贝叶斯网络与朴素贝叶斯方法
matlab贝叶斯算法

matlab贝叶斯算法一、引言随着科技的发展,人工智能、数据挖掘等领域的研究日益深入,贝叶斯算法作为一种基于概率推理的方法,在这些领域中得到了广泛的应用。
MATLAB 作为一款强大的数学软件,为贝叶斯算法的实现和应用提供了便利。
本文将介绍贝叶斯算法的原理,以及如何在MATLAB中实现和应用贝叶斯算法。
二、贝叶斯算法的原理1.贝叶斯定理贝叶斯定理是贝叶斯算法的基础,它描述了在已知某条件概率的情况下,求解相关联的逆条件概率。
贝叶斯定理的数学表达式为:P(A|B) = P(B|A) * P(A) / P(B)2.概率论基础贝叶斯算法涉及到的概率论基础包括概率分布、条件概率、独立性等概念。
在实际问题中,我们需要根据已知条件来计算概率分布,从而得出相关联的概率值。
三、MATLAB实现贝叶斯算法的方法1.贝叶斯网络贝叶斯网络是一种基于贝叶斯定理的图形化表示方法,它可以帮助我们构建复杂的问题模型。
在MATLAB中,可以使用Bayes Net Toolbox工具包来创建和计算贝叶斯网络。
2.极大似然估计极大似然估计是一种求解概率模型参数的方法。
在贝叶斯算法中,我们可以通过极大似然估计来优化模型参数,从而提高预测准确性。
在MATLAB中,可以使用统计工具箱中的极大似然估计函数进行计算。
3.朴素贝叶斯分类器朴素贝叶斯分类器是一种基于贝叶斯定理的分类方法,它要求特征之间相互独立。
在MATLAB中,可以使用朴素贝叶斯分类器进行文本分类、故障诊断等任务。
四、实例分析1.故障诊断应用贝叶斯算法在故障诊断领域具有广泛的应用。
通过建立故障诊断模型,可以对设备的故障进行预测和诊断。
例如,在MATLAB中,可以使用朴素贝叶斯分类器对轴承故障数据进行分类。
2.文本分类应用贝叶斯算法在文本分类领域也具有较高的准确率。
通过构建贝叶斯网络模型,可以对文本进行自动分类。
例如,在MATLAB中,可以使用朴素贝叶斯分类器对新闻分类数据进行分类。
医学中的贝叶斯

• 朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此: P(F1F2...Fn|C)P(C) = P(F1|C)P(F2|C) ... P(Fn|C)P(C)
P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66
朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基 础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很 少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模 型与其他分类方法相比具有最小的误差率。但是朴素贝叶斯分 类有一个限制条件,就是特征属性必须有条件独立或基本独立 (实际上在现实应用中几乎不可能做到完全独立)。
贝叶斯算法
1.2 贝叶斯分类概述
贝叶斯分类基于贝叶斯定理,贝叶斯定理 是由18世纪概率论和决策论的早起研究者 Thomas Bayes发明的,故用其名字命名为贝叶 斯定理。
分类算法的比较研究发现,一种称为朴素
贝叶斯分类法的简单贝叶斯分类法可以与决策 树和经过挑选的神经网络分类器相媲美。用于 大型数据库,贝叶斯分类法也已表现出高准确 率和高速度。
两者是有确定的关系,贝叶斯定理就是这种关系的 陈述。
贝叶斯公式
贝叶斯公式提供了从先验概率P(A)、P(B) 和P(B|A)计算后验概率P(A|B)的方法:
P(A|B)=P(B|A)*P(A)/P(B) ,P(A|B)随着P(A) 和P(B|A)的增长而增长,随着P(B)的增长而 减少,即如果B独立于A时被观察到的可能性 越大,那么B对A的支持度越小。
P(X )
P(X )
朴素贝叶斯算法,贝叶斯分类算法,贝叶斯定理原理

朴素贝叶斯算法,贝叶斯分类算法,贝叶斯定理原理朴素贝叶斯算法,贝叶斯分类算法,贝叶斯定理原理贝叶斯分类算法是统计学的⼀种分类⽅法,它是⼀类利⽤概率统计知识进⾏分类的算法。
