工程材料与成形技术基础

合集下载

工程材料及成形技术基础课程

工程材料及成形技术基础课程

工程材料及成形技术基础课程引言工程材料及成形技术基础课程是工程相关专业的一门基础课程,旨在介绍工程材料的基本概念、特性及其在工程中的应用,以及常见的成形技术。

本文将从以下几个方面进行介绍:工程材料的分类、材料力学性能、材料的常见加工工艺等。

一、工程材料的分类1. 金属材料金属材料是工程中最常用的材料之一。

金属材料具有良好的导电、导热性能,较高的强度和硬度以及良好的可塑性和可加工性等特点。

金属材料可分为铁基材料、非铁金属和合金等。

•铁基材料:包括钢、铸铁等,广泛应用于工程结构、机械制造、汽车制造等领域。

•非铁金属:如铝、铜、镁等,常用于电子器件、航空航天等领域。

•合金:由两种或更多种金属元素混合而成,常用于制造具有特定性能要求的零部件。

2. 非金属材料非金属材料广泛应用于建筑、电子、光电等领域,常见的非金属材料包括聚合物、复合材料和陶瓷等。

•聚合物:如塑料、橡胶等,具有良好的绝缘性、耐腐蚀性和可塑性等特点,广泛应用于包装、家电、汽车等领域。

•复合材料:由两种或多种不同材料的组合而成,具有优异的综合性能,如碳纤维复合材料在航空航天领域的应用。

•陶瓷:具有高温稳定性、强度和硬度较高的特点,常用于耐火材料、电子陶瓷等领域。

3. 半导体材料半导体材料具有介于导体与绝缘体之间的电导特性,是电子器件制造中的重要材料。

常见的半导体材料有硅、锗等,广泛应用于集成电路、光电器件等领域。

二、材料力学性能1. 强度和硬度强度是材料抵抗外力作用下变形和破坏的能力,通常用抗拉强度、屈服强度等指标来衡量。

硬度是材料抵抗外部压力而发生塑性变形的难易程度,通常用洛氏硬度、维氏硬度等进行表征。

2. 韧性和脆性韧性是材料抵抗外力作用下断裂的能力,通常用断裂韧性来衡量。

脆性是材料在受到外力作用下迅速发生断裂的性质。

3. 延展性和可塑性延展性是材料在拉伸过程中发生塑性变形的能力,即材料的伸长率。

可塑性是材料经过加工而改变形状的能力,通常用冷、热加工性能来衡量。

工程材料及成形技术基础考试复习题库

工程材料及成形技术基础考试复习题库

(1)一、区别下列名词(每题4分,4分×6= 24分)1、强度与塑性:强度:材料在力的作用下抵抗永久变形和断裂的能力塑性:材料在力的作用下发生永久变形而不致引起破坏的性能2、固溶体与化合物:固溶体:合金在固态下由组元间相互溶解而形成的均匀相化合物:合金间发生相互作用而形成的晶格类型和特性完全不同于任一组元且具有金属特性的新相3、淬透性与淬硬性:淬透性:钢在淬火时所得到的淬硬层(马氏体组织占50%处)的深度淬硬性:钢在淬火时所能达到的最高硬度,主要取决于M的含碳量:4、过冷A与A残过冷A:在临界点A1线(727度)以下尚未发生转变的不稳定奥氏体A残:过冷A在连续冷却过程中向M转变,由于某些原因一般不能进行到底,总有一部分A残留下来,称其为A残5、白口铸铁与灰口铸铁:白口铸铁:除少量碳固溶于铁素体中,绝大部分碳以渗碳体形态存在的铸铁灰口铸铁:碳全部或大部分以游离石墨形式存在断口为暗灰色6、落料与冲孔:落料与冲孔都是冲压的基本工序落料:落料时,冲的部分为成品,而余料为废料冲孔:冲孔是为了获得带孔的冲裁件,而冲落部分是废料,二、选择题(每题1分,1分×15= 15分)1、洛氏硬度与布氏硬度相比的优点是(C)。

