QITKTPC14 8024—2019—8号机组给水泵入口流量测点改造检修作业指导书

QITKTPC14 8024—2019—8号机组给水泵入口流量测点改造检修作业指导书
QITKTPC14 8024—2019—8号机组给水泵入口流量测点改造检修作业指导书

Q/ITKTPC14 8024—2019 8号机组给水泵入口流量测点改造检修作业指导书

1 范围

本作业指导书规定了8号机组给水泵入口流量测点改造工作涉及的技术资料和图纸、安全措施、备品备件、现场准备及工具、工序及质量标准和检修记录等相关的技术标准。

本指导书适用于8号机组给水泵入口流量测点改造工作,检修地点在8号机6.8米A、B汽泵入口管道,电泵入口管道处。检修的项目为汽机专业配合安装流量喷嘴3个,焊接一次门12个。焊接Φ14仪表管180米,焊接24个针型阀,安装变送器6台,敷设电缆、穿线管。

2 本指导书涉及的资料和图纸

下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。

Q/CDT-ITKTPC 10705 03-2012热控测量仪表及装置检修规程

DL/774-2015 《火力发电厂热工自动化系统检修运行维护规程》

3 安全措施

3.1 严格执行《电业安全工作规程》。

3.2 机组已停运。给水系统管道放水。

3.3 清点所有专用工具齐全,检查合适,试验可靠。

3.4 当天检修任务结束后一定要将检修所用照明电源断掉。

3.5 参加检修的人员必须熟悉本作业指导书,并能熟记熟背本书的检修项目,工艺质量标准等。3.6 参加本检修项目的人员必需安全持证上岗,并熟记本作业指导书的安全技术措施。

3.7 开工前召开专题会,对各检修参加人员进行组内分工,并且进行安全、技术交底。

3.8 检修工作结束后,及时清理现场卫生,做到工完料尽场地清。

3.9 检修工作结束后,确认所有接头已紧固,方可联系打开隔离阀门。

4 备品备件清单

1

Q/ITKTPC14 8024—2019

5 修前准备

5.1 现场准备

5.2 专用工具

5.3 工作准备

2

Q/ITKTPC14 8024—2019

?工器具已准备完毕,材料、备品已落实。

?检修地面已经铺设防护胶片,场地已经完善隔离。

?作业文件已组织学习,工作组成员熟悉本作业指导书内容。现场核对安全措施是否到位。

?清点所有工具齐全,检查合适,试验可靠。

?现场和工具柜工具、零部件放置有序,拆下的零部件必须妥善保管好并作好记号以便回装。

?所带的常用工具、量具应认真清点,绝不许遗落在设备内。

?穿长袖工作服,戴防护手套,防止触电。

?参加检修的人员必须熟悉本作业指导书,并能熟记熟背本书的检修项目,工艺质量标准等。

?参加本检修项目的人员必需安全持证上岗,并熟记本作业指导书的安全技术措施。

?准备好检修用的各易损件,及材料。

?作业过程要严格遵守电力检修安全规程,正确使用工器具,杜绝野蛮施工,做到四不伤害。

?检修文明施工和检修,检修现场铺设胶皮、塑料布或石棉纸,保证三不落地,每天收工前认真清扫卫生,做到工完、料净、场地清。

?检修发现的重大问题要及时向有关人员反映,以制定处理措施。

?检修时所有工作人员要认真负责,杜绝带情绪和饮酒后作业。

W1

5.4 办理相关工作票

?已办理工作票、动火票及开工手续,机组停运。给水系统管道已放水。

?检查验证工作票。

?开工前工作负责人应与运行人员核查安全措施是否到位,方可工作。

?按照《电业安全工作规程》中有关着装要求穿戴好个人防护用品。衣物中不准携带与工作无关的零星物件,带入的工具应做好记录,工作完须检查工具与记录是否相符。

?工器具使用前检修,合格后方可使用。

?检修工作过程中,检修人员应按照作业指导书中的相关技术要求进行施工作业,对于工作中出现的分歧,应通过协商并由点检员同意妥善解决。

?每天早晨召开“三讲一落实”会议,对各检修参加人员进行组内分工,并且进行安全技术交底,熟记检修工作内容,危险点及防范措施。

?开工前,工作负责人对检修作业人员要进行详细的安全技术交底。

H1

6 检修工序及质量标准

6.1 备品备件检查及电缆走向核实

?检查差压变送器,并校验合格。

?检查信号电缆。

?信号电缆走向核实。

3

Q/ITKTPC14 8024—2019

W2

6.2 电缆敷设及工作联系

?敷设电缆。

?与机务专业确认设备安装位置及安装方法。

电缆敷设及工作联系记录

W3

6.3 设备安装、信号接线及系统调试

?焊接安装变送器支架。

?使用不锈钢仪表管铺设管路。

?焊接一次门、二次门、排污门、接头。

?将变送器安装在对应接头上。

?信号接线。

?系统调试。

?焊口金属检验合格。

4

Q/ITKTPC14 8024—2019

H2

5

Q/ITKTPC14 8024—2019

6.4 现场清理

?收拾工具、更换下的备件和材料。

?清理检修现场,做好现场卫生。

6.5 工作票终结

□撤出全部检修人员,清点人员和工具,办理工作票、动火票终结手续。

H3

6

Q/ITKTPC14 8024—2019 7 检修记录

7.1 备品备件检验记录(如不够,可另附页)

