高等数学下册试卷及答案

合集下载

西安理工大学高等数学下试卷

西安理工大学高等数学下试卷

西安理工大学高等数学下试卷1、2.如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()[单选题] * A.4cm(正确答案)B.CmC.5cmD.cm2、2、在轴上的点的纵坐标是()[单选题] *A.正数B.负数C.零(正确答案)D.实数3、9.点(-3,4)到y轴的距离是()[单选题] *A.3(正确答案)B.4C.-3D.-44、6.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是1/3?,则正面画有正三角形的卡片张数为()[单选题] *A.3B.5C.10(正确答案)D.155、6.对于单项式-2mr2的系数,次数分别是()[单选题] *A.2,-2B.-2,3C.-2,2(正确答案)D.-2,36、8. 估计√13?的值在() [单选题] *A、1和2之间B、2和3之间C、3和4之间(正确答案)D、4和5之间7、已知二次函数f(x)=2x2-x+2,那么f(2)的值为()。

[单选题] *1228(正确答案)38、22.如图棋盘上有黑、白两色棋子若干,找出所有使三颗颜色相同的棋在同一直线上的直线,满足这种条件的直线共有()[单选题] *A.5条(正确答案)B.4条C.3条D.2条9、22.若+3x+m=0的一个根为2,则m=()[单选题] *A.3B.10C.-10(正确答案)D.2010、13.不等式x+3>5的解集为()[单选题] *A. x>1B. x>2(正确答案)C. x>3D. x>411、37.若x2+2(m﹣1)x+16是完全平方式,则m的值为()[单选题] *A.±8(正确答案)B.﹣3或5C.﹣3D.512、6. 某小组有男学生5人,女学生4人.从中选一人去参加座谈会,共有( )种不同的选法.[单选题] *A. 4种B. 5种C. 9种(正确答案)D. 20种13、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数14、x+2=3的解为()[单选题] *A. x=1(正确答案)B. x=2C. x=3D. x=415、8. 下列事件中,不可能发生的事件是(? ? ).[单选题] *A.明天气温为30℃B.学校新调进一位女教师C.大伟身长丈八(正确答案)D.打开电视机,就看到广告16、4. 下列命题中,是假命题的是()[单选题] *A、两点之间,线段最短B、同旁内角互补(正确答案)C、直角的补角仍然是直角D、垂线段最短17、23、在直角坐标平面内有点A,B,C,D,那么四边形ABCD的面积等于()[单选题]B. 2C. 4(正确答案)D. 2.518、11.小文买了一支温度计,回家后发现里面有一个小气泡(即不准确了),先拿它在冰箱里试一下,在标准温度是零下7℃时,显示为℃,在36℃的温水中,显示为32℃,那么用这个温度计量得的室外气温是23℃,则室外的实际气温应是()[单选题] *A.27℃(正确答案)B.19℃C.23℃D.不能确定19、3.课间操时,小华、小军、小刚的位置如图.小华对小刚说:“如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成()[单选题] *A.(5,4)B(4,5)C(3,4)D(4,3)(正确答案)20、24.下列各数中,绝对值最大的数是()[单选题] *A.0C.﹣3(正确答案)D.121、48.如图,M是AG的中点,B是AG上一点.分别以AB、BG为边,作正方形ABCD和正方形BGFE,连接MD和MF.设AB=a,BG=b,且a+b=10,ab=8,则图中阴影部分的面积为()[单选题] *A.46B.59(正确答案)C.64D.8122、? 是第()象限的角[单选题] *A. 一(正确答案)B. 二C. 三D. 四23、1.计算-20+19等于()[单选题] *A.39B.-1(正确答案)C.1D.3924、14.将△ABC的三个顶点坐标的横坐标都乘以-1,并保持纵坐标不变,则所得图形与原图形的关系是()[单选题] *A.关于x轴对称B.关于y轴对称(正确答案)C.关于原点对称D.将原图形沿x轴的负方向平移了1个单位25、14.数﹣在数轴上的位置可以是()[单选题] *A.点A与点B之间(正确答案)B.点B与点O之间C.点O与点D之间D.点D与点E之间26、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)27、39、在平面直角坐标系中,将点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,若点B在第二象限,则m的取值范围是()[单选题] *A.﹣11<m<﹣4B.﹣7<m<﹣4(正确答案)C.m<﹣7D.m>﹣428、6.数学文化《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若向西走9米记作米,则米表示()[单选题] *A向东走5米(正确答案)B向西走5米C向东走4米D向西走4米29、39.若(x﹣3)(2x+1)=2x2+ax﹣3,则a的值为()[单选题] *A.﹣7B.﹣5(正确答案)C.5D.730、代数式a3?a2化简后的结果是()[单选题] *A. aB. a?(正确答案)C. a?D. a?。