A、不标单位B、数值较准确C、压痕小D、不宜测太薄、太硬的材料2、面心立方晶格的晶胞中独立原子数为(D)。

A、1B、2C、3D、43、合金固溶强化的原因是(C )。

A、晶格类型的改变B、晶粒细化C、晶格发生畸变D、发生了化学反应4、珠光体是一种(C)。

A、固溶体B、金属化合物C、机械混合物D、单相组织金属5、在平衡状态下,45钢的室温组织是( C )。

A、FB、PC、P+FD、P+ Fe3C6、钢的质量等级的分类是按钢的( C )区分的。

A、力学性能B、含碳量C、杂质S、P含量D、有益的Mn、Si7、加热是钢进行热处理的第一步,其目的是使钢获得(B)。

A、均匀的基体组织B、均匀的A体组织C、均匀的P体组织D、均匀的M体组织8、完全退火主要用于(A)。

工程材料及成形技术基础A答案

工程材料及成形技术基础A答案

一、填空题(每空1分,共20分)1. 机械设计时常用屈服强度和抗拉强度两种强度指标。

2. 纯金属的晶格类型主要有面心立方、体心立方和密排六方三种。

3. 实际金属存在点、线和面缺陷等三种缺陷。

4.F和A分别是碳在α-Fe 、γ-Fe 中所形成的间隙固溶体。

5. 加热是钢进行热处理的第一步,其目的是使钢获得奥氏体组织。

6.QT600-3中,QT表示球墨铸铁,600表示抗拉强度不小于600Mpa 。

7.金属晶体通过滑移和孪生两种方式来发生塑性变形。

8.设计锻件时应尽量使零件工作时的正应力与流线方向相同,而使切应力与流线方向相垂直。

9.电焊条由药皮和焊芯两部分组成。

10.冲裁是冲孔和落料工序的简称。

1.在铁碳合金相图中,碳在奥氏体中的最大溶解度为( b )。

a、0.77%b、2.11%c、0.02%d、4.0%2.低碳钢的焊接接头中,( b )是薄弱部分,对焊接质量有严重影响,应尽可能减小。

a、熔合区和正火区b、熔合区和过热区c、正火区和过热区d、正火区和部分相变区3.碳含量为Wc=4.3%的铁碳合金具有良好的( c )。

a、可锻性b、可焊性c、铸造性能d、切削加工性4.钢中加入除Co之外的其它合金元素一般均能使其C曲线右移,从而( b )a、增大V Kb、增加淬透性c、减少其淬透性d、增大其淬硬性5. 高碳钢淬火后回火时,随回火温度升高其( a )a、强度硬度下降,塑性韧性提高b、强度硬度提高,塑性韧性下降c、强度韧性提高,塑性硬度下降d、强度韧性下降,塑性硬度提高6.感应加热表面淬火的淬硬深度,主要决定于因素( d )a、淬透性b、冷却速度c、感应电流的大小d、感应电流的频率7.珠光体是一种( b )a、单相间隙固溶体b、两相混合物c、Fe与C的混合物d、单相置换固溶体8.灰铸铁的石墨形态是( a )a、片状b、团絮状c、球状d、蠕虫状9.反复弯折铁丝,铁丝会越来越硬,最后会断裂,这是由于产生了( a )a、加工硬化现象b、再结晶现象c、去应力退火d、扩散退火10.下列说法不正确的是( c )a. 调质处理= 淬火+高温回火。

《 工程材料及成形技术基础 》试卷

《 工程材料及成形技术基础 》试卷

《工程材料及成形技术基础》专升本试题一、名词解释:(每小题2分,共30分)1、屈服强度2、断后伸长率3、疲劳极限4、晶胞5、过冷度6、固溶体7、等温转变8、淬透性9、沸腾钢10、调质11、锻造12、焊接13、一次渗碳体14、变热处理15、铸造二、选择题:(每小题2分,共20分).1、零件在毛坯生产之后粗加工之前常进行的热处理是()A、正火B、淬火C、表面淬火D、退火2、过共析钢的淬火加热温度()A、Ac3+(30~50)ºCB、ACcm+(30~50)ºCC、Ac1+(30~50)ºC3、哪一种淬火介质在淬火时造成的组织应力小,引起变形开裂的倾向小( )A、水B、盐的水溶液C、油4、各种工具在淬火后进行的回火是()A、低温回火B、中温回火C、高温回火5、一批已加工的铸铁件,需测试硬度,常采用的方法是()A、布氏硬度 B洛氏硬度 C、维氏硬度6、可以发生同素异构转变的金属有()A、FeB、AlC、Cu7、共析钢室温下的平衡组织为()A、铁素体B、珠光体C、渗碳体8、影响钢淬透性的因素主要是()A、碳的影响B、合金元素的影响C、加热温度9、影响灰铸铁力学性能的主要因素是()A、基体组织B、石墨C、热处理方法10、理想的滑动轴承合金组织应该是()A、渗碳体B、软基体上公布硬质点C、硬基体上分布软质点三、判断题:(如正确打“√”,错误打“×”;每小题2分,共20分)⒈布氏硬度用符号HRC表示. ()⒉晶体是没有固定的熔点. ()⒊一般情况下,晶粒越细小,力学性能越差. ()⒋金属化合物具有较好的塑料和韧性. ()⒌灰口铸铁的力学性能比球墨铸铁好. ()⒍渗碳用钢一般用高碳钢. ()⒎炼铁是一个氧化过程. ()⒏利用合金元素扩大奥氏体相区的作用可生产出奥氏体钢. ()⒐高速钢的主要特点是在高温(600℃)阶段仍可保持高的塑料.()⒑铸钢的流动性好,铸铁的流动性差. ()四、填写下表:(每空1分,共15分)五、请画出高速钢W18Cr4V热处理工艺曲线.并总结其热处理特点.(15分)。