8 设备试运、调试、试验

8.1 设备试运

□ DCS系统投入运行。

□查看8号机给水泵入口流量测点显示是否正常。

8.2 设备调试

□根据8.1中所发现的异常情况,查找原因,处理缺陷。

□检修工艺要符合技术规范,现场文明生产工作要进行到位。

□通过拆接线方法核对就地测点和DCS显示是否对应。

□用手操器连接变送器,检查变送器量程、阻尼等参数设置正确,检查DCS流量测点量程和变送器对应。

8.3 设备试验

□联系运行人员,投入相关系统运行,检查DCS系统中给水泵入口流量测点显示是否正常。

□检查就地变送器工作状态正常。

H4

7

Q/ITKTPC14 8024—2019 9 不符合项通知单(H5)

8

Q/ITKTPC14 8024—2019 10 完工报告单(H6)

9

Q/ITKTPC14 8024—2019

10

Q/ITKTPC14 8024—2019 11 质量签证单

11

Q/ITKTPC14 8024—2019

12 工作人员作业指导书学习签字

离心泵流量调节的主要方式

离心泵流量调节的主要方式,你身边有几种? 离心泵在水利、化工等行业应用十分广泛,对其工况点的选择和能耗的分析也日益受到重视。所谓工况点,是指水泵装置在某瞬时的实际出水量、扬程、轴功率、效率以及吸上真空高度等,它表示了水泵的工作能力。通常,离心泵的流量、压头可能会与管路系统不一致,或由于生产任务、工艺要求发生变化,需要对泵的流量进行调节,其实质是改变离心泵的工况点。除了工程设计阶段离心泵选型的正确与否以外,离心泵实际使用中工况点的选择也将直接影响到用户的能耗和成本费用。因此,如何合理地改变离心泵的工况点就显得尤为重要。 离心泵的工作原理是把电动机高速旋转的机械能转化为被提升液体的动能和势能,是一个能量传递和转化的过程。根据这一特点可知,离心泵的工况点是建立在水泵和管道系统能量供求关系的平衡上的,只要两者之一的情况发生变化,其工况点就会转移。工况点的改变由两方面引起:一.管道系统特性曲线改变,如阀门节流;二.水泵本身的特性曲线改变,如变频调速、切削叶轮、水泵串联或并联。

下面就这几种方式进行分析和比较: 01阀门节流 改变离心泵流量最简单的方法就是调节泵出口阀门的开度,而水泵转速保持不变(一般为额定转速),其实质是改变管路特性曲线的位置来改变泵的工况点。关小阀门时,管道局部阻力增加,水泵工况点向左移,相应流量减少。阀门全关时,相当于阻力无限大,流量为零,此时管路特性曲线与纵坐标重合。当关小阀门来控制流量时,水泵本身的供水能力不变,扬程特性不变,管阻特性将随阀门开度的改变而改变。这种方法操作简便、流量连续,可以在某一最大流量与零之间随意调节,且无需额外投资,适用场合很广。但节流调节是以消耗离心泵的多余能量,来维持一定的供给量,离心泵的效率也将随之下降,经济上不太合理。 02变频调速 工况点偏离高效区是水泵需要调速的基本条件。当水泵的转速改变时,阀门开度保持不变(通常为最大开度),管路系统特性不变,而供水能力和扬程特性随之改变。 在所需流量小于额定流量的情况下,变频调速时的扬程比阀门节流小,所以变频调速所需的供水功率也比阀门节流小。很显然,与阀门节流相比,变频调速的节能效果很突出,离心泵的工

联轴器对中调整方法

联轴器对中调整 一、联轴器装配的技术要求 联轴器装配的主要技术要求是保证两轴线的同轴度。过大的同轴度误差将使联轴器、传动轴及其轴承产生附加载荷,其结果会引起机器的振动、轴承的过早磨损、机械密封的失效,甚至发生疲劳断裂事故。 二、联轴器在装配中偏差情况分析 1、两半联轴器及平行又同心 2、两半联轴器及平行,但不同心 3、两半联轴器虽然同心,但不平行 4、两半联轴器既不同心,也不平行 联轴器处于第一种情况是正确的,不需要调整。后三种情况是不正确的,均需要调整。实际装配中常遇到的是第四种情况。 三、联轴器找正的方法 常用的有以下几种: 1、直尺塞规法 利用直尺测量联轴器的同轴度误差,利用塞规测量联轴器的平行度误差。这种方法简单,但误差大。一般用于转速较低、精度要求不高的机器。 2、外圆、端面双表法 用两个千分表分别测量联轴器轮毂的外圆和端面上的数值,对测得的数值进行计算分析,确定两轴在空间的位置,最后得出调整量和调整方向。这种方法应用比较广泛。其主要缺点是对于有轴向窜动的机器,在盘车时端面测量读数会产生误

差。它一般用于采用滚动轴承、轴向窜动较小的中小型机器。

3、外圆、端面三表法 此法是在端面上用两个千分表,两个千分表与轴中心等距离对称设置,以消除轴向窜动对端面测量读数的影响,这种方法的精度很高,适用于需要精确对中的精密机器和高速机器。如:汽轮机、离心式压缩机等。 4、外圆双表法 用两个千分表测量外圆,其原理是通过相隔一定间距的两组外圆测量读数确定两轴的相对位置,以此得知调整量和调整方向,从而达到对中的目的。此方法的缺点是计算较复杂。 5、单表法 此方法只测定轮毂的外圆读数,不需要测定端面读数。此方法对中精度高,不但能用于轮毂直径小且轴端距比较大的机器轴找正,而且又适用于多轴的大型机组(如高速轴、大功率的离心式压缩机组)的轴找正。用这种方法进行轴找正还可以消除轴向窜动对找正精度的影响。 四、 联轴器装配误差的测量和求解调整量 使用不同找正方法时的测量和求解调整量大体相同,下面以外圆、端面双表法为例,说明联轴器装配误差的测量和求解调整量的过程。 一般在安装机械设备时,先安装好从动机,再安装主动机,找正时只需调整主动机。主动机调整是通过对两轴心线同轴度的测量结果分析计算而进行的。 1、装表时的注意事项:核对各位置的测量数值有无变动。可用式 4231a a a a +=+;4231S S S S +=+检查测量结果是否正确。一般误差控制在 ≤0.02mm 。

