据需要采用太阳能蓄电池供电系统或者市电供电系统四、系统功能1直观显示各水库分布位置、当前水位和降雨量数据以及设备运行状态。
2集中显示各水库测点的最新水位、当前降雨量、累计降雨量、电池电压和现场照片等,3实时展现水位、降雨量动态曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水库水雨情自动测报系统方案
1. 引言
水库水雨情自动测报系统是指利用现代化的传感器、数据采集装置和通信技术,实现对水库水位和降雨量的实时监测和自动报告的系统。
该系统可以提供准确的水库水情和雨情数据,为水库调度和洪水预警提供重要参考依据,促进水资源的科学管理和合理利用。
本文档旨在提供水库水雨情自动测报系统的设计方案,包括系统的整体架构、
主要功能模块和工作流程,以及相关技术和设备的选择和配置。
2. 系统架构
水库水雨情自动测报系统的整体架构如下图所示:
graph TB
A[传感器] --> B[数据采集装置]
B --> C[数据存储与处理服务器]
C --> D[报警与报表生成模块]
•传感器:采用水位传感器和雨量传感器,实时监测水库水位和雨量数据。
•数据采集装置:负责接收传感器数据,并通过通信技术将数据传输到数据存储与处理服务器。
•数据存储与处理服务器:负责存储和管理水库水情和雨情数据,并对数据进行处理和分析,生成报表和报警信息。
•报警与报表生成模块:根据预先设定的阈值和规则,对水位和降雨量数据进行实时监测,一旦超过设定的阈值,系统将生成报警信息。
同时,系统可以根据需求生成水情和雨情报表。
3. 主要功能模块
3.1. 传感器模块
传感器模块负责实时监测水库水位和雨量数据,并将数据传输给数据采集装置。
常用的水位传感器包括压力传感器、浮子传感器和超声波传感器;常用的雨量传感器包括雨滴传感器和雨量杆。
3.2. 数据采集装置模块
数据采集装置模块负责接收传感器模块传输的数据,并通过通信技术将数据传
输给数据存储与处理服务器。
数据采集装置需要具备稳定可靠的通信功能,常用的通信技术包括以太网、无线通信和Modbus通信。
3.3. 数据存储与处理服务器模块
数据存储与处理服务器模块负责存储和管理水库水情和雨情数据,并对数据进
行处理和分析。
服务器应具备高性能的处理能力和稳定可靠的存储功能,并提供数据查询、计算和报表生成等功能。
3.4. 报警与报表生成模块
报警与报表生成模块负责监测水位和降雨量数据,并根据预先设定的阈值和规
则进行实时报警。
同时,该模块还能根据需求生成水情和雨情报表,方便用户查看和分析。
4. 工作流程
水库水雨情自动测报系统的工作流程如下:
1.传感器实时监测水位和雨量数据。
2.数据采集装置接收传感器数据,并进行数据处理和传输。
3.数据存储与处理服务器接收采集到的数据,并进行存储和管理。
4.报警与报表生成模块对水位和降雨量数据进行实时监测和处理。
5.如果水位或降雨量超过设定的阈值,系统将生成报警信息。
6.根据需求,系统可生成水情和雨情报表,方便用户查看和分析。
5. 技术和设备选择
根据实际需求和预算限制,以下是一些建议的技术和设备选择:
•传感器:选择稳定可靠、具有高精度测量性能的水位传感器和雨量传感器。
•数据采集装置:根据通信距离和可靠性要求,选择合适的以太网、无线通信或Modbus通信设备。
•数据存储与处理服务器:选择高性能的服务器设备,并根据数据量和备份需求选择合适的存储容量和数据备份方案。
•报警与报表生成模块:根据需求选择合适的报警规则和报表生成工具,并确保系统稳定运行和及时响应报警信息。
6. 总结
水库水雨情自动测报系统是一项重要的水资源管理工具,能为水库调度和洪水预警提供准确的数据支持。
本文档提供了水库水雨情自动测报系统的设计方案,包括系统的整体架构、主要功能模块和工作流程,以及技术和设备的选择和配置。
该系统的成功实施将有助于提高水资源的利用效率和保护水环境的能力。