工程材料与成型技术基础复习总结

工程材料与成型技术基础复习总结

工程材料与成型技术基础1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力。

2.工程上常用的强度指标有屈服强度和抗拉强度。

3.弹性模量即引起单位弹性变形所需的应力。

4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余成形,这种不恢复的参与变形,成为塑性变形。

5.产生塑性变形而不断裂的性能称为塑性。

6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。

7.发生塑性变形而力不增加时的应力称为屈服强度。

8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。

9.硬度是检验材料性能是否合格的基本依据之一。

10.11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。

12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。

13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。

14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的最大应力。

熔点。

16.晶格:表示金属内部原子排列规律的抽象的空间格子。

晶面:晶格中各种方位的原子面。

晶胞:构成晶格的最基本几何单元。

17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。

面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。

密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。

18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。

19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。

20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。

21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。

结晶过程由形成晶核和晶核长大两个阶段组成。

22.纯结晶是在恒温下进行的。

23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。

工程材料及成形技术基础复习重点完整版

工程材料及成形技术基础复习重点完整版

一、二元相图的建立合金的结晶过程比纯金属复杂;常用相图进行分析;相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解;又称状态图或平衡图..合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金.. 组元是指组成合金的最简单、最基本、能够独立存在的物质..多数情况下组元是指组成合金的元素..但对于既不发生分解、又C..不发生任何反应的合物也可看作组元; 如Fe-C合金中的Fe3相图由两条线构成;上面是液相线;下面是固相线..相图被两条线分为三个相区;液相线以上为液相区L ;固相线以下为固溶体区;两条线之间为两相共存的两相区L+ ..3 枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体..但实际冷速较快;结晶时固相中的原子来不及扩散;使先结晶出的枝晶轴含有较多的高熔点元素如Cu-Ni合金中的Ni; 后结晶的枝晶间含有较多的低熔点元素;如Cu-Ni合金中的Cu..在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析..与冷速有关而且与液固相线的间距有关..冷速越大;液固相线间距越大;枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能..生产上常将铸件加热到固相线以下100-200℃长时间保温;以使原子充分扩散、成分均匀;消除枝晶偏析;这种热处理工艺称作扩散退火..2、二元共晶相图当两组元在液态下完全互溶;在固态下有限互溶;并发生共晶反应时所构成的相图称作共晶相图..