离心泵的流量调节及能耗分析

离心泵的调节方式与能耗分析 离心泵的调节方式与能耗分析 离心泵的调节方式与能耗分析 摘要: 通过离心泵与管路系统的特性曲线图分析了离心泵流量调节的几种主要方式:出口阀门调节、泵变速调节和泵的串、并联调节。用特性曲线图分析了出口阀门调节和泵变速调节两种方式的能耗损失,并进行了对比,指出离心泵用变速调节流量比用出口阀门调节流量可以更好的节约能耗,且节能效率与流量变化大小有关。在实际应用时应该注意变速调节的范围,才能更好的应用离心泵变速调节。 离心泵是广泛应用于化工工业系统的一种通用流体机械。它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,为了寻求最佳、能耗最小、最节能的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。 1 泵流量调节的主要方式 1.1 改变管路特性曲线 改变离心泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。 1.2 改变离心泵特性曲线 根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。这里仅分析改变离心泵的转速调节流量的方法。从图1中分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2 下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性[2]。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。 1.3 泵的串、并连调节方式 当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。 2 不同调节方式下泵的能耗分析

离心泵的流量控制方法

离心泵流量控制方法探讨 前言 离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。 离心泵流量常用控制方法 方法一:出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 方法二:旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 方法三:调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 方法四:调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为 60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何?

(1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。 (2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。 总结 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用。 泵的流量调节方法一览表 本文详细介绍了泵(离心泵、往复泵)的流量调节方法,如改变泵的装置特性曲线(如可以进行出口阀调节、旁路调节、转速调节、切割叶轮外径、更换叶轮、堵死几个叶轮流道等)、改变泵的特性曲线,并对每种调节方法进行了阐述及对其使用的特点进行了分析。 表1——1 泵的流量调节方法

机械联轴器找正方法

旋转机械的联轴器找正 联轴器的找正是机器安装的重要工作之一.找正的目的是在机器在工作时 使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要. 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准确的对中就更困难.各零部件的不均匀热膨胀,轴的挠曲,轴承的不均匀磨损,机器产生的位移及基础的不均匀下沉等,都是造成不易保持轴对中的原因.因此,在设计机器时规定两轴中心有一个允许偏差值,这也是安装联轴器时所需要的.从装配角度讲,只要能保证联轴器安全可靠地传递扭矩,两轴中心允许的偏差值愈大,安装时愈容易达到要求。但是从安装质量角度讲,两轴中心线偏差愈小,对中愈精确,机器的运转情况愈好,使用寿命愈长。所以,不能把联轴器安装时两轴对中的允许偏差看成是安装者草率施工所留的余量。 1.联轴器找正时两轴偏移情况的分析 机器安装时,联轴器在轴向和径向会出现偏差或倾斜,可能出现四种情况, 如图1所示。 图1 联轴器找正时可能遇到的四种情况 根据图1所示对主动轴和从动轴相对位置的分析见表1。 表1 联轴器偏移的分析 2.测量方法 安装机器时,一般是在主机中心位置固定并调整完水平之后,再进行联轴器的找正。通过测量与计算,分析偏差情况,调整原动机轴中心位置以达到主动轴与从动轴既同心,又平行。 联轴器找正的方法有多种,常用的方法如下: (1)简单的测量方法如图2所示。用角尺和塞尺测量联轴器外圆各方位上的径向偏差,用塞尺测量两半联轴器端面间的轴向间隙偏差,通过分析和调

整,达到两轴对中。这种方法操作简单,但精度不高,对中误差较大。只适用于机器转速较低,对中要求不高的联轴器的安装测量。 图2 角尺和塞尺的测量方法 (2)用中心卡及塞尺的测量方法找正用的中心卡(又称对轮卡)结构形式有多种,根据联轴器的结构,尺寸选择适用的中心卡,常见的结构图3 所示。 中心卡没有统一规格,考虑测量和装卡的要求由钳工自行制作 图3 常见对轮卡型式 (a)用钢带固定在联轴器上的可调节双测点对轮卡 (b)测量轴用的不可调节的双测点对轮卡 (c)测量齿式联轴器的可调节双测点对轮卡 (d)用螺钉直接固定在联轴器上的可调节双测点对轮卡 (e)有平滑圆柱表面联轴器用的可调节单测点对轮卡 (f)有平滑圆柱表面联轴器用的可调节双点对轮卡 利用中心卡及塞尺可以同时测量联舟轴器的径向间隙及轴向间隙,这种方法操作简单,测量精度较高,利用测量的间隙值可以通过计算求出调整量,故较为适用。 (3)百分表测量法把专用的夹具(对轮卡)或磁力表座装在作基准的(常是装在主机转轴上的)半联轴器上,用百分表测量联轴器的径向间隙和轴向间隙的偏差值。此方法使联轴器找正的测量精度大大提高,常用的百分表测量方法有四种。 A 双表测量法(又称一点测量法) : 用两块百分表分别测量联轴器外圆和端面同一方向上的偏差值,故又称一点测量法,即在测量某个方位上的径向读数的同时,测量出同一方位上的轴向读数.具体做法是:先用角尺对吊装就位准备调整的机器上的联轴器做初步测量与调

