2几何图形初步(复习课)PPT课件

合集下载

2024年中考数学一轮复习考点精讲课件—几何图形的初步

2024年中考数学一轮复习考点精讲课件—几何图形的初步


【详解】解:∵正方形厚纸板的边长为4 2,∴ = = 4 2,
∴ = 2 + 2 = 8,又∵ = = = ,∴ = = 2, = 4,
∴ = + = 6,故答案为:6.
考点二 直线、射线、线段的相关概念
一、直线、射线、线段的相关概念
2024年中考数学一轮复习考点精讲课件—几何图形的初步
主讲人:XXX
考点一 认识几何图形
几何图形的概念: 我们把实物中抽象出来的各种图形叫做几何图形,几何图形分为平面图形和立体图形.
立体图形的概念:有些几何图形的各个部分不都在同一平面内,这个图形叫做立体图形.
平面图形的概念:有些几何图形的各个部分在同一平面内的图形,这个图形叫做平面图形.
体体积分别记为:甲 和乙 .下列说法正确的是:


【详解】解:由图可知,设甲方案中长方体箱子的正方形底面的边
长为,长方体的高为

4 = 8
=2
解得
∴甲 = 2 × 2 × 10 = 40
2 + = 14
= 10
设乙方案中长方体箱子的正方形底面的边长为,长方体的高为

A.甲 > 乙
线段的性质:两点的所有连线中,线段最短. 简称:两点之间,线段最短.
线段的长度比较方法:1)度量法:分别用刻度尺测量线段AB、线段CD的长度,再进行比较
2)叠加法:让线段某一段端点重合,比较另一边两端点的位置.
线段中点的概念:把一条线段分成两条相等的线段的点叫线段中点.
考点二 直线、射线、线段的相关概念
为4cm的正方形纸片制作了如图所示的七巧板(如图 1)
,并设计了一幅作品“我跑步,我快乐”创作画(如图 2)

几何图形初步章节复习(课件)七年级数学上册教材配套教学精品课件+分层练习(人教版)

几何图形初步章节复习(课件)七年级数学上册教材配套教学精品课件+分层练习(人教版)

2
从不同方向看立体图形
例2.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在
该位置小立方块的个数.请画出这个几何体的主视图和左视图.
解法一:先摆出这个几何体,再画出它的主视图和左
视图
例2.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在
该位置小立方块的个数.请画出这个几何体的主视图和左视图.
是( A )
【2-2】如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,
其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左
面看到的形状图.
从正面看
从左面看
【2-3】如图是由一些相同的小正方体搭成的几何体从正面和上面看到的形
15
状图,搭这个几何体最少需要____个小正方体,最多需要____个小正方体.
三、角
1. 角的定义
(1) 有公共端点的两条射线组成的图形,叫做角;
(2) 角也可以看作由一条射线绕着它的端点旋转而形成的图形.
两条射线—角的边
公共端点—角的顶点
2. 角的表示
(1)角通常用三个字母及符号“∠”来表示,如上图中角可以表示为∠AOB或
∠BOA,表示顶点的字母O必须放在中间,其他两个字母A,B分别表示角的两
(2)平面图形的各部分都在同一平面内,如:
2.常见立体图形的分类
圆柱
柱体
棱柱
常见立体图形
球体
三棱柱
四棱柱
五棱柱

(命名依据底面的边数)
圆锥
锥体
棱锥
三棱锥
四棱锥
五棱锥

(命名依据底面的边数)
3.从不同方向看立体图形
我们从不同的方向观察一物体时,可能看到不同的图形. 其中,把从正

人教高中数学必修二A版《基本立体图形》立体几何初步说课教学课件复习(棱柱、棱锥、棱台的结构特征)

人教高中数学必修二A版《基本立体图形》立体几何初步说课教学课件复习(棱柱、棱锥、棱台的结构特征)

BC,EF,A1D1.
必修第二册·人教数学A版
返回导航 上页 下页
1.紧扣棱柱的结构特征进行有关概念辨析 课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
空间几何体
[教材提炼]
预习教材,思考问题
(1)观察纸箱、金字塔、茶叶盒、水晶石等有什么相同的特点?
[提示] 围成它们的每个面都是平面图形,并且都是平面多边形.
(2)观察纸杯、奶粉罐、腰鼓、篮球等几何体有什么相同的特点?
[提示] 围成它们的面不全是平面图形,有些面是曲面.
返回导航
5.侧棱垂直于底面的棱柱叫做直棱柱.
侧棱不垂直于底面的棱柱叫做斜棱柱.
底面是正多边形的直棱柱叫做正棱柱.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
底面是平行四边形的四棱柱叫做平行六面体. 手抄报:课件/shouchaobao/
课件 课件
课件 课件
课件 课件
号).
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
解析:结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台. 答案:①③④ ⑥ ⑤