在许多场合,朴素贝叶斯(Naïve Bayes,NB)分类算法可以与决策树和神经⽹络分类算法相媲美,该算法能运⽤到⼤型数据库中,⽽且⽅法简单、分类准确率⾼、速度快。
由于贝叶斯定理假设⼀个属性值对给定类的影响独⽴于其它属性的值,⽽此假设在实际情况中经常是不成⽴的,因此其分类准确率可能会下降。
为此,就衍⽣出许多降低独⽴性假设的贝叶斯分类算法,如TAN(tree augmented Bayes network)算法。
朴素贝叶斯算法的核⼼思想:选择具有最⾼后验概率作为确定类别的指标。
--------------------朴素贝叶斯算法设每个数据样本⽤⼀个n维特征向量来描述n个属性的值,即:X={x1,x2,…,xn},假定有m个类,分别⽤C1, C2,…,Cm表⽰。
给定⼀个未知的数据样本X(即没有类标号),若朴素贝叶斯分类法将未知的样本X分配给类Ci,则⼀定是P(Ci|X)>P(Cj|X) 1≤j≤m,j≠i根据贝叶斯定理由于P(X)对于所有类为常数,最⼤化后验概率P(Ci|X)可转化为最⼤化先验概率P(X|Ci)P(Ci)。
如果训练数据集有许多属性和元组,计算P(X|Ci)的开销可能⾮常⼤,为此,通常假设各属性的取值互相独⽴,这样先验概率P(x1|Ci),P(x2|Ci),…,P(xn|Ci)可以从训练数据集求得。
根据此⽅法,对⼀个未知类别的样本X,可以先分别计算出X属于每⼀个类别Ci的概率P(X|Ci)P(Ci),然后选择其中概率最⼤的类别作为其类别。
朴素贝叶斯算法成⽴的前提是各属性之间互相独⽴。
当数据集满⾜这种独⽴性假设时,分类的准确度较⾼,否则可能较低。
另外,该算法没有分类规则输出。
在所有的机器学习分类算法中,朴素贝叶斯和其他绝⼤多数的分类算法都不同。
朴素贝叶斯在社交网络分析中的应用(Ⅱ)

朴素贝叶斯在社交网络分析中的应用在当今数字化社会中,社交网络已经成为人们日常生活的一部分。
人们通过社交网络平台进行信息交流、社交互动以及展示自己的生活状态。
然而,社交网络中所涵盖的信息量庞大,要想从中挖掘出有价值的信息并进行有效的分析,需要借助一些专业的技术手段。
朴素贝叶斯算法就是其中之一,它在社交网络分析中有着广泛的应用。
首先,我们来了解一下朴素贝叶斯算法的基本原理。
朴素贝叶斯算法是一种基于概率统计的分类方法,它基于贝叶斯定理和特征条件独立假设,通过对已知数据进行学习,然后利用学习到的模型对未知数据进行分类。
在社交网络分析中,朴素贝叶斯算法可以用于文本分类、情感分析等方面。
其次,朴素贝叶斯算法在社交网络文本分类中的应用。
社交网络中存在大量的文本信息,包括用户发布的动态、评论、回复等。
对这些文本信息进行分类可以帮助我们更好地理解用户的兴趣和偏好,从而为用户提供更加个性化的推荐服务。
朴素贝叶斯算法通过学习文本的特征词频率,可以对文本进行分类,将其归为不同的类别,比如情感类别、主题类别等。
再次,朴素贝叶斯算法在社交网络情感分析中的应用。
社交网络中的用户在进行互动时会表达各种情感,比如喜怒哀乐、赞美批评等。
情感分析可以帮助我们了解用户对某一话题或产品的态度,对于企业和机构来说,这种信息是非常宝贵的。
朴素贝叶斯算法可以通过学习情感词的频率和分布,对文本进行情感分类,从而实现对用户情感的自动分析。
最后,朴素贝叶斯算法在社交网络舆情监控中的应用。
舆情监控是企业和机构非常重要的工作之一,通过监控社交网络中的舆论动向,可以及时发现和处理一些负面信息,保护自身品牌形象。
朴素贝叶斯算法可以通过学习舆情文本中的关键词频率和分布,对舆情进行分类和评判,辅助企业和机构及时做出应对措施。
综上所述,朴素贝叶斯算法在社交网络分析中有着广泛的应用,它可以帮助我们更好地理解用户的行为和情感,为企业和机构提供更加精准的信息服务。
当然,朴素贝叶斯算法也并非没有局限性,比如对于特别复杂的文本信息以及长尾词频分布情况下的分类准确性等方面都存在一定的挑战。
机器学习中的贝叶斯定理

机器学习中的贝叶斯定理贝叶斯定理,又被称为贝叶斯公式,是概率论中的一种重要定理。
在机器学习领域,贝叶斯定理被广泛应用于各种类型的分类、回归和聚类问题以及异常检测、信息检索等方面。