离心泵的控制方案

一、 离心泵的控制方案 1、离心泵工作原理 离心泵是通过离心力的原理工作的。离心泵工作原理是在泵内充满液体的情况下,叶轮旋转产生离心力,叶轮槽道中的液体在离心力的作用下被甩向外围而流进泵壳,于是叶轮中心压力降低,这个压力低于进水池液面的压力,液体就在这个压力的作用下有吸入池进入叶轮,这样泵就可以不断的吸入压出,完成液体的输送。 2、离心泵的主要参数 离心泵的主要参数包括:流量、扬程、功率、效率、转速和汽蚀余量等。 3、泵的类型 ①叶片式泵:它对介质的输送是靠有叶片的叶轮高速旋转而完成的。 ②容积式泵:它对介质的输送是靠泵体工作室容积的周期性变化而完成的。 ③其他类型泵:只改变输送介质的位能和利用输送介质本身能量的泵。 4、离心泵特性 由于离心泵的叶轮和机壳之间存在空隙,泵的出口阀全闭,液体在泵体内循环,泵的排量为零,压头最大;随着出口阀的逐步开启,排出量随之增大,出口压力将慢慢下降。 泵的压头H ,排量Q 和转速n 之间的函数关系:、 排出量Q → ↑ 压头 n 1 n 2 n 3 n 4 a a’

H =R 1n 2 – R 2Q 2 5、管路特性 HL=hp+hL+hf +hv 4项阻力: 1)管路两端的静压差引起的压头hp ; 2)管路两端的静压柱高度hL ; 3)管路中的摩擦损失压头hf ; 4)控制阀两端节流损失压头hv ; 当系统达到稳定工作状态时,泵的压头H 必然等于HL ,这是建立平衡得条件。左图中泵的 特性曲线与管路特性曲线的交点C ,即是泵的平衡工作点。 工作点C 的流量应符合工艺预定的要求,可以通过改变hv 或其它手段来满足这一要求,这是离心泵的压力(流量)的控制方案的主要依据。 6、离心泵的控制方案 1)直接节流法 排出量Q → ↑ 压头

离心泵的调节方式

离心泵是广泛应用于化工工业系统的一种通用流体机械。它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,为了寻求最佳、能耗最小、最节能的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。 一、泵流量调节的主要方式 改变离心泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。 1、改变离心泵特性曲线 根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。这里仅分析改变离心泵的转速调节流量的方法。从图1中分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性[2]。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。 2、泵的串、并连调节方式 当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。

管道离心泵流量调节的几种方式

管道离心泵流量调节的几种方式 管道离心泵属于离心泵中的一种,我们也通常把它成为管道泵,一般适用于清水或者类似清水的介质输送。也可以把它当为增压来使用,所以可以称它为增压泵。 管道离心泵流量调节办法: 1、出口节约关于低、中比转数泵而言,这是一种最遍及和低价的流量调节办法。一般这种办法也仅限于在低、中比转数泵上运用。有些封闭出口管路上恣意方式的阀门均会增大体系压头,因而体系压头曲线将在较小的流量下与管道泵压头曲线相交。出口节约使操作点移动到较低的功率点处,并在节约阀处有功率丢失。这对大型的水泵设备能够很重要,而出资较高的调理办法能够在经济性上更具吸引力。节约至关死点能够导致泵内流体过热,能够用旁路来保持必要的最小流量,或用不一样的调理手法。这对前面所提及的处置热水或挥发性液体的泵而言是非常重要的。 2.吸进口节约 若是有足够的NPSH能够运用,那么在吸入管路能够通过节约节约一些功率。由于出口节约会形成液体的过热或汽化,所以喷气发动机燃料管道泵常选用进口节约。在很小的流量下,这些泵的叶轮仅仅有些地充溢液体,因而,输入功率和温升约为出口节约时叶轮充沛工作位的1/30凝聚水泵的流量一般选用吞没深度来操控7,这恰当于进口节约。特别的描绘可把这些泵的汽蚀损坏下降到无关宏旨的程度,但能级也变得恰当低。

3.旁通调理 从管道泵的排出管路能够分流出悉数或有些流量,通过旁路管引到泵的吸进口或其它的恰当点。旁路中可装一个或多个流量孔板和适宜的操控阀。计量旁路一般用于减小水泵的流量,首要是为了避免过热。若是旁路旋桨泵剩余的流量,用以替代出口节约,则可节约恰当大的功率。 4.转速调理 选用这种办法调理流量时,能够使所需的功率减至最小,并可扫除流量调理过程中的过热表象。蒸汽透平缓内燃机以很小的附加本钱就很简单习惯转速调理。各种机械式、磁力式、液压式的变速设备以及直流和沟通变速电动机都能够用来调理转速。一般,变速电动机过于贵重,只要在对特别情况作经济研讨后证明是值得时方能运用可调叶片调理。在研讨了装置于叶轮前的可调导叶后发现,比转数=5700(2.086)时,这种办法关于泵的调理是有用的。叶片能发生正的预旋,然后下降压头、流量和功率。而关于只会由叶片取得相对较小的调理作用。在欧洲的用于发电的大型蓄能泵,很成功地应用了可调理出口分散叶片。也很成功地研讨了有变距叶片的旋桨泵。

电机联轴器找正的方法及标准 (1)