人教版七年级上册数学《点、线、面、体》几何图形初步教学说课复习课件

人教版七年级上册数学《点、线、面、体》几何图形初步教学说课复习课件

新知讲解
长方形纸片绕它的一边旋转一周,会形成什么图形?
面动成体
新知讲解
你能举出其他“面动成体”的实例吗?
归纳
点,线,面,体关系

点动成线
线与线相交
线动成面
线
面与面相交

面动成体
包围着体

课堂练习
1. 流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原
理是( A)
A. 点动成线
B. 线动成面
线只有长短,没有粗细;
面只有大小,没有厚薄.
新知探究 跟踪训练
例1 观察如图所示的立体图形,说出它们各有几个面.
是什么样的面?面和面相交的地方形成了几条线?线
和线相交的地方形成了几个点?
解:图(1)是正方体,它有6个面,这些面都是平面,面
和面相交成12条线(直的),线和线相交成8个点;
图(2)是三棱锥,它有4个面,这些面都是平面,面和面
4.1.2 点、线、面、体
课件
知识回顾
正方体的展开图
学习目标
1. 知道点、线、面、体是构成几何图形的元素. 进一步
认识点、线、面、体的几何特征.
2. 知道点、线、面、体之间的关系.
课堂导入
猜谜语: 千条线,万条线,
雨滴
落入水中看不见.(打一物) 谜底——————
将雨滴看成一条线,蕴含
了怎样的数学道理?
立体图形是( B )
课堂练习
6. 当流星划过夜空,空中会留下一条美丽的线,此现象用数学原
理可解释为点动成线
________.
7. 钟表上的时针转动一周形成一个圆面,这说明了 线动成面
.
8. 长方形绕着它的一条边旋转一周后形成的几何体是 圆柱体.

冀教版-数学-七年级上册- 第二章 几何图形的初步认识 课件

冀教版-数学-七年级上册- 第二章 几何图形的初步认识 课件
预期效果:通过课件引领复习有关线段、射线、直线的知识,最终荣
获2013年桥西区微型课大赛一等奖的第一名。
使用软件:PPt,照片截图软件,isee图片编辑器
线求段线A段CD,EA的E,长A度B. 线段 ACE,CDB C E B
有序
➢ 必做题:课本90页
复习题 A组 1、2、3、9、 10题 ➢ 选做题:C 组 2题
➢ 拓展题:1.点C在线段AB延长线上,点E是线段BC
的中点,点D是线段AC的中点,且 AC =a,BC =b.求线段DE 的长度.
A
DB E C
• 1.生活中的几何图形 • 2.线段、射线、直线
3.角、角的度量及角之间的关系 4.图形的旋转
从这个图形你能想到我们学过的 有关线段、射线、直线的哪些数学知 识?
E C
A
B
A
C EB
31.射 当线直E线C上和有射4线个B点C时是有同多一少条条射线线段吗?? 42.射 当线直E线C上和有射n线个E点A时是有同多一少条条射线线段吗??
如果点E是线段BC的中点,点D是线段AC的

1a4
6b
点,且AC = ,BC = .
求线段DE 的长度.
A
D CEB
思考:点C在线段AB延长线上,其它条件不变. 求线段DE 的长度.
A
DB E C
通过本节课的复习你有哪些收获?
a 如果点E是线C 段BC的E中点,
点D是线段AC的中点,
且AAC = 14 ,BC = 6 . B b
2
2
点E是线段BC的中点,且BC 6
CE 1 BC 1 6 3(线段中点定义)
2
2
DE DC CE 7 3 10

人教版七年级上册数学《立体图形与平面图形》几何图形初步研讨说课复习课件指导

人教版七年级上册数学《立体图形与平面图形》几何图形初步研讨说课复习课件指导

巩固练习
画一画 用两个圆、两个三角形和两条直线为条件,画出一 个独特且具有意义的图形,并命名.
吊 灯
落日余晖
路灯
眼 镜
链接中考
下列几何体中,是圆柱的为( A )
A.
B.C.ຫໍສະໝຸດ D.课堂检测基础巩固题
1. 下列图形不是立体图形的是 ( D ) A. 球 B. 圆柱 C. 圆锥 D. 圆
2. 长方体属于 ( B ) A. 棱锥 C. 圆柱
圆柱 棱柱
圆锥 棱锥
三棱柱 四棱柱 五棱柱