以 Pb-Sn 相图为例进行分析..1 相图分析①相:相图中有L、、三种相; 是溶质Sn在 Pb中的固溶体; 是溶质Pb在Sn中的固溶体..②相区:相图中有三个单相区: L、、;三个两相区: L+ 、L+ 、+ ..③液固相线:液相线AEB;固相线ACEDB..A、B分别为Pb、Sn的熔点..④固溶线: 溶解度点的连线称固溶线..相图中的CF、DG线分别为Sn在 Pb中和 Pb在 Sn中的固溶线..固溶体的溶解度随温度降低而下降..⑤共晶线:水平线CED叫做共晶线..在共晶线对应的温度下183 ℃;E点成分的合金同时结晶出C点成分的固溶体和D点成分的固溶体;形成这两个相的机械混合物LE C+D在一定温度下;由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应..一、铁碳合金的组元和相C1. 组元:Fe、 Fe32. 相⑴铁素体——碳在-Fe中的固溶体称铁素体;用F或表示碳在–Fe中的固溶体用表示;体心立方间隙固溶体..铁素体的溶碳能力很低;在727℃时最大为0.0218%;室温下仅为0.0008%..铁素体的组织为多边形晶粒;性能与纯铁相似..2 奥氏体碳在 -Fe中的固溶体称奥氏体..用A或表示..是面心立方晶格的间隙固溶体..溶碳能力比铁素体大;1148℃时最大为2.11%..组织为不规则多面体晶粒;晶界较直..强度低、塑性好;钢材热加工都在区进行;碳钢室温组织中无奥氏体..3 渗碳体Fe3C含碳6.69%;用Fe3C或Cm表示..Fe3C硬度高、强度低 b35MPa;脆性大;塑性几乎为零..由于碳在 -Fe中的溶解度很小;因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在..重要知识点五个重要的成份点: P、S、E、C、F四条重要的线: ECF、PSK、ES、GS三个重要转变: 共晶转变反应式、共析转变反应式、包晶转变本节略二个重要温度: 1148 ℃、727 ℃第一节退火和正火一般零件的工艺路线为:毛坯铸造或锻造→退火或正火→机械粗加工→淬火+回火或表面热处理→机械精加工..退火与正火常作为预备热处理;其目的是为消除毛坯的组织缺陷;或为以后的加工作准备;淬火和回火工艺配合可强化钢材;提高零件使用性能;作为最终热处理..一、退火将工件加热到适当温度;保温一定时间;缓慢冷却热处理工艺目的根据不同情况;退火的作为可归纳为降低硬度;改善钢的成形和切削加工性能;均匀钢的化学成分和组织;消除内应力等..①调整硬度以便进行切削加工;②消除残余内应力;以防止钢件在淬火时产生变形或开裂;③细化晶粒;改善组织;提高力学性能;为最终热处理作准备..1、退火类型1 完全退火完全退火是将工件完全奥氏体化后缓慢冷却;获得接近平衡组织的退火工艺..工艺加热温度为Ac3以上20℃~30℃;保温时间依工件的大小和厚度而定;使工件热透;保证全部得到均匀化的奥氏体;冷却方式可采用随炉缓慢冷却;实际生产时为提高生产率;退火冷却至600℃左右即可出炉空冷..2球化退火工艺球化退火的加热温度为Ac1以上20℃~30℃;采用随炉缓冷;至500℃~600℃后出炉空冷;3去应力退火去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余内应力而进行的退火工艺..工艺去应力退火加热温度较宽;但不超过AC1点;一般在500℃~650℃之间;铸铁件去应力退火温度一般为500℃ ~ 550℃;焊接工件的去应力退火温度一般为500℃ ~600℃..去应力退火的保温时间也要根据工件的截面尺寸和装炉量决定..去应力退火后的冷却应尽量缓慢;以免产生新的应力..4扩散退火为减少铸件或锻坯的化学成分和组织不均匀性;将其加热到略低于固相线固相线以下 100℃~200℃的温度;长时间保温10h~15h;并进行缓慢冷却的热处理工艺;称为扩散退火或均匀化退火..二、正火1、正火的概念工艺正火处理的加热温度通常在Ac3或Accm以上30℃~50℃..对于含有V、Ti、Nb等碳化物形成元素的合金钢;采用更高的加热温度AC3 + 100℃~150℃..正火冷却方式常用的是将钢件从加热炉中取出在空气中自然冷却..对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢的冷却速度;达到要求的组织和性能..第二节钢的淬火将亚共析钢加热到Ac3以上;共析钢与过共析钢加热到Ac1以上;低于Accm的温度;保温后以大于Vk的速度快速冷却;使奥氏体转变为马氏体或贝氏体的热处理工艺叫淬火..