贝叶斯定理的基本形式如下:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)是在给定条件B下,事件A的概率;P(B|A)是在事件A发生的条件下,事件B的概率;P(A)和P(B)分别是事件A和事件B的先验概率。
在机器学习中,贝叶斯定理的应用一般分为两种:朴素贝叶斯和贝叶斯网络。
朴素贝叶斯朴素贝叶斯(Naive Bayes)是一个基于贝叶斯定理的简单而有效的分类算法。
它的核心思想是,假设每个特征或者属性都是相互独立的,即使这种独立性在现实中并不存在。
这个假设是“朴素”的,因为它简化了计算过程,使得模型可以在计算能力有限的设备上高效地进行分类。
以垃圾邮件过滤为例,朴素贝叶斯可以根据电子邮件的文本内容,统计所有已知垃圾邮件和非垃圾邮件的词汇,并计算一个给定邮件是垃圾邮件的概率。
这个概率是根据贝叶斯定理计算出来的,假设我们已知一个邮件包含某些词汇,那么这个邮件属于垃圾邮件的可能性是多少,这个概率就是朴素贝叶斯算法输出的结果。
贝叶斯网络贝叶斯网络(Bayesian Network)是另一种利用贝叶斯定理的概率图模型。
它是一种有向无环图,用于表示多个随机变量之间的依赖关系。
贝叶斯网络可以用于建模复杂的现实世界中的问题,如医学诊断、金融分析和自然语言处理等。
在医学诊断领域,扩展的贝叶斯网络被广泛应用于协助医生进行诊断,它可以自动地根据症状推断出患者的疾病类型或对某种疾病的患病风险进行预测。
贝叶斯网络的一个重要应用就是处理多变量状态不同时的事件。
例如,地震预测领域,可以建立一个包含地震地点、震级、时间、深度和地震前的电磁波信号等变量的贝叶斯网络,用于预测未来检测到的地震的位置和强度。
结论贝叶斯定理在机器学习领域的应用已经成为了不可或缺的一部分。
贝叶斯算法程序

贝叶斯算法程序贝叶斯算法是一种基于概率统计的算法,在机器学习领域中应用广泛。
它的核心思想是通过已知的先验概率和观测数据更新后验概率,从而进行分类或预测。
在贝叶斯算法程序中,首先需要确定待分类的问题或预测的目标。
然后,我们需要收集相关的数据,并根据数据进行特征提取和预处理。
接下来,我们使用贝叶斯定理来计算后验概率,并将数据分为不同的类别。
在贝叶斯算法中,先验概率是指在没有任何观测数据的情况下,我们对于不同类别的概率的估计。
观测数据是指我们已经获得的关于待分类问题的信息。
通过使用先验概率和观测数据,我们可以计算出后验概率,即在给定观测数据的情况下,待分类问题属于不同类别的概率。
贝叶斯算法程序的关键步骤是特征提取和预处理。
在这一步骤中,我们需要根据问题的特点选择合适的特征,并对数据进行预处理,以便更好地提取特征。
常用的预处理方法包括数据清洗、数据平滑、特征选择和降维等。
在特征提取和预处理完成后,我们可以开始使用贝叶斯定理计算后验概率。
贝叶斯定理可以表示为:后验概率 = 先验概率× 似然概率 / 证据其中,先验概率是我们根据先验知识或经验对不同类别的概率进行估计;似然概率是指在给定某个类别的情况下,观测数据出现的概率;证据是观测数据出现的概率。
通过计算不同类别的后验概率,我们可以确定待分类问题属于哪个类别。
在贝叶斯算法程序中,我们可以使用不同的方法来计算后验概率。
常见的方法包括朴素贝叶斯算法、贝叶斯网络和高斯过程等。
这些方法在计算后验概率时,考虑了不同特征之间的相关性和条件独立性。
朴素贝叶斯算法是贝叶斯算法中最简单和最常用的一种方法。
它假设不同特征之间是条件独立的,并且每个特征对于分类的贡献是相互独立的。
朴素贝叶斯算法可以通过计算每个特征在给定类别下的条件概率,并将所有特征的条件概率相乘,得到后验概率的估计。
贝叶斯网络是一种图模型,用于表示不同特征之间的依赖关系。
在贝叶斯网络中,每个节点表示一个特征,边表示特征之间的依赖关系。
python库中的5种贝叶斯算法
python库中的5种贝叶斯算法Python是一种广泛使用的编程语言,拥有丰富的库和工具包,其中包括了多种贝叶斯算法。
贝叶斯算法是一类基于贝叶斯定理的统计学方法,可以用于分类、聚类、概率估计等任务。
在Python中,我们可以使用以下5种常见的贝叶斯算法来解决不同的问题。