大学高等数学上下考试题库(及答案)

大学高等数学上下考试题库(及答案)

高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数11z x y x y =++-的定义域为(2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.22530d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12 D. 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( ) A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂ 得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值 5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t ty t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰Ò,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体表面的外侧 (10)' 2、(1)判别级数111(1)3n n n n∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6') (2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数24x y z -=的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则L yds =⎰ ;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( ); A.2()x ax b e + B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( );A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12 D. 2 三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin 3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx = .得分阅卷人得分二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

高等数学下考试题库附答案

高等数学下考试题库附答案

A、 2 , 2 , 22
B、 2 , 2 22
C、 2 2
2
2
D、 2
2,
22
5、设 x2+y2+z2=2Rx,则 z , z 分别为(

x y
A、 x R , y zz
B、 x R , y zz
C、 x R , y zz
D、 x R , y zz
6、设圆心在原点,半径为 R,面密度为 x 2 y 2 的薄板的质量为( )(面积 A=R 2 )
A、R2A
B、2R2A
C、3R2A
D、 1 R 2 A 2
7、级数 (1)n x n 的收敛半径为(

n1
n
A、2 B、 1 2
C、1 D、3
8、cosx 的麦克劳林级数为( )
B. x, y0 x2 y 2 1
C. x,
y0

x2

y2




2
D. x,
y0

x2

y2




2
4.点 P1,2,1到平面 x 2 y 2z 5 0 的距离为( ).
A.3
B.4
C.5
D.6
5.函数 z 2xy 3x 2 2 y 2 的极大值为( ).
9.幂级数 x n 在收敛域内的和函数是(
).
n0 2
A. 1 1 x
B. 2 2x
C. 2 1 x
10.微分方程 xy y ln y 0 的通解为(
D. 1 2x ).
A. y ce x B. y e x C. y cxe x D. y ecx 二.填空题(4 分 5)

