数列极限的几种求法
极限的四则运算(数列极限、函数极限)

a
k
,lim(C n
an)
Ca
。
例1、已知 lnim(6an bn ) 11 lnim(3an 2bn ) 7
求 lnim(2an bn ) 的值。
解:2an+bn=
1 15
(6an-bn)+
8 15
(3an+bn),
∴ lnim(2an bn )
3)
lim (
x
x3 2x2 1
x2 2x
) 1
KEY:1) 0(分子分母同除以x4); 2)0(分子有理化) 3)1/4(通分)
例3、(1)求
lim
x1
2x2 x3
x 1 2x2 1
的值。
x2 1
(2)求
lim
x1
2x2
x 1
的值
(见课本P87,注意其中的说明。)
3 5
( 2)n1 5
[1 ( 2)n ] 5
2
3 [(2)n1 55
( 2)2n1] 5
∴
lim
n
Tn
3 5
[ 1
1
2
5 1
4
]
3 (5 10) 5 . 5 3 21 7
5 25
例5、有一个边长为1的正方形,以其四边中点为顶点画 第二个正方形,再以第二个正方形的四边中点为顶点画
=
lim[ 1 n 15
(6an
bn
)
185(3an
2bn
)]
=
1 15
×11+
185×(-7)
《数列极限》课件

适用于任何收敛数列的证明 。
需要选择合适的正数 $varepsilon$,以确保证明
的有效性。
夹逼定理证明法
01 总结词
通过夹逼定理来证明数列的收 敛性。
02 详细描述
03 适用范围
适用于某些收敛数列的证明。
夹逼定理指出,如果存在两个 常数$a$和$b$,使得$a leq a_n leq b$且$lim_{n to infty} a = lim_{n to infty} b = L$, 则数列${a_n}$也收敛于$L$。 通过证明存在这样的常数$a$和 $b$,可以证明数列的收敛性。
利用数列极限探究数学规律或现象,如 探究数学猜想、探究函数的周期性等。
利用数列极限求解复杂数学问题,如求 解高阶导数、求解微分方程等。
详细描述 利用数列极限证明函数的性质或定理。
THANKS
感谢观看
微积分基本定理的推导
01
微积分基本定理的 内容
微积分基本定理是微积分学中的 重要定理,它建立了定积分与不 定积分之间的关系。
02
微积分基本定理的 推导过程
通过极限理论、实数完备性等数 学工具,可以推导出微积分基本 定理。
03
微积分基本定理的 应用
微积分基本定理是计算定积分的 基石,可以用于解决面积、体积 、长度等几何和物理问题。
需要选择合适的正数,以确 保证明的有效性。
柯西收敛准则证明法
总结词
详细描述
适用范围
注意事项
通过柯西收敛准则来证明数 列的收敛性。
柯西收敛准则指出,如果对于任 意正数$varepsilon$,存在正整 数$N$,使得当$n, m > N$时, 有$|a_n - a_m| < varepsilon$ ,则数列收敛。通过证明存在这 样的$N$,可以证明数列的收敛
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
极限的求解方法

极限的求解方法极限是数学中非常重要的一种概念,也是很多高等数学学科的基础。
它用于描述函数在某点处的变化趋势,具有重要的理论和应用价值。
下面将详细介绍极限的求解方法。
一、数列极限的求解方法数列是一组按照一定规律排列的数,数列极限是指当数列中的数趋近于某个值时,这个值被称为数列的极限。
数列极限可以通过以下方法求解:1. 夹逼准则法:如果一个数列存在两个单调递增(或单调递减)的数列,它们都趋近于同一个极限,那么这个数列也趋近于这个极限。
2. 单调有界准则法:如果一个数列单调递增且有上界(或单调递减且有下界),那么这个数列必定收敛于某个极限。
3. 递推公式法:有些数列存在递推公式,通过不断迭代可以求出该数列的极限。
二、函数极限的求解方法函数极限是指当自变量趋近于某个值时,函数的值趋近于的一个限制,这个限制称为函数的极限。
函数极限可以通过以下方法求解:1. 直接代入法:将自变量代入函数中,计算得到函数的值。
2. 极限的四则运算法则:函数极限的四则运算法则是指根据函数极限的加减乘除法则,对函数极限进行四则运算,得出函数极限的值。
3. 夹逼准则法:对于复杂的函数,可以使用夹逼准则法来求解函数的极限。
三、级数极限的求解方法级数是指由无穷多个项相加或相乘所得到的结果。
级数极限是指当级数的项趋近于零时,级数的和趋近于的一个限制值,这个限制值称为级数的极限。
级数极限可以通过以下方法求解:1. 比较判别法:通过比较级数的通项和另一个级数的通项来判断级数的收敛性。