1. 朴素贝叶斯算法(Naive Bayes)朴素贝叶斯算法是一种简单而有效的分类算法,它假设所有特征之间相互独立。
在文本分类、垃圾邮件过滤等任务中得到了广泛应用。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes`模块来实现朴素贝叶斯算法。
该模块提供了多种朴素贝叶斯分类器的实现,如高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯。
2. 高斯朴素贝叶斯算法(Gaussian Naive Bayes)高斯朴素贝叶斯算法假设特征的概率分布服从高斯分布。
它常用于处理连续型特征的分类问题。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes.GaussianNB`类来实现高斯朴素贝叶斯算法。
该类提供了`fit`和`predict`等方法,可以用于拟合模型和进行预测。
3. 多项式朴素贝叶斯算法(Multinomial Naive Bayes)多项式朴素贝叶斯算法适用于处理离散型特征的分类问题,如文本分类中的词频统计。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes.MultinomialNB`类来实现多项式朴素贝叶斯算法。
该类同样提供了`fit`和`predict`等方法,可以用于拟合模型和进行预测。
4. 伯努利朴素贝叶斯算法(Bernoulli Naive Bayes)伯努利朴素贝叶斯算法适用于处理二值型特征的分类问题,如文本分类中的二进制词袋模型。
在Python中,我们可以使用scikit-learn库中的`sklearn.naive_bayes.BernoulliNB`类来实现伯努利朴素贝叶斯算法。
朴素贝叶斯方法PPT课件
个贝叶斯网络中,节点集合 XX1, ,Xn,则
其联合概率分布P(X)是此贝叶斯网络中所有条
件分布的乘积:PX n PXi |i i1
2020/11/12
知识管理与数据分析实验室
13
二、贝叶斯网络 定义
A P 1
PX1 |1 B
C PX2 |1
• 这是一个最简单的包含3个节点的贝叶斯网络。其
• 贝叶斯网络适用于表达和分析不确定性和 概率性事件,应用于有条件地依赖多种控 制因素的决策过程,可以从不完全、不精 确或不确定的知识或信息中做出推理。
2020/11/12
知识管理与数据分析实验室
9
二、贝叶斯网络 引言
• 贝叶斯网络由Judea Pearl于1988年提出, 最初主要用于处理人工智能中的不确定信 息。
2020/11/12
知识管理与数据分析实验室
6
一、贝叶斯法则 算例
• 利用贝叶斯公式建模:
– 前提条件:设M是高阻挠成本类型为X1,低阻挠 成本类型为X2;
– 结果:M对K进行阻挠为A; – 所求概率即为在已知结果 A的情况下,推断条
件为X1的后验概率 P X1 | A;
– 已知 PA| X1 为0.2,PA| X2 为1,P(X1) 为0.7,P(X2)为0.3。
• 即,根据实际市场的运作情况,企业K可判 断企业M为高阻挠成本类型的概率为0.32, 换句话说,企业M更可能属于低阻挠成本类 型。
2020/11/12
知识管理与数据分析实验室
8
二、贝叶斯网络 引言
• 贝叶斯网络又称为信度网络,是基于概率 推理的图形化网络。它是贝叶斯法则的扩 展,而贝叶斯公式则是这个概率网络的基 础。
十大经典算法朴素贝叶斯讲解PPT
在人工智能领域,贝叶斯方法是一种非常具有 代表性的不确定性知识表示和推理方法。
贝叶斯定理:
P(A)是A的先验概率或边缘概率。之所以称为“先验”是因为它不考 虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称 作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称 作B的后验概率。 P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant).