大学高等数学下考试题库附答案.docx

大学高等数学下考试题库附答案.docx

《高等数学》试卷1(下)一 . 选择题( 3 分10)1. 点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量 a i 2 j k , b2i j ,则有() .A. a∥bB. a ⊥bC.a,b3D.a, b43.函数 y2x2y 2x 21的定义域是() . y21A.,1x 2y22B.x, y1x2y22x yC. x, y 1x2y22D x, y 1 x 2y224. 两个向量a与b垂直的充要条件是().A. a b0B. a b 0C. a b 0D. a b05. 函数z x3y33xy 的极小值是().A.2B.2C.1D.16. 设z x sin y ,则z=(). y1, 4A.2B.2C.2D.2227. 若p级数1p收敛,则(). n 1 nA. p1B.p 1C.p 1D.p18. 幂级数x n的收敛域为().n 1nA.1,1B1,1 C.1,1 D.1,1x n9. 幂级数在收敛域内的和函数是().2n 0A.1B.2C.2D.12 x 1 x 2 x1x10. 微分方程xy y ln y 0 的通解为().A. y ce xB.y e xC.y cxe xD.y e cx二 . 填空题( 4 分5)1.一平面过点 A 0,0,3 且垂直于直线AB,其中点 B 2, 1,1 ,则此平面方程为______________________.2. 函数z sin xy 的全微分是______________________________.3. 设z x3 y23xy3xy 1,则 2 z_____________________________.x y4.1的麦克劳林级数是 ___________________________.2 x5. 微分方程 y 4 y 4 y 0 的通解为 _________________________________.三 . 计算题( 5 分 6)1. 设 z e usin v ,而 u xy, v x y ,求 z,z .xy2. 已知隐函数 zz x, y 由方程 x 22y 2z 24x 2z 5 0确定,求z , z .xy3. 计算sin x 2y 2 d ,其中 D :2x 2y 24 2 .D4. 如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径) .5. 求微分方程 y3ye 2 x 在 y x 0 0 条件下的特解 .四 . 应用题( 10 分 2)1. 要用铁板做一个体积为 2 m 3 的有盖长方体水箱, 问长、宽、 高各取怎样的尺寸时,才能使用料最省?2.. 曲线 y f x 上任何一点的切线斜率等于自原点到该切点的连线斜率的 2 倍,且曲线过点 1, 1,求此曲线方程3.试卷 1 参考答案一. 选择题 CBCAD ACCBD二 . 填空题1. 2x y 2z 60 .2.cos xy ydx xdy .3. 6x2y9 y2 1 .4.1 nx n.2n 1n 05. y C1 C 2 x e 2x.三 . 计算题1.z e xy y sin x y cos x y ,ze xy xsin x y cos x y .x y2.z2x ,z2y .x z1y z 13.22d 6 2.d sin4.16R 3. 35.y e3x e2x.四 . 应用题1. 长、宽、高均为 3 2m时,用料最省.2. y1x 2 .3《高数》试卷2(下)一 . 选择题( 3 分10)1. 点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152. 设两平面方程分别为x 2y2z 10和 x y50 ,则两平面的夹角为().A.6B.4C.3D.23. 函数z arcsin x 2y 2的定义域为() .A.,0x 2y21B.x, y 0 x2y21x yC.x, y 0 x 2y 22D.x, y 0 x2y 224. 点P1, 2,1 到平面 x 2 y 2 z 5 0 的距离为().A.3B.4C.5D.65. 函数z 2 xy 3x2 2 y 2的极大值为().A.0B.1C.1D.126. 设z x23xy y 2,则z1, 2() . xA.6B.7C.8D.97. 若几何级数ar n是收敛的,则().n 0A. r 1B.r 1C.r 1D.r18. 幂级数n 1 x n的收敛域为().n 0A.1,1B.1,1C.1,1D.1,19. 级数sin na是() .n 4n 1A. 条件收敛B.绝对收敛C.发散D.不能确定10. 微分方程xy y ln y 0 的通解为().A. y e cxB.y ce xC.y e xD.y cxe x二 . 填空题( 4 分5)x3t1. 直线l过点 A 2,2, 1且与直线 y t平行,则直线 l 的方程为z12t__________________________.2. 函数z e xy的全微分为___________________________.3.曲面z 2x 24y 2在点2,1,4处的切平面方程为_____________________________________.14. 1x2的麦克劳林级数是______________________.5.微分方程xdy 3ydx 0在y x 11条件下的特解为______________________________.三 . 计算题( 5 分6)1. 设a i 2 j k , b 2 j 3k ,求 a b.2. 设z u 2 v uv 2,而 u x cos y, v x sin y ,求z ,z . x y3. 已知隐函数z z x, y 由 x33xyz2确定,求z ,z .x y4. 如图,求球面x2y 2z24a 2与圆柱面 x2y 22ax (a0 )所围的几何体的体积.5. 求微分方程y3y 2 y0 的通解.四 . 应用题( 10 分2)1. 试用二重积分计算由y x, y 2 x 和x 4 所围图形的面积.2. 如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律x x t .(提示:d 2 x g .当t0 时,有x x0, dx v0)dt 2dt试卷 2 参考答案一 . 选择题 CBABA CCDBA.二 . 填空题1.x 2y 2z 1 .1122. e xy ydx xdy .3. 8x 8 y z 4 .4.1 n x2 n .n 05. yx 3 .三 . 计算题1. ij 2k.8 32.z 3x 2sin y cos y cos y sin y ,z2 x3 sin y cos y sin y cos yx 3 sin 3 y cos 3 yxy.3. zyz ,zxz .xxy z 2y xy z 24. 32 a 32 2 .3 35. yC 1e 2 x C 2 e x .四 . 应用题1.16. 32. x 1 gt2v0 t x0.2《高等数学》试卷3(下)一、选择题(本题共10 小题,每题 3 分,共 30 分)1、二阶行列式 2 -3的值为()4 5A、10B、20C、24D2、设 a=i+2j-k,b=2j+3k,则aA、i-j+2kB、8i-j+2k C 、 22与 b 的向量积为(、 8i-3j+2k D)、8i-3i+k3、点 P( -1 、 -2 、 1)到平面 x+2y-2z-5=0 的距离为()A、2B、3C、4D、54、函数 z=xsiny 在点( 1,)处的两个偏导数分别为()4A、2, 2 , B 、2,2 C 、22 D 、2 2 , 222222225、设x2+y2+z2 =2Rx,则z ,x z 分别为( y)A、x R,y B 、x R ,y C 、x R , y D 、x R,y z z z z zz z z6、设圆心在原点,半径为 R,面密度为x2y 2的薄板的质量为(()面积 A= R2)A、R2AB、2R2AC、3R2AD、1R2A27、级数( 1)n x n的收敛半径为()n 1nA、2B、1C、1D、3 28、cosx 的麦克劳林级数为()A、( 1)n x2n B 、( 1) n x2 n C 、( 1) n x2 n D 、( 1) n x 2n 1n 0(2n)!n 1( 2n)!n 0(2n)!n 0(2n 1)!45的阶数是()9、微分方程 (y``)+(y`) +y`+2=0A、一阶B、二阶C、三阶D、四阶10、微分方程 y``+3y`+2y=0的特征根为()A、-2 ,-1B、2,1C、-2,1D、1,-2二、填空题(本题共 5 小题,每题 4 分,共 20 分)12:x 1y 3z的夹角为___________。