马氏体强化是钢的主要强化手段;因此淬火的目的就是为了获得马氏体;提高钢的机械性能..淬火是钢的最重要的热处理工艺也是热处理中应用最广的工艺之一..1、淬火温度的确定淬火温度即钢的奥氏体化温度;是淬火的主要工艺参数之一..选择淬火温度的原则是获得均匀细小的奥氏体组织..亚共析钢的淬火温度一般为Ac3以上30~50℃;淬火后获得均匀细小的马氏体组织..温度过高;奥氏体晶粒粗大而得到粗大的马氏体组织;而使钢的机械性能恶化;特别是塑性和韧性降低;淬火温度低于Ac3;淬火组织中会保留未溶铁素体;使钢的强度硬度下降..4、钢的淬透性1淬透性与淬硬性的概念钢的淬透性是指奥氏体化后的钢在淬火时获得马氏体的能力也称为淬透层深度;其大小用钢在一定条件下淬火获得的淬硬层深度来表示..淬硬层深度指由工件表面到半马氏体区50%M + 50%P的深度..淬硬性是指钢淬火后所能达到的最高硬度;即硬化能力..淬透性与淬硬层深度的关系同一材料的淬硬层深度与工件尺寸、冷却介质有关..工件尺寸小、介质冷却能力强;淬硬层深.. 淬透性与工件尺寸、冷却介质无关..它只用于不同材料之间的比较;通过尺寸、冷却介质相同时的淬硬层深度来确定的..2淬透性的测定及其表示方法同一材料的淬硬层深度与工件的尺寸;冷却介质有关;工件尺寸小、冷却能力强;淬硬层深;工件尺寸小、介质冷却能力强;淬硬层深;而淬透性与工件尺寸、冷却介质无关;它只用于不同材料之间的比较;是在尺寸、冷却介质相同时;用不同材料的淬硬层深度进行比较的..淬透性常用末端淬火法测定如下图所示;将标准化试样奥氏体化后;对末端进行喷水冷却..然后从水冷段开始;每隔一定距离测量一个硬度值;即可得到试样沿轴向的硬度分布曲线;称为钢的淬透性曲线..即用 表示J 表示末端淬透性;d 表示半马氏体区到水冷端的距离;HRC 为半马氏体区的硬度..3 影响淬透性的因素钢的淬透性取决于临界冷却速度V K ; V K 越小;淬透性越高..V K 取决于C 曲线的位置;C 曲线越靠右;V K 越小..凡是影响C 曲线的因素都是影响淬透性的因素;即除Co 外;凡溶入奥氏体的合金元素都使钢的淬透性提高;奥氏体化温度高、保温时间长也使钢的淬透性提高..影响淬硬层深度的因素淬透性 冷却介质 工件尺寸对于截面承载均匀的重要件;要全部淬透..如连杆、模具等..对HRC J d于承受弯曲、扭转的零件可不必淬透淬硬层深度一般为半径的1/2-1/3;如轴类、齿轮等..淬硬层深度与工件尺寸有关;设计时应注意尺寸效应..第三节钢的回火回火——将淬火钢加热到Ac1以下的某温度保温后冷却的热处理工艺..1、回火的目的消除或减少淬火内应力;防止工件变形或开裂;获得工艺所要求的力学性能;稳定工件尺寸..淬火马氏体和残余奥氏体都是非平衡组织;有自发向平衡组织铁素体加渗碳体转变的倾向..回火可使马氏体和残余奥氏体转变为平衡或接近平衡的组织;防止使用时变形..对于未经淬火的钢;回火是没有意义的;而淬火钢不经回火一般也不能直接使用;为避免淬火件在放置过程中发生变形或开裂;钢件经淬火后应及时回火..3、回火工艺1低温回火<250℃低温回火后得到回火马氏体组织..其目的是降低钢的淬火应力和脆性;回火马氏体具有高的硬度一般为58~64HRC、强度和良好耐磨性..低温回火特别适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火等工求高硬度和耐磨性的工件..2中温回火350-500℃中温回火时发生如下变化;得到T回组织;即为在保持马氏体形态的铁素体基体上分布着细粒状渗碳体的组织..使钢具有高的弹性极限;较高的强度和硬度一般为35 ~ 50HRC;良好的塑性和韧性..中温回火主要用于各种弹性元件及热作模具..3高温回火>500℃高温回火后得到回火索氏体组织;即为在多边性铁素体基体上分布着颗粒状Fe3C的组织 ..工件淬火并高温回火的复合热处理工艺称为调质..高温回火主要适用于中碳结构钢或低合金结构钢制作的曲轴、连杆、螺栓、汽车半轴、等重要的机器零件..4、回火时的性能变化回火时力学性能变化总的趋势是随回火温度提高;钢的强度、硬度下降;塑性、韧性提高..5、回火脆性淬火钢的韧性并不总是随温度升高而提高..在某些温度范围内回火时;会出现冲击韧性下降的现象..1低温回火脆性淬火钢在250℃~350℃范围内回火时出现的脆性叫做低温回火脆性..几乎所有的钢都存在这类脆性..这是一种不可逆回火脆性;目前尚无有效办法完全消除这类回火脆性..所以一般都不在250℃~350℃这个温度范围内回火..2高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性;称为第二类回火脆性..