2. 级数收敛法:这种方法是通过对级数进行适当的变换,使得级数变得更容易计算,从而求出级数的极限。
3. 积分判别法:根据积分判别法,如果级数的通项能表示成某个函数的导数,那么就可以通过求这个函数在某个区间的积分来判断级数的收敛性。
以上就是极限的几种求解方法,希望能对您有所帮助。
数列极限的几种求解方法

数列极限的几种求解方法张宇(渤海大学数学系辽宁锦州121000 中国)摘要在髙等数学中极限是一个重要的基本概念。
高等数学中其他的一些重要概念,如微分、积分、级数等都是用极限来定义的。
本文主要研究了求极限问题的若干种方法。
在纷繁众多的求极限方法中,同学们往往在求解极限时不知如何下手。
文章内容包括对求解简单极限问题的各种常用方法的总结:利用迫敛性:利用单调有界定理;利用柯西准则证明数列极限:这些方法对解决一般数列极限问题都很适用。
还包括在此基础上探索出来的解决各种复杂极限问题的特姝方法,例如:利用数列的构造和性质求数列的极限:利用定积分定义求数列极限以及利用压缩映射原理等特殊方法求数列极限,这些特殊方法对解决复杂极限有很重要的意义,而且还比较方便。
在实际求解过程中,要灵活运用以上各种方法。
关键词:数列,极限,槪念,泄理。
Solution of the limitAbstract : In the higher mathematics limit is an important basic concepts・ In the higher mathematics, some important concepts of other, such as the differential and integration. series are used to define the limit. This paper mainly studies the problem of several limit .In the numerous and numerous limit method. students often in solving limit doesn't know how to start. Tlie contents include the limit for solving all kinds of simple method using the summary: popularizes forced convergence property. Monotone have defined Daniel, Using the proof of cauchy criterion sequence limit. These methods of solving problems are generally sequence limit. Also included on the basis of exploring the problem solving complex limit methods, such as special stnictures and properties of invariable; the sequence limit, Using the integral definition for sequence limit and use the banach cotraction principle as a special method. these special method sequence limit to solve complex limit is important, but also more convenient. In the actual solving process, using various above methods・Key words: Series, limit, the concept, the theorem.引言极限的概念与运算贯穿了高等数学的始终。
数列极限求解的几种常用方法

高数求极限的10个方法

详解高数求极限的方法极限主要包括数列极限和函数极限,两者的求法大同小异,如果分开讨论,比较麻烦,其实数列也可以看作是以正整数n为自变量的函数,所以它们也是可以综合起来的。
接下来介绍求极限的常用方法:一、求极限最常用到的方法,还是利用极限的四则运算法则。
它是基于一些常见的极限,再根据下面的法则求极限,包括:1、相反的收敛数列极限相反;2、互为倒数的收敛数列极限也互为倒数,其中除数不为零;3、和差积商的极限等于极限的和差积商,前提是这些数列的极限都存在,且作为除数的数列及极限非0;4、收敛的正项数列的幂的极限等于极限的幂,不论是乘方还是开方;5、以及收敛数列的绝对值收敛于极限的绝对值等。