东北大学高等数学(下册)试卷答案及评分标准

东北大学高等数学(下册)试卷答案及评分标准

东北大学高等数学(下册)试卷答案及评分标准2006.7.12一、选择题 (本大题6小题, 每小题4分, 共24分)1.)(B ; 2.)(A ; 3.)(C ;4.)(B ;5. )(D ;6. )(A 。

二.填空题(本大题5小题, 每小题4分, 共20分)1. 154221--=-=-z y x ;2.22-;3.44a π;4. λ=3;x x e C e C 321*.4+-;5.8. 三、(8分) 求过点M(3, 1, -2)且通过直线12354z y x =+=-的平面方程 所求平面的法线向量与直线12354z y x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1, -2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为-------------2分k j i k j i s s n 229824112521--=-=⨯=. ------------6分 所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0, 即8x -9y -22z -59=0.------------8分三、(8分) 求微分方程x y y x sin 2=+'的通解 解:把方程改写为x x y x y sin 2=+', 则------------2分 )sin (22C dx e xx e y dx x dx x +⎰⋅⎰=⎰- )s i n (12C x d x x x+=⎰-----------6分 )cos (sin 12C x x x x+-=------------8分四.(8分) 设方程0>a ,a z a 2≤<,az z y x 2222=++,求全微分与dz 及y x z ∂∂∂2. 解:dy za y dx z a x dz -+-= 于是z a x x z -=∂∂,za y y z -=∂∂------------4分()()22z a y z x z a z a x y y x z -∂∂+-=⎪⎭⎫ ⎝⎛-∂∂=∂∂∂()()()()322z a xy z a z a z a y xz a -+-=--+-=------------8分 五.(8分)计算σd y x y D ⎰⎰-22, 其中D 是由直线y =x 、x =1及y =0围成的闭区域.解 画出区域D , 可把D 看成是X --型区域: 0≤x ≤1, 0≤y ≤ x 于是⎰⎰⎰⎰-=-xD dy y x y dx d y x y 0221022σ ------------4分 ⎰⎰=-⋅-=103100232231)(3221dx x dx y x x 121=.------------8分 六.(8分) 设,0>a ,L 为圆ax y x 222=+逆时针方向一周,求⎰-L ydx x xdy y 22.解 y x P xy Q 22==, 22x y y P x Q +=∂∂-∂∂, ------------2分 由Green 公式有⎰-L y d x x x d y y22=dy dx x y D⎰⎰+)(22 =dr r d a ⎰⎰θπθcos 203202------------6分=⎰2044cos 4πθθπd a=443a π------------8分七.(8分)将函数xx f 431)(+=,展开为)2(+x 的幂级数并给出收敛域. 解:5)2(41151)2(451431+-⋅-=++-=+x x x ------------2分 ∑∞=⎥⎦⎤⎢⎣⎡+-=05)2(451n nx∑∞=++-=01)2(54n n n nx ------------6分收敛域满足 15)2(4<+x 解出得 43413-<<-x ------------8分 八.(8分)设0>a ,物体占有空间Ω是由yoz 坐标面上曲线az z y 222=+绕z 轴旋一周所形成的曲面所围成的闭区域,体密度函数为常数0ρ,求该物体对于坐标原点的转动惯量. 解:所求转动惯量为⎰⎰⎰Ω++=dv z y x I )(22200ρ,:Ωaz z y x 2222≤++------------2分利用球坐标替换,有dr r r d d I a ⎰⎰⎰=ππθϕϕθρ2020cos 202200sin ⎰=20550sin cos )2(512πϕϕϕπρd a ------------6分 2065506cos 522πϕπρ⎥⎦⎤⎢⎣⎡=a 501532a πρ=------------8分 九.(8分)设曲面为抛物面)10(122≤≤--=z y x z ,取上侧 计算dxdy dzdx y dydz x 22233++⎰⎰∑.解:补充平面)1(0:220≤+=∑y x z 取下侧,则0∑与∑围成空间区域Ω 于是 ⎰⎰⎰⎰∑∑+∑-=00I ------------2分π2)(622++=⎰⎰⎰Ωdv y x πθπ2621031020+=⎰⎰⎰-dz r dr d r ------------6分ππ2)(121053+-=⎰dr r r πππ32=+=------------8分。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