购买电脑实例:
购买电脑实例:
P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019×0.357 = 0.007
因此,对于样本X,朴素贝叶斯分类预测 buys_computer =”yes” 特别要注意的是:朴素贝叶斯的核心在于它假设向量 的所有分量之间是独立的。
扩展:
该算法就是将特征相关的属性分成一组,然后假设不 同组中的属性是相互独立的,同一组中的属性是相互 关联的。 (3)还有一种具有树结构的TAN(tree augmented naï ve Bayes)分类器,它放松了朴素贝叶斯中的独 立性假设条件,允许每个属性结点最多可以依赖一个 非类结点。TAN具有较好的综合性能。算是一种受限 制的贝叶斯网络算法。
Thank you!
贝叶斯算法处理流程:
第二阶段——分类器训练阶段: 主要工作是计算每个类别在训练样本中出现 频率以及每个特征属性划分对每个类别的条件 概率估计。输入是特征属性和训练样本,输出 是分类器。 第三阶段——应用阶段:
Hale Waihona Puke 这个阶段的任务是使用分类器对待分类项进行分类 ,其输入是分类器和待分类项,输出是待分类项与类 别的映射关系。
贝叶斯网络全解共64页
了解马尔科夫链、隐马尔科夫模型的网络拓扑和含 义
9
一个实例
10
后验概率
c1、c2表示左右两个信封。 P(R),P(B)表示摸到红球、黑球的概率。 P(R)=P(R|c1)*P(c1) + P(R|c2)*P(c2):全概率公式 P(c1|R)=P(R|c1)*P(c1)/P(R)
记单词数目为N,即形成词汇表。 将每个样本si向量化:初始化N维向量xi,若
词wj在si中出现,则xij=1,否则,为0。从 而得到1000个N维向量x。 使用:P(c|x)=P(x|c)*P(c) / P(x)
14
分解
P(c|x)=P(x|c)*P(c) / P(x) P(x|c)=P(x1,x2…xN|c)=P(x1|c)*P(x2|c)…P(xN|c) P(x)=P(x1,x2…xN)=P(x1)*P(x2)…P(xN) 带入公式: P(c|x)=P(x|c)*P(cP(c1)=P(c2)=1/2 如果摸到一个红球,那么,这个信封有1美元的概率 是0.6 如果摸到一个黑球,那么,这个信封有1美元的概率 是3/7
11
朴素贝叶斯的假设
一个特征出现的概率,与其他特征(条件)独 立(特征独立性)
其实是:对于给定分类的条件下,特征独立
7
复习:互信息
两个随机变量X,Y的互信息,定义为X,Y 的联合分布和独立分布乘积的相对熵。
I(X,Y)=D(P(X,Y) || P(X)P(Y))
I(X,Y) p(x,y)logp(x,y)
x,y
p(x)p(y)
8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 其中,P C ci 可由领域专家的经验获得, 而 P X x | C ci 和 P X x 的计算较为困 难。
2017/10/27
知识管理与数据分析实验室
21
三、朴素贝叶斯 贝叶斯分类器
• 贝叶斯网络分类器进行分类的两个阶段
• 贝叶斯网络分类器的学习 阶段一 • (结构学习和CPT学习) • 贝叶斯网络分类器的推理 阶段二 • (计算类节点的条件概率,对数据进行分类)
2017/10/27 知识管理与数据分析实验室 9
二、贝叶斯网络 引言
• 贝叶斯网络由Judea Pearl于1988年提出, 最初主要用于处理人工智能中的不确定信 息。 • 随后,逐步成为处理不确定性信息技术的 主流,并在文本分类、字母识别、经济预 测、医疗诊断、工业控制等领域得到了广 泛的应用。目前,贝叶斯网络是不确定知 识表达和推理领域最有效的理论模型之一。
P X i | A
2017/10/27
P A | Xi P Xi
P A| X P X
k 1 k k
知识管理与数据分析实验室 5
n
一、贝叶斯法则 算例