二、利用极限的单调有界定理。
其中有界性是数列收敛的必要条件,如果数列无界,就一定发散,但有界数列却不一定收敛。
三、利用两个常见的极限求极限,就是当x趋于0时,sinx/x 的极限和1的无穷次方类型的极限。
四、等价无穷小替换,要熟记常见的等价无穷小的类型。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!五、用洛必达法则,针对0/0型或无穷/无穷型,对分子分母同时求导后求极限的方法。
主要分三种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方:对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)六、利用泰勒公式求极限的方法。
(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助。
求数列极限的几种方法

求数列极限的几种方法姻文/杨海珍1张晓峰21.河北张家口教育学院数学系075000;2.北京市大峪中学102300摘要:本文介绍了计算极限的几种方法,讨论如何利用定积分、幂级数、微分中值定理、公式,泰勒展开式等方法计算极限。
关键词:极限;定积分;幂级数;泰勒展式1.引言极限思想是许多科学领域的重要思想之一。
因为极限的重要性,从而求极限显得尤其重要。
对于一些复杂的极限,直接按照极限的定义来求就显得非常困难,不仅计算量大,而且不一定能求出结果。
为了解决求极限的问题,有不少学者曾探讨了计算极限的方法(见【1】-【4】)。
本文也介绍了计算极限的几种方法,并对文献【1】-【4】的结论进行了推广,讨论如何利用定积分、幂级数、O-Stolz 公式,泰勒展式、微分中值定理计算极限,并且以实例来阐述方法中蕴含的数学思想。
2.利用定积分求极限通项中含有!n 的数列的极限,由于!n 的特殊性,直接求非常困难,而转化为定积分来求就相对容易了。
例1 求arctan (2)arctan 21arctan 1[1lim 2222n nn n n n n n n n +++¥®分析与解: 将n 1提出,则原和式可改写为]arctan ...2arctan 21arctan 1[1n nn n n n n n n x n +++=它可以看作是是函数x x arctan 在区间]1,0[上的积分和,所采用的是n 等分]1,0[区间,并且在每个小区间均取右端的函数值。
因此21412101|arctan 2arctan lim 1022102-=+-===òò¥®p dx x x x x xdx x x I n n例2 求nn n n n n 11])!2()![(lim --¥®解 原式=n n n n n n n nn n n n n )2)...(2)(1(lim !)!2(lim ++=¥®¥®=nn n n n n 1)]12111[(lim +++¥®=))1ln(1lim exp(1ni n ni n +å=¥® =ò+10))1ln(exp(dx x=)12ln 2exp(-注1:把乘积转化为和的形式,对数函数是一个有利的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列极限的几种求法摘要本文通过实例,归纳总结了数列极限的若干种求法.学习并掌握这些方法,对于学好数学分析颇有益处.关键词数列极限;级数;定积分;重要极限;单调有界数列中图分类号O171Several Methods of Sequence limitAbstract:Through examples,summarized several series method for finding the limit.Learn and master these methods,mathematical analysis is quite good for studying.Keywords:Sequence limit;Series;Definite integral;Important limit;Monotone bounded sequence1引言极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态.极限的概念,可追溯到古希腊时代,德谟克里特(Democritus)是古希腊的哲学家,他博学多才,著作多到五六十种,涉及哲学、数学、天文、生物、医学、逻辑、教育与文学艺术等方面.年轻时他花尽了父亲给他的全部财产到埃及、巴比伦、印度等国家游历,获得了大量的科学知识.