⾼等数学下考试题库(附答案)《⾼等数学》试卷1(下)⼀.选择题(3分?10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ().A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是().A.(){}21,22≤+≤y x y x B.(){}21,22<+C.(){}21,22≤+y x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是().A.0=?b aB.0 =?b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极⼩值是(). A.2 B.2- C.1 D.1- 6.设y x z sin =,则4,1πyz =().A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n p n 收敛,则(). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为().A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=??02在收敛域内的和函数是().A.x -11 B.x -22 C.x -12 D.x-21 10.微分⽅程0ln =-'y y y x 的通解为().A.xce y = B.xe y = C.xcxe y = D.cxe y =⼆.填空题(4分?5)1.⼀平⾯过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平⾯⽅程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分?6)1.设v e z usin =,⽽y x v xy u +==,,求.,yz x z 2.已知隐函数()y x z z ,=由⽅程05242222=-+-+-z x z y x 确定,求.,yz x z 3.计算σd y x D+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱⾯所围成的⽴体的体积(R 为半径).四.应⽤题(10分?2)1.要⽤铁板做⼀个体积为23m 的有盖长⽅体⽔箱,问长、宽、⾼各取怎样的尺⼨时,才能使⽤料最省? .试卷1参考答案⼀.选择题 CBCAD ACCBD ⼆.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin . 2.12,12+=??+-=??z yy z z x x z . 3.?=πππρρρ?202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应⽤题1.长、宽、⾼均为m 32时,⽤料最省.2..312x y =《⾼数》试卷2(下)⼀.选择题(3分?10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). A.12 B.13 C.14 D.152.设两平⾯⽅程分别为0122=++-z y x 和05=++-y x ,则两平⾯的夹⾓为(). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为().A.(){}10,22≤+≤y x y x B.(){}10,22<+C.()?≤+≤20,22πy x y x D.()?<+<20,22πy x y x 4.点()1,2,1--P 到平⾯0522=--+z y x 的距离为(). A.3 B.4 C.5 D.6 5.函数2 2232y x xy z --=的极⼤值为().A.0B.1C.1-D.21 6.设223y xy x z ++=,则()=??2,1xz ().A.6B.7C.8D.9 7.若⼏何级数∑∞=0n nar是收敛的,则().A.1≤rB. 1≥rC.1D.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为().A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是(). A.条件收敛 B.绝对收敛 C.发散 D.不能确定⼆.填空题(4分?5)1.直线l 过点()1,2,2-A 且与直线??-==+=t z t y t x 213平⾏,则直线l 的⽅程为__________________________.2.函数xye z =的全微分为___________________________.3.曲⾯2242y x z -=在点()4,1,2处的切平⾯⽅程为_____________________________________.三.计算题(5分?6)1.设k j b k j i a32,2+=-+=,求.b a ?2.设22uv v u z -=,⽽y x v y x u sin ,cos ==,求.,y z x z 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z 4.如图,求球⾯22224a z y x =++与圆柱⾯ax y x 222=+(0>a )所围的⼏何体的体积.四.应⽤题(10分?2) 1.试⽤⼆重积分计算由x y x y 2,==和4=x 所围图形的⾯积.试卷2参考答案⼀.选择题 CBABA CCDBA. ⼆.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=??-=?? . 3.22,z xy xz y z z xy yz x z +-=??+-=??. 4.-3223323πa . 5.x xe C eC y --+=221.四.应⽤题1.316. 2. 00221x t v gt x ++-=.《⾼等数学》试卷3(下)⼀、选择题(本题共10⼩题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平⾯x+2y-2z-5=0的距离为() A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点(1,4π)处的两个偏导数分别为() A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ,分别为() A 、z y z R x --, B 、z y z R x ---, C 、zz R x ,-- D 、zyz R x ,- 6、设圆⼼在原点,半径为R ,⾯密度为22y x +=µ的薄板的质量为()(⾯积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n⼆、填空题(本题共5⼩题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹⾓为z y x =-+=-1321___________。