三棱锥 四棱锥 五棱锥

人教版 数学 七年级 上册
4.1 几何图形
4.1.1 立体图形与平面图形 第2课时
课件
导入新知
题西林壁 ——苏轼
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
导入新知
【想一想】“横看成岭侧成峰”一句中,蕴含了怎样的数学 道理?
10
11
思考:1.这些正方体展开图可以分为几种? 2.观察上面的11种正方体的展开图有没有什么规律?哪几号 展开图可以分为一类,为什么?
探究新知
探究新知
探究新知
探究新知
?
蓝 黄
相 对 两 面 不 相 连
上左 下右 隔隔 一一 行列
探究新知 归纳总结
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
探究新知
素养考点 画出从不同方向看同一物体的图形
例1 如图是由若干小正方体搭成的几何体,我们分别从前面 看、从左面看和从上面看得到的平面图形分别是怎样的呢? 请同学们尝试画一画.

人教A版(新教材)高中数学第二册(必修2)课件:第八章 立体几何初步章末复习课

人教A版(新教材)高中数学第二册(必修2)课件:第八章 立体几何初步章末复习课

6πS 9π2 .
要点二 空间中的平行关系 在本章中,空间中的平行关系主要是指空间中线与线、线与面及面与面的平行,其 中三种关系相互渗透.在解决线面、面面平行问题时,一般遵循从“低维”到“高维” 的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而利用性质定理 时,其顺序相反,且“高维”的性质定理就是“低维”的判定定理.特别注意,转化 的方法总是由具体题目的条件决定,不能过于呆板僵化,要遵循规律而不局限于规 律.如下图所示是平行关系相互转化的示意图.
证明 (1)因为平面PAD⊥底面ABCD,PA在平面PAD内且垂直于这两个平面的交线AD, 所以PA⊥底面ABCD. (2)因为AB∥CD,CD=2AB,E为CD的中点, 所以AB∥DE,且AB=DE. 所以四边形ABED为平行四边形. 所以BE∥AD. 又因为BE⊄平面PAD,AD⊂平面PAD, 所以BE∥平面PAD.
V 圆锥=13πr2h (r 是底面半径, h 是高)
用平行于圆锥底面
圆 的平面去截圆锥,
台 底面与截面之间的

部分


半圆以它的直径所

在直线为旋转轴,
球 旋转一周形成的曲
面叫做球面,球面
所围成的旋转体
S圆台=π(r′2+r2+ r′l+rl)(r′,r分别 是上、下底面半 径,l是母线长)
V 圆台=13πh(r′2+ r′r+r2)(r′,r 分 别是上、下底面 半径,h 是高)
以矩形的一边所在
圆 直线为旋转轴,其
柱 余三边旋转形成的

面所围成的旋转体


以直角三角形的一
圆 圆 条直角边所在直线 为旋转轴,其余两
锥 边旋转一周形成的
面所围成的旋转体

第六章+几何图形初步+章节复习课件2024-2025学年人教版数学七年级上册

第六章+几何图形初步+章节复习课件2024-2025学年人教版数学七年级上册
(3)①将15位同学类比点,由上面结论可知,
×(-)
当线段AB上有15个点(包括A,B两点)时,线段数为
=105.

答:十五个同学聚会,每个人都与其他人握一次手,共握手105次.
②由①知,总共握手105次,两人相互送一张名片,则送的名片数为
105×2=210(张).
答:十五个同学聚会,每个人都送给其他人一张名片,共送了210张.
解:(3)因为∠AOB=α,∠BOC=30°,
所以∠AOC=∠AOB+∠BOC=α+30°.
因为OM平分∠AOC,ON平分∠BOC,



所以∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.





所以∠MON=∠MOC-∠CON= α+15°-15°= α.


(4)∠MON的度数始终是∠AOB的一半,与∠BOC的大小没有关系.
典例8
如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.
(1)图中有 9 个小于平角的角;由∠DOE=90°,可得 ∠COE 是∠DOC
的余角;
(2)若∠AOC=50°,则∠BOD= 155°

(3)OE是否平分∠BOC,并说明理由.
(3)解:OE平分∠BOC.理由如下:
因为∠DOE=∠DOC+∠COE=90°,所以∠COE=90°-∠DOC.
(3)在(2)的条件下,求∠EOF的度数,并说明∠EOF的度数是否
随α的变化而变化.
(2)因为∠BOD=∠BOC+∠COD=90°+α,
OF平分∠BOD,