这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中..这种脆性与加热、冷却条件有关..加热至600℃以上后;以缓慢的冷却速度通过脆化温度区时;出现脆性;快速通过脆化区时;则不出现脆性..此类回火脆性是可逆的;在出现第二类回火脆性后;重新加热至600℃以上快冷;可消除脆性..第四节钢的表面淬火钢的表面热处理有两大类:一类是表面加热淬火热处理;通过对零件表面快速加热及快速冷却使零件表层获得马氏体组织;从而增强零件的表层硬度;提高其抗磨损性能..另一类是化学热处理;通过改变零件表层的化学成分;从而改变表层的组织;使其表层的机械性能发生变化..1、表面淬火表面具有高的强度、硬度和耐磨性;不易产生疲劳破坏;而心部则要求有足够的塑性和韧性..采用表面淬火可使钢的表面得到强化;满足工件这种“表硬心韧”的性能要求..1 表面淬火目的使表面具有高的硬度、耐磨性和疲劳极限;心部在保持一定的强度、硬度的条件下;具有足够的塑性和韧性..适用于承受弯曲、扭转、摩擦和冲击零件2 表面淬火用材料0.4-0.5%C的中碳钢..含碳量过低;则表面硬度、耐磨性下降含碳量过高;心部韧性下降;铸铁提高其表面耐磨性..3 预备热处理工艺对于结构钢为调质或正火..前者性能高;用于要求高的重要件;后者用于要求不高的普通件..目的①为表面淬火作组织准备②获得最终心部组织..表面淬火后的回火采用低温回火;温度不高于200℃..目的为降低内应力保留淬火高硬度耐磨性..表面淬火+低温回火后的组织:表层组织为M回;心部组织为S回调质或F+S正火..第五节化学热处理化学热处理是将钢件置于一定温度的活性介质中保温;使一种或几种元素渗入它的表面;改变其化学成分和组织;达到改进表面性能;满足技术要求热处理过程..目的1、提高渗层硬度和耐磨性;如渗碳、氮等;2、提高零件接触疲劳强度和提高抗擦伤能力;渗氮等;3、提高零件抗氧化、耐高温性能;如渗入铝、铬等;4、提高零件抗蚀性;如渗入硅、铬等..化学热处理基本过程1介质的分解—即加热时介质中的化合物分子发生分解并释放出活性原子;2工件表面的吸收—即活性原子向固溶体中溶解或与钢中某些元素形成化合物;3原子向内部扩散—即溶入的元素原子在浓度梯度的作用下由表层向钢内部的扩散..1、渗碳原理渗碳是指向钢表面渗入碳原子的过程..渗碳是为了使低碳钢工件含碳量为0.1%~0.25%表面获得高的碳浓度0.85%~1.05%;从而提高工件表面的硬度、耐磨性及疲劳强度;同时保持心部良好的韧性和塑性..若采用中碳以上的钢渗碳;则将降低工件心部的韧性..渗碳主要用于那些对耐磨性要求较高、同时承受较大冲击载荷的零件..2渗碳件用钢一般采用碳质量分数为0.1%~0.25%的低碳钢或低碳合金钢;20、20Cr、20CrMnTi等..可使渗碳件表面高硬度、耐磨;心部高强韧性、承受较大冲击..3渗碳后的热处理及性能渗碳缓冷后组织:表层为P+网状Fe3CⅡ; 心部为F+P;中间为过渡区..渗碳后必须经淬火+低温回火后才能满足使用性能的要求..热处理后使渗碳件表面具有马氏体和碳化物的组织;表面硬度58~64HRC..而心部根据采用钢材淬透性的大小和零件尺寸大小;获得低碳马氏体或其他非马氏体组织;具有心部良好强韧性..常用方法是渗碳缓冷后;重新加热到Ac1+30-50℃淬火+低温回火..表层:M回+颗粒状碳化物+A’少量; 心部:淬透时;M回+F..2、渗氮渗氮是在一定温度下于一定介质中使氮原子渗入工件表层的化学热处理工艺..方法主要有气体渗氮和离子渗氮等..1气体渗氮渗氮温度一般为500~560℃;时间一般为20~50小时;采用氨气NH3 作渗氮介质..氨气在450℃以上温度时即发生分解;产生活性氮原子: 2NH3——3H2+2N2渗氮的特点渗氮件的表面硬度高达;相当于65HRC~72HRC..并可保持到560~600℃而不降低..氮化后钢件不需其他热处理;渗氮件的变形小..渗氮后具有良好的耐腐蚀性能..这是由于渗氮后表面形成致密的氮化物薄膜;气体渗氮所需时间很长;渗氮层也较薄一般为0.3-0.6mm;38CrMoAl钢制压缩机活塞杆为获得0.4-0.6mm的渗氮层深度气体渗氮保温时间需60h左右..氮化缺点工艺复杂;成本高;氮化层薄..用于耐磨性、精度要求高的零件及耐热、耐磨及耐蚀件..第六节铸铁一、铸铁的成分、组织和性能特点1、铸铁的成分特点a. 含碳量理论上含C:2.11%~ 6.69% 的铁碳合金都属于铸铁; 但工业上常用铸铁的含碳量一般在:2.50%~4.00%之间..三、铸铁的分类1、灰口铸铁普通铸铁石墨呈片状;典型灰口铸铁;这类铸铁机械性能不高;但生产工艺简单;价格低廉;工业上所用铸铁几乎全部属于这类铸铁..