(完整word版)高等数学下册期末考试试题及答案,推荐文档

(完整word版)高等数学下册期末考试试题及答案,推荐文档

高数高等数学A(下册)期末考试试题、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)r r r r r r r r r1、已知向量a、b满足a b 0, a 2, b 2,则ab .32、设z xln(xy),贝U ---- 2x y2 23、曲面x y z 9在点(1,2, 4)处的切平面万程为 .4、设f(x)是周期为2的周期函数,它在[,)上的表达式为f(x) x,则f(x)的傅里叶级数在x 3处收敛于,在x 处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则L(x y)ds .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.・1!■■■■■・ MM ■・・・・・■■■■■ ■ ■・・・■:■»■■■■■、解下列各题:(本题共5小题,每小题7分,满分35分)C 2 c 2 2 c... 2x 3y z 9» j ....... .. ..1、求曲线2 2 2在点M0 (1, 1,2)处的切线及法平面方程.z 3x y.. 2 2 一 2 2 一2、求由曲面z 2x 2y及z 6 x y所围成的立体体积.n 1 一3、判定级数(1)n ln --- 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1 n2x .......... z z4、设z f (xy,—) sin y ,其中f具有二阶连续偏导数,求一, ------- -y x x ydS 2 2 2 25、计算曲面积分——,其中是球面x y z a被平面z h (0 h a)截出的顶部.z、(本题满分9分)抛物面z x2 y2被平面x y z 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分10分)计算曲线积分Je x siny m)dx (e x cosy mx)dy ,其中m为常数,L为由点A(a,0)至原点O(0,0)的上半圆周x2 y2 ax (a 0).四、(本题满分10分)n求哥级数4—的收敛域及和函数.n i 3 n五、(本题满分10分)计算曲面积分| 2x3dydz 2y3dzdx 3(z2 1)dxdy,2 2其中为曲面z 1 x y (z 0)的上侧.六、(本题满分6分)设f(x)为连续函数,f (0) a, F(t) [z f(x2 y2 z2)]dv,其中t是由曲面z xx y2t与z t2x2y2所围成的闭区域,求lim F(t ) t3备注:①考试时间为2小时;②考试结束时,请每位考生按卷面不得带走试卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学下册试卷及答案高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=loga(x+y)的定义域为D={(x,y)|x+y>0}。

2、二重积分∬|x|+|y|≤1 2ln(x+y)dxdy的符号为负。

3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(e+1-x)dx dy,其值为e-1.4、设曲线L的参数方程表示为{x=φ(t)。

y=ψ(t)} (α≤t≤β),则弧长元素ds=√[φ'(t)²+ψ'(t)²]dt。

5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∫∫∑(x²+y²+1)ds=18√2.6、微分方程y'=x/(y²+1)的通解为y=1/2ln(y²+1)+1/2x²+C。

7、方程y''-4y=tanx的通解为y=C1e^(2x)+C2e^(-2x)-1/2cosxsinx。

8、级数∑n=1∞1/(n(n+1))的和为1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。

2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x²+y²等于(A)x+y。

3、设Ω:x+y+z≤1.z≥0,则三重积分I=∭ΩzdV等于(D)∫0^1∫0^(1-z)∫0^(1-x-y)zdxdydz。

4、球面x²+y²+z²=16a²与柱面x²+y²=2ax所围成的立体体积V=(C)8∫0^π/2∫0^(2acosθ)∫0^√(16a²-r²)rdzdrdθ。

注:原文章中第一题的符号“>”应该是“≥”,已进行更正。

2sin(x+2y-3z)。

2、设f(x)在[0,1]上连续,则f(x)在[0,1]上一定有最小值和最大值。

3、设f(x)在[0,1]上可导,且f(0)=0,f(1)=1,则在(0,1)内至少存在一点c,使得f'(c)=1.4、设f(x)在[a,b]上连续,且f(x)在(a,b)内可导,则存在c∈(a,b),使得f(b)-f(a)=f'(c)(b-a)。