电机联轴器找正的方法及标准 一、联轴器 1、什么是联轴器: 联轴器属于机械通用零部件范畴,用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。联轴器由两半部分组成,分别与主动轴和从动轴联接。一般动力机大都借助于联轴器与工作机相联接,是机械产品轴系传动最常用的联接部件。20世纪后期国内外联轴器产品发展很快,在产品设计时如何从品种甚多、性能各异的各种联轴器中选用能满足机器要求的联轴器,对多数设计人员来讲,始终是一个困扰的问题。常用联轴器有膜片联轴器鼓形齿式联轴器,万向联轴器,安全联轴器,弹性联轴器及蛇形弹簧联轴器。 2、联轴器工作原理及用途 (1)联轴器功能 用来把两轴联接在一起,机器运转时两轴不能分离,只有机器停车并将联接拆开后,两轴才能分离。 (2)联轴器的类型 联轴器所联接的两轴,由于制造及安装误差,承载后的变形以及温度变化的影响等,会引起两轴相对位置的变化,往往不能保证严格的对中。根据联轴器有无弹性元件、对各种相对位移有无补偿能力,即能否在发生相对位移条件下保持联接功能以及联轴器的用途等,联轴器可分为刚性联轴器,挠性联轴器和安全联轴器。联轴器的主要类型、特点及其在作用类别在传动系统中的作用备注 刚性联轴器:只能传递运动和转矩,不具备其他功能包括凸缘联轴器、套筒联轴器、夹壳联轴器等。 挠性联轴器:无弹性元件的挠性联轴器,不仅能传递运动和转矩,而且具有不同程度的轴向、径向、角向补偿性能包括齿式联轴器、万向联轴器、链条联轴器、滑块联轴器等。有弹性元件的挠性联轴器,能传递运动和转矩;具有不同程度的轴向、径向、角向补偿性能;还具有不同程度的减振、缓冲作用,改善传动系统的工作性能,包括各种非金属弹性元件挠性联轴器和金属弹性元件挠性联轴器,各种弹性联轴器的结构不同,差异较大,在传动系统中的作用亦不尽相同. 二、电机联轴器找正方法 联轴器的找正是电动机安装的重要工作之一.找正的目的是在电动机工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要。 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准

联轴器找正方法详解

联轴器找正方法详解_联轴器三表精确对中 联轴器找正详解 1、联轴器找正的目的 凡通过联轴器对接的两个轴中心线不重合会使设备在运转过程中产生振动、引起轴承温度升高、磨损,甚至引起整台设备剧烈振动,一些零部件的瞬间损坏,导致设备发生故障不能正常工作。故联轴器找正的目的主要有以下几个方面: 1)最大可能减少两轴相错或相对倾斜过大所引起的振动和噪音。 2)避免轴与轴承间引起的附加径向载荷。 3)保证每根轴在工作中的轴向窜量不受到对方的阻碍。 2、联轴器的找正要求 联轴器找正必须要达到两半联轴器是处于平行且同心的正确位置,这时两轴的中心线处于一条直线上。可以通过在电机和减速机的支脚下用加减垫片的方法来调整。 在现场的实际调整过程中不可能达到两个半联轴器的中心线绝对在同一轴线上,所以在联轴器的安装、调整过程中就必须确定一个误差范围。现把几种常用联轴器同轴度和端面间隙的调整标准进行整理。 3、联轴器找正的测量方法 联轴器找正时主要测量其径向位移(或径向间隙)和角位移(或轴向间隙)。利用直尺和塞尺测量径向位移,利用平面规和楔形间隙规测量角位移。方法简单但精度不高,一般只用于不需要精确找正的粗糙低速机器。利用中心卡和百分表测量联轴器的径向间隙和轴向间隙,适用于需要精确找正中心的精密仪器和高速机器,操作方便,精度高,应用广泛。测量方法还有双表测量法、三表测量法(又称两点测量法)、五表测量法(又称四点测量法)和单表测量法。热镀锌线上的测量方式主要采用双表测量法。

离心式压缩机主机联轴器三表精确对中找正 联轴器三表精确对中找正,适用于需要精确对中或高速旋转的设备,例如汽轮机、离心式压缩机。与联轴器二表对中找正不同,在与传动轴中心线等距离处,对称布置两块百分表同时读其轴向读数,可以消除传动轴手动盘车时轴向窜动对轴向读数的误差,提高测量精度。但在百分表读数记录及计算上稍复杂,容易混淆。现以00—3.1/0.93型CO2离心式压缩机增速器高速轴与压缩机主机轴联轴器的对中找正为实例,对此加以阐述。 1、注明关键尺寸的操作 在测取百分表读数之前,先选择适当比例画出增速器与 压缩机主机工作草图(图1)并注明关键尺寸数据:压缩机主机半联轴器与压缩机主机支撑1距离L1、支撑1与支撑2距离L2、两半联轴器轮毂端面间距离D,同时还应注明方向如东、西或南、北。本例中机组轴线为南北方向布置,东西方向为机组轴线的两侧(在水平方向上)。增速器已找正固定,压缩机主机轴向增速器高速轴对中找正,找正架固定在压缩机主机轴上,百分表打在增速器高速轴半联轴器上。上述操作应注意: (1)安装找正架、百分表固定无松动; (2)百分表触头垂直指向测量点,轻弹百分表,检查是否能回到弹前位置 2、有效数据的测量 测量时,为了分析计算方便,常把三个百分表读数调整至 “0”位,且百分表内小表指针指向整毫米处(此位置设置为原始位),然后两半联轴器按压缩机工作转向手动匀速盘动运转(可以避免两半联轴器本身的误差影响对中找正精度),避免回转。每转90°读一次各表中数据,把数据按要求填到记录图2中相对应的位置中。

泵流量控制方法

离心泵流量控制方法探讨 泵的流量调节方法一览表 本文详细介绍了泵(离心泵、往复泵)的流量调节方法,如改变泵的装置特性曲线(如可以进行出口阀调节、旁路调节、转速调节、切割叶轮外径、更换叶轮、堵死几个叶轮流道等)、改变泵的特性曲线,并对每种调节方法进行了阐述及对其使用的特点进行了分析。 具体的泵的流量调节方法见下表1——1。

表1——1 泵的流量调节方法

请问泵的流量是怎么调节的 请问高速泵的流量是怎么调节的我发现泵的额定流量比如为10m3,最小稳定流量为2m3,比如我现在后面装置需要6m3的量,这个时候是通过出口阀门调节呢还是打10m3走4m3的旁路阿谢谢各位!!