马克思、恩格斯称他为“经验的自然科学家和希腊人第一百个百科全书式的学者”.谟克里特以探求真理为最大快乐,他有句名言:“宁可找到一个因果的解释,不愿获得一个波斯王位.”在他的著作中有一种原子法,把物体看作是由大量微小部分叠和而成,利用这一理论,求得锥体体积是等于等高柱体体积的三分之一,这是极限思想的萌芽.公元前五世纪,希腊数学家安提丰(Antiphon)在研究化圆为方问题时创立了割圆术,即从一个简单的圆内接正多边形出发,把每边所对的圆弧二等分,连结分点,得到一个边数加倍的圆内接正多边形,当重复这一步骤多次时,所得圆内接正多边形面积之差将小于任何给定的限度.实际上,安提丰认为圆内接正多边形与圆最终将会重合.稍后,另一位希腊数学家布里松(Bryson)考虑了用圆的外切正多边形逼近圆的类似步骤.这种以直线形逼近曲边形的过程表明,当时的希腊数学家已经产生了初步的极限思想.公元前4世纪,欧多克索斯(Eudoxus)将上述过程发展为处理面积、体积等问题的一般方法,称为穷竭法,并发展为较为严格的理论,提出现在分析中通称的“阿基米德公理”.穷竭法成功地运用于面积的计算.这些都可以看作是近代极限理论的雏形.朴素的、直观的极限思想在我国古代的文献中也有记载.如,中国古代的《墨经》中载有“穷,或有前,不容尺也”,《庄子·天下》中载有“一尺之棰啊,日取其半,万世不竭”.公元3世纪的中国数学家刘徽所创的割圆术,从圆内接正六边形出发割圆,得到圆内接6*2n 边形序列,并指出割得越细,正多边形的面积与圆面积之差就越小,“之又割,以至于不可割.则与圆和体,面无所失矣”……,其中包括了深刻的极限思想. 2 基本概念定义1 若函数f 的定义域为全体正正数集合N +,则称:f N R +→ 或 (),f n n N +∈为数列.因正整数集N +的元素可由小到大的顺序排列,故数列()f n 也可写作12,,,,,n a a a ⋅⋅⋅⋅⋅⋅或简单地记为{}n a ,其中n a 称为该数列的通项.定义2 设{}n a 为一数列,如果存在常数a ,对于任意给定的正数ε(无论它多么小),总存在正整数N ,使得当n N <时,不等式n a a ε-<都成立,那么就称常数a 是数列{}n a 的极限,或者称数列{}n a 收敛于a ,记为lim n n a a →∞=或()n a a n →→∞.若数列{}n a 没有极限,则称{}n a 不收敛,或称{}n a 为发散数列.3 数列极限的几种求法极限论包括数列极限和函数极限两类,其中计算数列极限有着多种多样的方法,除了要熟练运用极限的四则运算法则,极限和无穷小量之间的关系和初等函数的连续性以外,还要掌握和应用更多的方法和技巧.在这里,主要总结了以下几种方法:(1)四则运算法;(2)变量替换法;(3)初等变形法;(4)利用重要极限求数列极限;(5)单调有界数列法;(6)利用定积分求数列极限;(7)利用两边夹定理法;(8)级数法.下面通过实例讲述数列极限的若干种求法.(1)用四则运算法则求极限定理 若{}n a 与{}n b 为收敛数列,则{}n n a b +,{}n n a b -,{}n n a b ⋅ 也都是收敛数列,且有 ()lim lim lim n n n n n n n a b a b →∞→∞→∞±=±,()lim lim lim n n n n n n n a b a b →∞→∞→∞⋅=⋅.例1求n .解==()111,n n +→→∞.得12n n ==. (2)用变量替换求极限有时候,为了将已知的极限化简,转化成为已知的极限,可根据极限式的特点,适当引入新变量,以替换原有的变量,使原来较复杂的极限过程转化为更简化的极限过程.例2 设11n a -<<,)1,2,n a n ==⋅⋅⋅ 求(i) ()lim 41n n n a →∞-;(ii) ()12lim n n a a a →∞⋅⋅⋅⋅.解 可令()0cos ,0,a ααπ=∈,则1cos 2a α===. ()cos,1,2,2n na n α==⋅⋅⋅.于是(i ) ()22011lim 41cos lim 24arccos 222n nnn n a αα→∞→∞⎛⎫-=⋅== ⎪⎝⎭. (ii ) ()122lim lim cos cos cos 222n n n n a a a ααα→∞→∞⎛⎫⋅⋅⋅⋅=⋅⋅⋅⋅ ⎪⎝⎭2cos cos cos sin 2222lim sin 2n n n n ααααα→∞⎛⎫⋅⋅⋅⋅⋅ ⎪= ⎪ ⎪⎝⎭01sin sin 2lim sin 2n n nαααα→∞===. (3)运用初等变形求极限对于某些较繁的数列{}n a ,可用初等数学的方法将其变形,转化为一个简单的数列,然后再对之求极限.