5、设f(x)在[a,b]上连续,且f(x)在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c)=[f(b)-f(a)]/(b-a)。

6、设f(x)在[a,b]上连续,且f(x)在(a,b)内可导,则f(x)在[a,b]上一致连续。

7、设f(x)在[a,b]上可导,且f'(x)在[a,b]上有界,则f(x)在[a,b]上一定一致连续。

8、设f(x)在[a,b]上连续,且f(x)在(a,b)内可导,则f(x)在[a,b]上可导。

二、选择题(每小题5分,共计25分)1、设f(x)为奇函数,g(x)为偶函数,则f(x)g(x)为()A。

奇函数 B。

偶函数 C。

非奇非偶函数 D。

无法确定答案:B解析:奇函数与偶函数相乘,结果为偶函数。

2、设f(x)在[a,b]上连续,且f(x)在(a,b)内可导,则f(x)在[a,b]上()A。

一定可导 B。

一定不可导 C。

可能可导 D。

无法确定答案:C解析:根据连续函数可导的充要条件,可得可能可导。

3、设f(x)在[0,1]上连续,且f(0)=f(1),则在(0,1)内至少存在一点c,使得f(c)=f(c+1/2)的命题是()A。

错误的 B。

正确的,但无法证明 C。

可以用零点定理证明 D。

可以用介值定理证明答案:D解析:根据介值定理,可得该命题正确。

4、下列哪个级数为调和级数()A。

∑(1/n) B。

∑(n^2) C。

∑(1/n^2) D。

∑(1/2n+1)答案:A解析:调和级数为1+1/2+1/3+。

+1/n+。

5、级数∑(n^2)/(2^n)的收敛性为()A。

收敛 B。

发散 C。

无法判断 D。

收敛但不绝对收敛答案:A解析:根据比值判别法,可得该级数收敛。

6、设$\Sigma$为柱面$x+y=1$和$x=0,y=0,z=1$在第一卦限所围成部分的外侧,则曲面积分$\iint_{\Sigma}2zdxdy+xzdydz+x^2ydxdz$等于()。

(A)$\pi$;(B)$-5\pi$;(C)0;(D)4/3.7、方程$y''-2y'=f(x)$的特解可设为()(A)$Ax$,若$f(x)=1$;(B)$Ae^{x}$,若$f(x)=e^{x}$;(C)$Ax^2+Bx+Cx+Dx+E$,若$f(x)=x^2-2x$;(D)$x(A\sin5x+B\cos5x)$,若$f(x)=\sin5x$。

8、设$f(x)=\begin{cases} -1.& -\pi \leq x < 0 \\ 1.& 0 \leq x < \pi \end{cases}$,则它的Fourier展开式中的$a_n$等于()(A)$[1-(-1)^n]/(n\pi)$;(B)$2/(n\pi)$;(C)1;(D)0.二、计算题(每小题10分,共计60分)3、设$D$是由曲线$y=x$,$y=x+2$所围成,则二重积分$I=\iint_D 2(1+x)dxdy=$()。

解:$D$被直线$y=x$所分成的两部分分别为$D_1=\{(x,y)|0\leq x\leq 1.x\leq y\leq x+2\}$和$D_2=\{(x,y)|1\leq x\leq 3.x+2\leq y\leq 2\}$,则begin{aligned}I&=\iint_D 2(1+x)dxdy\\iint_{D_1} 2(1+x)dxdy+\iint_{D_2} 2(1+x)dxdy\\int_0^1\int_x^{x+2} 2(1+x)dydx+\int_1^3\int_{x+2}^22(1+x)dydx\\2\int_0^1(3+x)dx+2\int_1^3(3+x)dx\\20end{aligned}4、在椭圆$x^2/4+y^2/1=1$上求一点,使其到直线$2x+3y-6=0$的距离最短。

解:设椭圆上的点为$(x,y)$,则直线$2x+3y-6=0$的法向量为$(2,3)$,所以过点$(x,y)$且垂直于直线$2x+3y-6=0$的直线方程为$2(x-x_0)+3(y-y_0)=0$,即$2x+3y=2x_0+3y_0$。