还有些疑问:1、旁路怎么防止泵产生憋压不是很明白---我现在设置的是泵流量达到泵厂家要求的最小稳定流量的时候旁路阀门才打开,平时是关着的! 2、现在一家国外的泵厂家返回的资料是这样子的,我要求的是2.61m3,可是他给我的泵却是4.5M3的,而他的最小稳定流量竟然在2.3m3,那我平常不是只能在最小流量线附近操作了这样子对高速泵肯定不好,现在泵厂家要求平常一直开旁路,让我很郁闷 3、我想的是一旦泵流量到达最小稳定流量,泵就有两个去向,可是我怎么知道这两条线的各自流量,因为我要保证我后续设备的物料量啊,不能全被打回流阿!! 4、还有就是泵出口关闭压力怎么确定阿 5、我们计算泵的H的时候,给出了HA,厂家给的HR,指的是水那转化成介质是不是也应该乘密度 请各位说的仔细一点,我对这个不是很清楚呢 ]lexuan_0211 发表于2008-6-13 13:44 一般来说,通过阀门调节能够达到效果。 lz需要的量在此泵的流量范围内,没有问题。llttjj2850 发表于2008-6-13 13:45 通过出口调节阀来控制流量,走旁路只是改变管径,并没有改变流量,只是增加了管道阻力和流速。 如果有变频器可以调节频率,也可调节流量。rongyang504 发表于2008-6-13 14:05 我的泵不是变频的,变频的用的很平常吗我觉得变频的机泵一般用在重要的地方! 还有一个问题,就是当泵流量接近最小稳定流量的时候,泵的最小回流线就打开,可是我就不知道当最小回流线打开以后,这两条管线的流量分配会怎么样啊smilezcx 发表于2008-6-13 15:32 通过出口阀调节。只有达不到最小流量时才走旁路,以防止憋泵bo lxg 发表于2008-6-13 16:00 当然是出口调节阀调节了! 听你的描述旁路线应该是回流线,是提供最小回流用的!pengineer 发表于2008-6-13 19:05 从你提供的泵应该是离心泵,可以直接在出口用阀门调节,如果要求较高,可以采用流量控制,如果要求不严格,直接用截止阀调节即可。w xrbob 发表于2008-6-14 07:57 只要在泵的调节范围内,还是使用节流阀较好。wing 发表于2008-6-14 08:22

谈离心泵的流量调节方式与能耗之间的关系

通过离心泵与管路系统的特性曲线图分析了离心泵流量调节的几种主要方式:出口阀门调节、泵变速调节和泵的串、并联调节。用特性曲线图分析了出口阀门调节和泵变速调节两种方式的能耗损失,并进行了对比,指出离心泵用变速调节流量比用出口阀门调节流量可以更好的节约能耗,且节能效率与流量变化大小有关。在实际应用时应该注意变速调节的范围,才能更好的应用离心泵变速调节。 离心泵是广泛应用于化工工业系统的一种通用流体机械。它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,为了寻求最佳、能耗最小、最节能的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。 1 泵流量调节的主要方式 1.1 改变管路特性曲线 改变离心泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。 1.2 改变离心泵特性曲线 根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。这里仅分析改变离心泵的转速调节流量的方法。从图1中分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性[2]。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。 1.3 泵的串、并连调节方式 当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。 2 不同调节方式下泵的能耗分析 在对不同调节方式下的能耗分析时,文章仅针对目前广泛采用的阀门调节和泵变转速调节两种调节方式加以分析。由于离心泵的并、串联操作目的在于提高压头

机组联轴器对中记录

a -0.018a -0.022a 0.013a 0.016 b 2.267Ⅰb 2.386Ⅱ b 2.245Ⅰ b 2.374Ⅱ b 2.252Ⅰ b 2.341 Ⅱ b 2.236Ⅰ b 2.358Ⅱ A B 机组对中记录 Alignment record of machine set 项目:ESSEX 电磁线工厂 Project 装置:冷却水系统 Unit 工号:JD-ESSEX-01 Section 位 号 Location No. ⑴ 名 称 Name 卧式泵 执行标准 Standard for execution 机械设备安装工程施工及验收规范(GB50231-98) 联轴器布置简图: Diagram of coupler location 对中情况: Alignment 径向 = 0.024 轴向 =0.077/1000 Radial Axial 单位:(mm ) Coupler No. 联轴器编号 径向 Radial 轴向 Axial 端面间隙 Clearance at end 百分表固定位置 Fixed position of dial indicator Tolerance 允许偏差 a 1 a 2 a 3 a 4 Tolerance 允许偏 差 b 1-1 b 2-1 b 3-1 b 4-1 规定值 Stipulated value 实测值 Measured value b 1-2 b 2-2 b 3-2 b 4-2 0.05 -0.018 -0.022 0.013 0.016 0.2/ 1000 2.267 2.245 2.252 2.236 2~3 2.307 联轴节 2.386 2.374 2.341 2.358 备注: Remarks 建设(监理)单位代表 Owner representative 施工单位 Subcontractor 施工员 Operator 检查员 Inspector 专业技术 负责人 2 231 4 2 22y x y x a a a a a a a a a +=-=-=