全垄断市场条件下,只有一家企业M提供产品和服务。企 业K考虑是否进入该市场。同时,企业M为阻止K进入该 市场采取了相应的投资行为,而K能否进入该市场完全取 决于M为阻止其进入所花费的成本大小。 假设K并不知道原垄断者M是属于高阻挠成本类型还是低 阻挠成本类型,但能确定,如果M属于高阻挠成本类型, K进入市场时M进行阻挠的概率是20%;如果M属于低阻 挠成本类型,K进入市场时M进行阻挠的概率是100%。 现设K认为M属于高阻挠成本企业的概率为70%,而在K 进入市场后,M确实进行了商业阻挠。试以企业K的角度, 判断企业M为高阻挠成本类型的概率。
P X x | C ci P( X xk | C ci ) 朴素贝叶斯简化
i 1
2017/10/27
知识管理与数据分析实验室
13
二、贝叶斯网络 定义
A
P 1
P X 1 | 1
C B
P X 2 | 1
• 这是一个最简单的包含3个节点的贝叶斯网络。其 中,P 1 是节点A的概率分布(先验概率),P X1 | 1 与 P X 2 | 1 为节点B,C的概率分布(后验概率)
P C ci | X x Max P C c1 | X x ,..., P C cm | X x
2017/10/27 知识管理与数据分析实验室 20
三、朴素贝叶斯 贝叶斯分类器
• 由贝叶斯公式可以得到:
P X x | C ci P C ci P C ci | X x P X x
• 即,根据实际市场的运作情况,企业K可判 断企业M为高阻挠成本类型的概率为0.32, 换句话说,企业M更可能属于低阻挠成本类 型。
8
2017/10/27
知识管理与数据分析实验室
二、贝叶斯网络 引言
• 贝叶斯网络又称为信度网络,是基于概率 推理的图形化网络。它是贝叶斯法则的扩 展,而贝叶斯公式则是这个概率网络的基 础。 • 贝叶斯网络适用于表达和分析不确定性和 概率性事件,应用于有条件地依赖多种控 制因素的决策过程,可以从不完全、不精 确或不确定的知识或信息中做出推理。
2017/10/27 知识管理与数据分析实验室 17
二、贝叶斯网络 研究前景
• 贝叶斯网络与马尔科夫链
• 此外,针对其计算精度低、收敛速度较慢的不足,随 机拟MCMC方法也具有一定的优越性。 • 不过,该算法存在的收敛速度慢和收敛性判断困难等 问题仍未能得到有效解决。因此,如何更有效地将 MCMC方法用于贝叶斯网络的结构学习与推理学习成 为近年来重要的研究方向之一。
– 如果你看到一个人总是做一些好事,那这个人 就越可能是一个好人。
• 数学语言表达就是:支持某项属性的事件 发生得越多,则该属性成立的可能性就愈 大
– 贝叶斯法则
2017/10/27 知识管理与数据分析实验室 3
一、贝叶斯法则 起源
• 贝叶斯法则来源于英国数学家 贝叶斯(Thomas Bayes)在 1763年发表的著作《论有关 机遇问题的求解》。
A
A 0.8
B 0.1
C 0.05
D 0.05
B
C D 2017/10/27
0.2
0.25 0.05
0.65
0.1 0.1 知识管理与数据分析实验室
0.1
0.60 12
二、贝叶斯网络 定义
• 数学定义:
– 贝叶斯网络B(D,P),D表示一个有向无环图, P P X1 | 1 ,..., P X n | n 是条件概率分布的集 合,其中 i 是D中节点Xi的父节点集合。在一 个贝叶斯网络中,节点集合 X X1,, X n ,则 其联合概率分布P(X)是此贝叶斯网络中所有条 n 件分布的乘积:P X P X i | i
P X x P X x1 ,..., X xn P X xi
i
2017/10/27 知识管理与数据分析实验室 24
n
三、朴素贝叶斯 方法
P X x | C ci P C ci P C ci | X x 贝叶斯分类器 P X x
1 1
2017/10/27
知识管理与数据分析实验室
7
一、贝叶斯法则 算例
根据贝叶斯公式可计算:
P A | X1 P X1 0.2 0.7 P X 1 | A 0.32 P A | X1 P X1 P A | X 2 P X 2 0.2 0.7 1 0.3