例3 求极限222111lim 11123n n →∞⎛⎫⎛⎫⎛⎫--⋅⋅⋅- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.解 因为22211111123n ⎛⎫⎛⎫⎛⎫--⋅⋅⋅- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭1325112233n n n n -+⎛⎫=⨯⨯⨯⨯⋅⋅⋅⨯⨯ ⎪⎝⎭. ∴ 222111lim 11123n n →∞⎛⎫⎛⎫⎛⎫--⋅⋅⋅- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭111lim 22n n n →∞+=⨯=.(4)利用重要极限求数列极限两个重要极限分别为(i )0sin lim 1x xx→=;(ii )1lim 1nn e n →∞⎛⎫+= ⎪⎝⎭.例4 求()20lim 1xx x →+.解 ()()()21120lim 1lim 11xx x x x x x x e →→⎡⎤+=+⋅+=⎢⎥⎣⎦. (5)利用单调有界数列法求极限这一方法是利用极限理论基本定理:单调有界数列必有极限,其方法为:①判定数列是单调有界的,从而可设其极限为A ;②建立数列相邻两项之间的关系式;③在关系式两端取极限,得到一个关于A 的方程,若能解出A ,问题得解.例5 ⋅⋅⋅⋅⋅⋅,其中()0a >的极限.解 设)011,0,1,2,n x x x n +===⋅⋅⋅==⋅⋅⋅. 则{}n x 是单调有界数列,它要有极限,设其极限为A .在1n x +=A =,即20A A a --=.所以12A ±=. 因为0A >,所以12A +=,即1lim 2n n x →∞+=.(6)利用定积分求数列极限若一个数列{}n a 是一个和式的形式,且每一项可提出一个1n或其他形式的代数式,提出这些代数式后,剩下的可表示为一个通式,则可方便的用定积分法求解.例6求1lim n n →∞⋅⋅⋅+. 解原式1101lim n n i n →∞===112xdx π===.(7)利用两边夹定理求数列极限当一数列极限不易直接求出时,可考虑将求极限的数列作适当的放大和缩小,使放大、缩小所得的新数列易于求极限,且两端的极限值相等,则原数列的极限值存在,且等于它们的公共值.例7 求22212lim 12n n n n n n n n n →∞⎛⎫++⋅⋅⋅+ ⎪++++++⎝⎭. 解 因为()()2222112121222n n n nn n n n n n n n n n n n +++⋅⋅⋅+++⋅⋅⋅+≥=+++++++++,()()222221121212121n n n nn n n n n n n n n n n +++⋅⋅⋅+++⋅⋅⋅+≤=++++++++++. 又因为 ()()()()2111limlim 22221n n n n n n n n n n →∞→∞++==+++.所以 222121lim 122n n n n n n n n n →∞⎛⎫++⋅⋅⋅+= ⎪++++++⎝⎭. (8)用级数展开式求数列极限级数是一个无穷序列和的形式,其部分和就是一个序列.有时为了方便可将数列极限看作是某个级数的部分和,这样能更方便、更简捷的求出数列的极限.例8 计算21lim 1sin n n n n →∞⎛⎫- ⎪⎝⎭.解 由泰勒公式知:()()33sin ,3!x x x o x x =-+→∞.令1x n =得,()()2111sin 1,3!n n O n n ⎛⎫-=+→∞ ⎪⎝⎭.则211lim 1sin 6n n n n →∞⎛⎫-= ⎪⎝⎭为所求. 总之,极限的求法很多,但如果在解题过程中能根据算式的特点注意使用适当的解题方法,则可以化难为易,使问题得到圆满解决,并可提高解题效率.参 考 文 献[1]华东师范大学数学系.数学分析(上册,第三版)[M].北京:高等教育出版社,2006. [2]黄丹妹.试论极限的计算方法数列篇[J].福建:福建省侨兴轻工学.2005(07):18-20. [3]魏立明.一类数列极限求法的研究[J].广西贺洲.梧州师范高等专科学校.2004(11):75-77.[4]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993. [5]孙 涛.数学分析经典习题解析[M].北京:高等教育出版社,2004. [6]陈文灯.数学复习指南[M].北京:世界图书出版社,2005. [7]蔡子华.考研复习大全[M].北京:现代出版社,2004.。