离心泵的流量与扬程的关系

离心泵流量与扬程的关系 1、首先可以确定同功率的离心泵,流量增大,扬程减小。详见说明(1) 2、离心泵的流量与扬程的关系可用离心泵的特性曲线表示。详见说明(2) 3、实际工程中,泵提供的流量与扬程依管路的要求而定,而管路所需的扬程与流量的关系可用管道特性曲线表示。 4、将离心泵的特性曲线与管道特性曲线,在一张图上表示,其交点即离心泵在实际工程中的工作点。详见说明(3) 5、离心泵的特性曲线可由厂家提供 管道特性曲线,如何确定? 有资料介绍管道和离心泵特性曲线的测定方法,有表格可方便绘制相应的特性曲线。测定方法见《附1离心泵及管路特性曲线测定方法》、绘制相应特性曲线见《附2离心泵性能特性曲线》,《附3管路特性曲线》。 6、离心泵工作点的调节方法,总结如下: 单离心泵流量的调节方法有: 1)改变阀门开度适合化工连续生产的特点,应用广泛。缺点:经济性差。 2)改变泵的转速 a、变速原动机改变转速,难做到流量的连续调节,生产中较少采用。

b、减小叶轮直径改变转速,可调节范围不大,还会降低泵的效率,生产中很少 使用。 详见《附4离心泵的工作点与调节》 说明: (1)水泵扬程与流量的关系 选泵时,一般会涉及到3个参数:功率,扬程,流量 扬程就是水泵的扬水高度,单位是米, 流量则可以根据它的单位L/H得出,流量就是水泵每小时的吸水量。 功率越大,扬程跟流量就越大,水泵的功率都是固定的,所以讲讲扬程跟流量的关系 水泵的实际扬程可以用下式表示: H=Hx-SxQ^2 ——(1)(^2表示平方) 式中:H——水泵的实际扬程,根据你摆放水泵的位置计算;Hx——水泵在Q=0所产生 的扬程,也就理论扬程,一般跟功率有关;Sx——水泵的内部摩阻;Q——水泵的流量。由(1)式可得水泵的流量 Q=√[(Hx-H)/Sx]——(2)(√表示开根号) 对于给定的水泵,Hx和Sx是不变的,由(2)式知,当水泵在实际运行时扬程H减小时,水泵流量增大。由此可以说明为什么现在大多泵都达不到泵体所标的额定流量,因为实际 扬程决定了流量。 总结:同功率水泵的流量取决于水泵实际的扬水高度(扬程)。 请看图,这张是创星(Atman)的图纸,图中曲线就明确表示了扬程于流量的关系。

联轴器对中原理及常用测量调整方法介绍

联轴器对中原理及常用测量调整方法在传动设备安装和检修过程中,对于采用联轴器传动的机器,联轴器两轴的对中调整是一个极为关键的工序。而目前使用的安装标准规范中,关于机组轴系对中调节的内容,特别是对中调整的原理部分叙述比较简略。本文总结现场安装施工经验,较为完整的论述了机组轴系对中原理及其测量调整方法。 在传动设备的安装和检修中,对于两个或两个以上的用联轴器连接的旋转设备(如泵、汽轮机等),影响其正常运行的因素有很多。如基础问题、各旋转设备的内件安装等,都会影响到机组的正常运行。其中机组联轴器对中调节工作的好坏,也是影响机组运行的一个重要因素。在机组运行过程中,往往会因联轴器对中调节工作的误差而产生旋转轴振动和轴承过热等现象,有时甚至会出现传动轴折断等重大事故。为了保证机组联轴器的安装质量,确保机组的正常运行,有必要针对机组联轴器对中的原理及其常用的测量调整方法进行深入细致的探讨。 2机组轴系联轴器对中(即定心)原理 2.1 轴系对中的相关概念解释 2.1.1 定心 任何一个独立的旋转设备,都有它自己的旋转中心线 (以下称轴心线)。把两个以上的轴连接起来,让它们的轴心线同在一条线上(这条线是包含在一个垂直平面上带有挠曲的自然挠度曲钱)的工作就叫做定心。 2.1.2 挠度和自然挠度线 任何一个设备的水平轴的轴心线,由于转动部分的重量,实际上都不是一条直线,而是一条向重力方向挠曲的线,下挠部分和水平线的距离就是该轴的挠度。对于大型设备,如大型电机、它的轴心线由于设备的自重大,就明显地呈现挠曲状,由转动体自重形成的轴心线挠曲叫自然挠度线。在定心

时绝对不能把它当成直线,必须按照它的自然挠度线定心,才能保证定心上作的质量。在透平机精找正后,各转子的中心线,包括电机中心线和增速器中心线,应形成一条连续的挠曲线,机组各段转子或轴的自重挠度,通常在工厂制造时已经要求限定在一个范围内,通过定心时的测量,也可以计算出来。 2.1.3 机组调整定心基准的确定 机组就位前,必须合理确定供机组找平找正的基准机器。应先调整固定基准机器,再以其轴线为准,调整固定其余机器。基准机器的确定应符合下列要求: (1)制造厂规定的安装基准机器; (2)选重量大,调整困难的机器; (3)机器多,轴系长时,宜选安装在中间位置的机器; (4)条件相同时,优先选择转速高的机器。 2.1.4 水平度 在进行定心工作时,要考虑两端轴颈的水平度。特别是 机组定心时,更要注意基准轴两端水平度,正确的确定水平度能够有助于达到比较理想的定心效果。 2.2定心工作的原理 2.2.1 挠曲的轴心线 前面已经讲过,任何一个独立的旋转轴都有它自己的轴 心线。这条轴心线,由于旋转体(包括转轴)自重G的作用,实际是弯曲的,此轴在两个轴承的中间部分存在挠度F。轴两端的两个联轴器的端面和转轴的轴心线是垂直的。由于轴心线本身不是一条直线,因此联轴器的两个轴端面也不会是平行的。 2.2.2 轴心线和联轴器中心线 每个轴都有它自己的轴心线,联轴器也有它自己的旋转中心线,凡是后