灰口铸铁又根据第三阶段石墨化程度的不同分为:铁素体灰铁、 F+P灰铁、珠光体灰铁2、白口铸铁炼钢生铁第一、二、三阶段石墨化过程完全被抑制;Fe-C合金完全按照Fe-Fe3CC形式存在组织中存在莱氏体组织;断口呈白亮结晶而得到的铸铁;以Fe3色;故得名白口铸铁..白口铸铁硬脆;主要作为炼钢原料..3、可锻铸铁韧性铸铁;玛钢C分解而得到团石墨呈团絮状;用白口铸铁经长时间高温退火后;Fe3絮状石墨组织的铸铁..由于石墨呈团絮状;对基体的割裂作用比片状石墨小一些;故机械性能尤其冲击韧性高于灰口铸铁..可锻铸铁由于生产工艺复杂;成本较高;应用很少..4、球墨铸铁石墨组织呈球状;这种铸铁强度高;生产工艺比可锻铸铁简单;且可通过热处理进一步提高强度..球墨铸铁既保持了铸铁的特点;又具钢的高强度、高韧性;故应用越来越多..1球化处理与孕育处理Ⅰ球化处理铁水浇铸前;加入一定量的球化剂镁;硅铁-镁;铜-镁系;以促使石墨结晶时生长成为球状的工艺;称为球化处理..Ⅱ孕育处理变质处理球化处理只能在铁水中有石墨核心产生时;才能促使石墨生长成球状;而球化剂都是阻碍石墨化的元素;所以必须进行孕育处理变质处理;往铁水中加入变质剂75% Si-Fe..第七节铝及铝合金1性能特点纯铝银白色金属光泽;密度小2.72;熔点低660.4℃;导电导热性能优良..耐大气腐蚀;易于加工成形 ..具有面心立方晶格..铝合金一般具有有限固溶型共晶相图..可将铝合金分为变形铝合金和铸造铝合金两大类..3形变铝合金的牌号、性能变形铝及铝合金牌号表示方法;国标规定;变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号..GB 3190-82中的旧牌号表示方法为防锈铝合金:LF +序号硬铝合金: LY +序号超硬铝合金:LC +序号锻铝合金: LD +序号4铸造铝合金牌号、分类Al- Si系:代号为ZL1+两位数字顺序号Al-Cu系:代号为ZL2+两位数字顺序号Al-Mg系:代号为ZL3+两位数字顺序号Al-Zn系:代号为ZL4+两位数字顺序号二、铜及铜合金1性能特点纯铜呈紫红色;又称紫铜;具有面心立方晶格;无同素异构转变;无磁性..纯铜具有优良的导电性和导热性;在大气、淡水和冷凝水中有良好的耐蚀性..塑性好..2黄铜以Zn为主要合金元素的铜合金称为黄铜..黄铜按化学成分可分为普通黄铜和特殊黄铜..按工艺可分为加工黄铜和铸造黄铜..单相黄铜塑性好;常用牌号有H80、H70、H 68..适于制造冷变形零件;如弹壳、冷凝器管等..三七黄铜两相黄铜热塑性好; 强度高..常用牌号有H59、H62..适于制造受力件;如垫圈、弹簧、导管、散热器等..四六黄铜3青铜青铜主要是指Cu-Sn合金..加工青铜的牌号为:Q +主加元素符号及其平均百分含量 + 其他元素平均百分含量.. QSn4-3含4%Sn 3%Zn 常用青铜有锡青铜、铝青铜、铍青铜、硅青铜、铅青铜等..常用牌号有:QSn4-3、QSn6.5-0.4、ZCuSn10Pb1轴承合金制造滑动轴承的轴瓦及其内衬的耐磨合金称为轴承合金..滑动轴承是许多机器设备中对旋转轴起支撑..由轴承体和轴瓦两部分组成..与滚动轴承相比滑动轴承具有承载面积大;工作平稳;无噪音及拆装方便等优点..一、组织性能要求速旋转时;轴瓦与轴颈发生强烈摩擦;承受轴颈施加的交变载荷和冲击力..⑴足够的强韧性;承受交变冲击载荷;⑵较小的热膨胀系数;良好的导热性和耐蚀性;以防止轴与轴瓦之间咬合;⑶较小的摩擦系数;良好的耐磨性和磨合性;以减少轴颈磨损;保证轴与轴瓦良好的跑合..为满足上述性能要求;轴承合金的组织应是软的基体上分布着硬的质点..当轴旋转时;软的基体或质点被磨损而凹陷;减少了轴颈与轴瓦的接触面积;有利于储存润滑油..软基体或质点还能起嵌藏外来硬杂质颗粒的作用;以避免擦伤轴颈..这类组织承受高负荷能力差;属于这类组织的有锡基和铅基轴承合金;又称为巴氏合金babbitt alloy1、锡基轴承合金以锡为主并加入少量锑、铜等元素组成的合金熔点较低;是软基体硬质点组织类型的轴承合金..锡基轴承合金具有较高的耐磨性、导热性、耐蚀性和嵌藏性;摩擦系数和热膨胀系数小;但疲劳强度较低;工作温度不超过150 ℃;价格高..广泛用于重型动力机械;如气轮机、涡轮机和内燃机等大型机器的高速轴瓦..2、铅基轴承合金以铅为主加入少量锑、锡、铜等元素的合金;软基体硬质点型轴承合金;ZChPbSb16Sn16Cu2..铅基轴承合金的强度、硬度、耐蚀性和导热性都不如锡基轴承合金;但其成本低;高温强度好;有自润滑性..常用于低速、低载条件下工作的设备;如汽车、拖拉机曲轴的轴承等..。