2017/10/27 知识管理与数据分析实验室
A
C
B
11
二、贝叶斯网络 定义
• 一个节点与节点之间的条件概率表 (Conditional Probability Table, CPT)。 如果节点没有任何父节点,则该节点概率 为其先验概率。否则,该节点概率为其在 父节点条件下的后验概率。
目标类型
实际类型
2017/10/27
知识管理与数据分析实验室
23
三、朴素贝叶斯 引入
• 朴素贝叶斯(Naïve Bayes)算法是贝叶斯分类 器中研究较多,使用较广的一种,在许多场合, 朴素贝叶斯的分类算法可以与决策树和神经网络 分类算法相媲美。 • 朴素贝叶斯分类器的基础:假设一个指定类别中 各个属性的取值是相互独立的,即在给定目标值 的情况下,观察到联合的 X x1 ,..., X xn 的概 率正好是对每个单独属性的概率乘积。
6
2017/10/27
知识管理与数据分析实验室
一、贝叶斯法则 算例
• 利用贝叶斯公式建模:
– 前提条件:设M是高阻挠成本类型为X1,低阻挠 成本类型为X2; – 结果:M对K进行阻挠为A; – 所求概率即为在已知结果 A的情况下,推断条 件为X 的后验概率 P X1 | A; – 已知 P A | X1 为0.2,P A | X 2 为1,P(X ) 为0.7,P(X2)为0.3。
两个阶段的时间复杂度均取决于特征值间的依赖程度
2017/10/27 知识管理与数据分析实验室 22
三、朴素贝叶斯 贝叶斯分类器
• 根据对特征值间不同关联程度的假设,可 以得出各种贝叶斯分类器,其中较典型、 研究较深入的贝叶斯分类器主要有四种, 分别是:
– NB( Naïve Bayes ) – TAN( Tree Augmented Naïve-Bayes ) – BAN (BN Augmented Naïve-Bayes ) – GBN(Global Bayesian Networks)
2017/10/27 知识管理与数据分析实验室 14
二、贝叶斯网络 研究前景
• 贝叶斯网络的特性:
– 贝叶斯网络本身是一种不定性因果关联模型,它将多 元知识图解可视化,贴切的蕴含了网络节点变量之间 的因果关系及条件相关关系; – 贝叶斯网络具有强大的不确定性问题的处理能力,它 用条件概率表达各个信息要素之间的相关关系,能在 有限的、不完整的、不确定的信息条件下进行知识学 习和推理; – 贝叶斯网络能有效的进行多源信息表达与融合,可将 故障诊断与维修决策相关的各种信息纳入到网络结构 中,并按节点的方式统一进行处理与信息融合。
2017/10/27
知识管理与数据分析实验室
18
三、朴素贝叶斯 引言
• 贝叶斯网络与朴素贝叶斯
贝叶斯法则 数 学 基 础
2017/10/27
贝叶斯网络 模 型 朴素贝叶斯 具体方法
知识管理与数据分析实验室 19
三、朴素贝叶斯 贝叶斯分类器
• 贝叶斯分类器是用于分类的贝叶斯网络。 该网络中通常包含类节点C,其取值来自类 集合C1, C2 ,, Cm ;还包含一组节点 X X1,, X n ,表示用于进行分类的特征属 性。对于贝叶斯网络分类器,若某一待分 类的样本D,其分类特征值为 x x1,, xn , 则样本D属于类别Ci的概率 , 应满足:
2017/10/27 知识管理与数据分析实验室 10
二、贝叶斯网络 定义
• 符号B(D,G)表示一个贝叶斯网络, 包括两个部分:
– 一个有向无环图(Directed Acyclic Graph, DAG)。它由代 表变量的节点及连接这些节点的有 向边构成。其中,节点代表随机变 量,可以是任何问题的抽象,如: 测试值、观测现象、意见征询等; 节点间的有向边代表了节点间的互 相关系(由父节点指向其后代节 点)。
贝叶斯法则最初是一种用于概率论基础理论 的归纳推理方法,但随后被一些统计学学者 发展为一种系统的统计推断方法,运用到统 计决策、统计推断、统计估算等诸多领域。