泵类负载的流量调节方法及原理

泵类负载的流量调节方法及原理 1、泵类负载的流量调节方法及原理 在热电厂中,机组必须配备的水泵主要有锅炉给水泵、循环水泵和凝结水泵,其次还有射水泵、低压加热器疏水泵、热网水泵、冷却水泵、灰浆泵、轴封水泵、除盐水泵、清水泵、过滤器反洗泵、生活水泵、工业水泵、消防水泵和补给水泵等。这些水泵数量多,总装机容量大:50MW火电机组的主要配套水泵的总装机容量为6430KW,占机组容量的 12、86%;100MW机组为10480kW,占 10、48%;200MW机组为15450KW,占7、73%。100MW机组主要配套水泵的总耗电量约占全部厂用电量的70%左右。由此可见,水泵确实是火力发电厂中耗电量最大的一类辅机。因此,提高水泵的运行效率,降低水泵的电耗对降低厂用电率具有举足轻重的意义。国外火电厂的风机和水泵已纷纷增设调速装置,而目前我国火电厂中除少量采用汽动给水泵,液力耦合器及双速电机外,其他风机和水泵基本上都采用定速驱动。这种定速驱动的泵,由于采用出口阀,风机则采用入口风门调节流量,都存在严重的节流损耗。尤其在机组变负荷运行时,由于风机和水泵的运行偏离高效点,使运行效率大大降低,结果是白白地浪费掉大量的电能,已经到了非改不可的地步。 1、泵类负载的流量调节方法及原理

泵类负载通常以输送的液体流量为控制参数,为此目前常采用阀门控制和转速控制两种方式。 1、1阀门控制这种方法是借助改变出口阀门的开度大小来调节流量的,其实质是通过改变管道中流体阻力的大小来改变流量的。因为泵的转速不变,其扬程特性曲线H-Q保持不变当阀门全开时,管阻特性曲线R1-Q与扬程特性曲线H-Q相交于点A,流量为Qa,泵出口压头为Ha、若关小阀门,管阻特性曲线变为R2-Q,它与扬程特性曲线H-Q的交点移到点B,此时流量为Qb,泵出口压头升高到Hb、则压头的升高量为:ΔHb=Hb-Ha、于是产生了阴线部分所示的能量损失:ΔPb=ΔHbQb、 1、2转速控制借助改变泵的转速来调节流量,这是一种先进的控制方法。转速控制的实质是通过改变所输送液体的能量来改变流量。因为只是转速变化,阀门的开度不变,如图2所示,管阻特性曲线R1-Q也就维持不变。额定转速时的扬程特性曲线Ha -Q与管阻特性曲线相交于点A,流量为Qa,出口扬程为Ha、当转速降低时,扬程特性曲线变为Hc-Q,它与管阻特性曲线R1-Q的交点将下移到C,流量变为Qc、此时,假设将流量Qc控制为阀门控制方式下的流量Qb,则泵的出口压头将降低到Hc、因此,与阀门控制方式相比压头降低了:ΔHc=Hb-Hc、据此可节约能量为:ΔPc=ΔHcQb、与阀门控制方式相比,其节约的能量为:P=ΔPc-ΔPb=(ΔHc-ΔHb)Qb、

泵轴对中找正(单表双打法) 三表打法(调)

泵轴对中找正(单表双打法) 三表打法 单表对中找正方法 1、单表对中找正的装架示意图(图示为单表双打) 2、使用单表双打对中法的前提条件: S—两转子轴头之间的距离 D—联轴节的外径 前提条件:S≥D/2

轴端距离越大,联轴节的直径越小,计算就越准确,当S≥D/2 时,单表双打对中法对张口的敏感性强,对中的精度可以达到更高的水平。 联轴节直径比较大,端面跳动显著,建议用三表法(或双表法) 联轴节直径比较小,端面跳动较小,建议用单表法,单表法适用于长联轴节(指中间接筒较长)设备对中。 3、单表双打对中法的数据记录规定 当把表架固定在 A 转子的轴头上,表杆头触到 B 转子的联轴节的外圆上时,如(E)所示,叫 A 打B,记 A →B 。当把表架固定在 B 转子的轴头上,表杆头触到A转子的联轴节的外园上时,如(F)所示,叫 B 打A,记 B →A 。 记录如下:

在两次打表的过程中,盘车时的旋转方向必须相同,在记录时四个方向的数据要一一对应,便于下一步进行计算和张口方向的判断。 4、数据有效性判则: (1)数据要“园”。当我们取在0°\u26102X表的读数为零,盘表一周回到0°\u20301X置时,表的读数要回零。否则,我们称数据不“园”,为无效 数据,要查找原因。 造成数据不园的原因: A、百分表不准(先检查表是否回零) B、表架没有拧紧(用手指轻敲表架,看表针是否转动) C、磁力表座的磁力不够,未吸牢(同上) D、联轴节的外圆不园,盘车时两联轴节没有转动相同的角度。(确保转 动相同的角度) (2)遵守数据有效性判则: a1﹢a3=a2﹢a4 b1﹢b3=b2﹢b4 5、关于径向偏差的测量: 为什么两转子径向的实际偏差值等于表值的一半?(即为什么实际偏差值是表值的一半?) 如图所示:以垂直方向为例,假设A、B 两转子的高低差为h,联轴节的外圆半径为R。

相关文档
最新文档