工程材料及其成形技术基础1-5章

工程材料及其成形技术基础1-5章
σs=Fs/S0
式中
σs——屈服点( MPa );
Fs——试样开始产生屈服现象时的(N);
S0——试样原始整横理截课件面积( mm2)。
18
(2) 抗拉强度:即试样拉断前承受的最大标称拉应力。
如图1-2所示,拉伸曲线上b点对应的应力为抗拉强度。
式中
σb=Fb/S0 σb——抗拉强度(MPa);
Fb——试样断裂前所能承受的最大拉(N);
图1-5 体心立方球整体理模课件型及其晶格
34
2.面心立方晶格
面心立方晶格的晶胞也是 一个立方体,其六个面中心和 八个角上各有一个原子,如图 1-5所示。属于这类晶格的金 属有 γ-Fe 、Cu、Al、Ni等。
它们都具有较好的塑性。
整理课件
16
图 -
面 心 立 方 球 体 模 型 及 其 晶 胞
(2)《材料成型工艺基础》
沈其文主编,华中理工大学出版社。
(3)《工程材料及应用》
周凤云主编,华中科技大学出版社。
(4)《材料成型技术基础》
胡亚民主编,重庆大学出版社。
(5)《热加工工艺基础》
任福东主编整理,课机件 械工业出版社。
5
概述
工程材料:
用于机械、电子、建筑、 化工和航空航天 等领域的材 料统称为工程材料。
第一章 零件对材料的性能要求
铸铁
黑色金属 碳钢
化学
金属材料
合金钢
成分
轻有色金属
分类
有色金属 重有色金属

塑料
稀有金属

有机高分子材料 合成橡胶

合成纤维

有机胶粘剂及涂料

陶瓷材料
硅酸盐材料

工程材料及成型技术基础(吕广庶 张元明 著) 课后习题答案

工程材料及成型技术基础(吕广庶 张元明 著) 课后习题答案

《工程材料》复习思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂.答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。

线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小.如位错。

面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小.如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。

亚晶界:两相邻亚晶粒间的边界称为亚晶界。

刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。

滑移部分与未滑移部分的交界线即为位错线。

如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。

单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。

多晶体:由多种晶粒组成的晶体结构称为“多晶体”。

过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

变质剂:在浇注前所加入的难熔杂质称为变质剂.2.常见的金属晶体结构有哪几种?α—Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程材料与成形技术基础
一、工程材料的定义和分类
1.1 工程材料的定义
工程材料是指在各种工程项目中使用的各种物质,包括金属、非金属、有机材料等。

1.2 工程材料的分类
工程材料可以根据其组成、用途、特性等不同方面进行分类。

常见的工程材料分类包括: 1. 金属材料 2. 粘土材料 3. 混凝土材料 4. 高分子材料 5. 玻璃材料 6. 陶瓷材料 7. 复合材料
二、工程材料的性能与选用
2.1 力学性能
工程材料的力学性能包括强度、刚度、韧性、硬度等指标,这些指标对于工程结构的安全性和可靠性至关重要。

2.2 耐久性
工程材料的耐久性是指其在不同环境下长期使用的能力,包括耐热性、耐寒性、耐腐蚀性等。

2.3 加工性能
工程材料的加工性能包括可塑性、可焊性、可锻性等指标,这些指标影响着工程材料的成形过程和成形性能。

三、工程材料的成形技术
3.1 塑性成形技术
塑性成形技术是指通过对工程材料的塑性变形来实现其形状的改变,常见的塑性成形技术包括挤压、拉伸、冲压、滚压等。

3.2 焊接技术
焊接技术是将两个或多个工程材料通过加热或加压的方式连接在一起,常见的焊接技术包括电弧焊、气体焊、激光焊等。

3.3 铸造技术
铸造技术是将熔化的工程材料倒入铸型中,通过凝固形成所需的形状,常见的铸造技术包括砂型铸造、压力铸造、熔模铸造等。

3.4 热处理技术
热处理技术是通过对工程材料的加热或冷却处理来改变其组织和性能,常见的热处理技术包括淬火、回火、退火等。

四、工程材料与成形技术的应用
4.1 汽车制造
工程材料与成形技术在汽车制造中起着重要作用,如汽车车身的制造和焊接、发动机零件的铸造等。

4.2 建筑工程
工程材料与成形技术在建筑工程中广泛应用,如混凝土构件的浇筑、钢结构的焊接、玻璃幕墙的制作等。

4.3 电子产品制造
工程材料与成形技术在电子产品制造中也有重要应用,如电路板的制造和焊接、塑料外壳的注塑成形等。

4.4 航空航天
工程材料与成形技术在航空航天领域扮演着重要角色,如航空发动机的制造、航天器的结构成形等。

五、结论
工程材料与成形技术是现代工程领域中不可或缺的一部分,不同的工程材料和成形技术具有各自的特点和应用领域。

掌握工程材料的性能和选用原则,了解工程材料的成形技术,对于工程项目的顺利进行具有重要意义。

对于工程师和相关从业人员来说,深入研究和应用工程材料与成形技术是提高工程质量和效率的关键。

相关文档
最新文档