又因为点$(x,y)$在椭圆上,所以有$x^2/4+y^2/1=1$,将$2x+3y=2x_0+3y_0$代入得$2x_0+3y_0=\dfrac{4x}{\sqrt{4+9}}+\dfrac{3y}{\sqrt{4+9}}=\df rac{4x}{\sqrt{13}}+\dfrac{3y}{\sqrt{13}}$。

因此,问题转化为求椭圆$x^2/4+y^2/1=1$上到直线$2x+3y=\dfrac{4x}{\sqrt{13}}+\dfrac{3y}{\sqrt{13}}$的距离最短的点$(x_0,y_0)$。

由于点$(x_0,y_0)$到直线$2x+3y=\dfrac{4x}{\sqrt{13}}+\dfrac{3y}{\sqrt{13}}$的距离等于$\dfrac{|2x_0+3y_0|}{\sqrt{4+9}}=\dfrac{|2x_0+3y_0|}{\sqrt{13 }}$,所以问题又转化为求椭圆$x^2/4+y^2/1=1$上到直线$2x+3y=\pm1$的距离最短的点。

设直线$2x+3y=1$上的点为$(x_1,y_1)$,则点$(x_1,y_1)$到椭圆$x^2/4+y^2/1=1$的距离为$d_1=\dfrac{|2x_1+3y_1-1|}{\sqrt{2^2+3^2}}=\dfrac{|2x_1+3y_1-1|}{\sqrt{13}}$;同理,设直线$2x+3y=-1$上的点为$(x_2,y_2)$,则点$(x_2,y_2)$到椭圆$x^2/4+y^2/1=1$的距离为$d_2=\dfrac{|2x_2+3y_2+1|}{\sqrt{13}}$。

因为点$(x_0,y_0)$到直线$2x+3y=\pm1$的距离最短,所以$d_0=\min\{d_1,d_2\}$。

不妨设$d_1\leq d_2$,则$d_0=d_1$,即$\dfrac{|2x_1+3y_1-1|}{\sqrt{13}}$最小,因此点$(x_0,y_0)=(x_1,y_1)$。

直线$2x+3y=1$与椭圆$x^2/4+y^2/1=1$的交点为$(1/\sqrt{5},2/\sqrt{5})$,因此点$(x_0,y_0)=(1/\sqrt{5},2/\sqrt{5})$。

5、求圆柱面$x+y=2$被锥面$z=\sqrt{x^2+y^2}$和平面$z=0$割下部分的面积$A$。

解:圆柱面$x+y=2$在$xOy$平面上的投影为线段$AB$,其中$A=(0,2)$,$B=(2,0)$。

锥面$z=\sqrt{x^2+y^2}$在$xOy$平面上的投影为圆$x^2+y^2=r^2$,其中$r$为锥面母线的长度。

由于锥面和平面$z=0$的交线在$xOy$平面上的投影为圆$x^2+y^2=r^2$,所以锥面和平面$z=0$割下的部分在$xOy$平面上的投影为圆$x^2+y^2\leq r^2$。

设圆$x^2+y^2=r^2$与线段$AB$的交点为$C$和$D$,则线段$AB$被圆$x^2+y^2=r^2$分成的两段分别是线段$AC$和线段$BD$。

设线段$AC$的长度为$l_1$,线段$BD$的长度为$l_2$,则圆$x^2+y^2=r^2$的周长$C=2\pi r=2l_1+2l_2$,即$l_1+l_2=\pi r$。

因为锥面和平面$z=0$割下的部分在$xOy$平面上的投影为圆$x^2+y^2\leq r^2$,所以该部分的面积为$A=\pi r^2$。

又因为圆柱面$x+y=2$被锥面和平面$z=0$所割下的部分在$xOy$平面上的投影为线段$AB$被圆$x^2+y^2=r^2$所分成的两段,所以$l_1+l_2=AB=\sqrt{2^2+2^2}=2\sqrt{2}$。

因此,$r=\dfrac{l_1+l_2}{\pi}=2\dfrac{\sqrt{2}}{\pi}$,$A=\pir^2=8\dfrac{2}{\pi^2}$。

6、计算$I=\iint_{\Sigma} xyzdxdy$,其中$\Sigma$为球面$x^2+y^2+z^2=1$的$x\geq 0,y\geq 0$部分的外侧。

相关文档
最新文档