所以∠BOF= ∠BOD= α+45°.
(3)∠EOF的度数不变.理由如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2︰5两部分,∠DBE=21°,求∠ABC的 度数。
解:设∠ABE=2x°
D C 则∠EBC=5x°, ∠ABC=7x°
E
∵ BD平分∠ABC
A
B
∴ ∠ABD= ∠CBD =
7 2
x
°
根据题意,得:
2x + 21= 5x- 21
x = 14
∴ ∠ABC = 7 x14=98 °
答: ∠ABC为98 °.
9
例 :已知C为线段AB上一点,AC=60,BC=80, D、E分别为AC和BC中点,求DE的长。
A
DC
E
B
解:∵AC=60, D为AC中点,
∴DC=
1 2
AC=30
∵BC=80,E为BC中点,
∴EC=
1 2
BC=40
∴DE = DC+ EC= 30 +40 =70
10
变式一:
若上题改为“已知AC=m,BC=n”,则线段
16
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
A 5° B 20°

C 105°
D 35°
8.时钟显示为2:30,时针与分针所夹角的度数是( C )
A 120° B 115°
C 105°
D 90°
9.下列说法正确的是( D)
A 射线AO和射线OA是同一条射线
B 39.45°=39°45′
C 若∠1+∠2+∠3=180°,则∠1、∠2和∠3互补.
D 角可以看作由一条射线绕着它的端点旋转而形成的图形. 7
(复习课)
1
学习目标:
1、梳理本章知识,进一步理解概念之间的区别与联 系,能够系统地掌握知识。
2、在理解立体图形、平面图形、展开图、余角、补 角等概念的基础上,能画出图形表示,并进行计 算,解决问题。
3、通过问题的解决,进一步发展空间观念,培养空 间想象能力,体会方程和分类等数学思想方法。 在简单说理的过程中,逐步养成言必有据的良好 习惯。
12
这节课,我的收获是---
小结与回顾
13
展开、从不同方向看转化为
几 立体图形
折叠、旋转
平面图形
何 图 形 平面图形
直线、射线、线段
两点确定一条直线 两点之间,线段最短
角的定义和度量方法
角 角的大小比较 角的平分线
余角和补角 同角或等角的余角相等 同角或等角的补角相等
14
15
提问与解答环节
Questions And Answers
10.如果一个角的补角比它的余角的4倍还多15°, 则这个角是多少度?
解:设这个角为x ° 180 - x = 4(90- x)+15 请你要牢记哟!
x =65
答:这个角是65 °
说明:利用方程解决几何计算题简便快捷,是
一种常用的思想方法。同学们在学习几何的过 程中应逐步掌握这种方法。
8
如图,BD平分∠ABC,BE把∠ABC分成
DE = m+n 2
A
D
C
E
B
变式二:
若将“AC =60,BC =80”改为“AB=
10”,
5
则此时线段 DE =_____
1 2
a
若“AB=a”,则DE =______
根据计算结果,你有什么发现吗?
变式三:
若将原题中“C为线段AB上一点”改为“C
为直线AB上一点”,其余条件不变,结果和上
11
我们知道,角的计算与线段的计算存 在着紧密的联系,解决问题的方法完全类 似。你能模仿本题用60°,80°作为已知数 据设计一道以角为背景的计算题吗? 小组 合作,看看谁做得快!
角形的几何体是( C )
2.(四川泸洲)将如图所示的直角梯形绕直线l 旋转一周,
得到的立体图形是( )D
l
3.(2012贵州黔南)如图,将正方体的平
面展开图重新折成正方体后,“祝”字对
面的字是(C )
A 中 B考 C成 D功
5
4.小明想在墙上钉一根水平方向的木条,他至少要钉
___2__个钉子,理由是__两___点__确___定__一___条___直__线_____。
5.如图,A 、B 两个车站位于公路 l 的两侧,若要在公
路旁投资修建一个加油站P,使它到A 、B 两个车站的距
离之和最短,请在公路 l上标出加油站P的位置。
.A Pl B . (加油站)
6
6.点A、B、C 在同一条直线上,AB=3 cm,
BC=1 cm.则AC=__2_或__4_ cm.
7.用一副三角尺画角,画出的角度可以是( C )
2
一、多姿多彩的几何图形 二、直线 射线 线段 三、角
3
展开、从不同方向看转化为
几 立体图形
折叠、旋转
平面图形
何 图 形 平面图形
直线、射线、线段
两点确定一条直线 两点之间,线段最短
角的定义和度量方法
角 角的大小比较 角的平分线
余角和补角 同角或等角的余角相等 同角或等角的补角相等
4
1.(2012大连,有改动)下列几何体中,从正面看是三
17
相关文档
最新文档