2018年高考数列求通项公式专题(史上最全)

2018年高考数列求通项公式专题(史上最全)
2018年高考数列求通项公式专题(史上最全)

数列通项公式专题讲座-基础版-xs

数列通项公式专题讲座 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 变式训练 1、(2004,全国I ,理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。

变式训练 1.已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 2.在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 三 类型3 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式训练 1.已知数}{n a 的递推关系为43 21+= +n n a a ,且11=a 求通项n a 。 2.已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈ 证明:数列{b n }是等差数列;

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题 1、数列的通项公式与前n 项的和的关系 11, 1,2 n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++L ). 2、等差数列的通项公式 *11(1)() n a a n d dn a d n N =+-=+-∈; 3、等差数列其前n 项和公式为 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-. 4、等比数列的通项公式 1*11()n n n a a a q q n N q -== ?∈; 5、等比数列前n 项的和公式为 11 (1),11,1n n a q q s q na q ?-≠?=-??=? 或 11,11,1 n n a a q q q s na q -?≠? -=??=?. 常用数列不等式证明中的裂项形式: (1)( 1111n n =-+n(n+1)1111 ()1 k n k =-+n(n+k);

(2) 211111()1211 k k k <=---+2k (3)211111111(1)(1)1k k k k k k k k k - =<<=-++-- (4) 1111 (1)(2)2(1)(1)(2)n n n n n n n ??=- ??+++++?? ; (5) ()()11 1!!1! n n n n =- ++ (6) = < <=1(1)n n >+) 一.数列的通项公式的求法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 2 55a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =, 即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………①

求数列通项公式专题典型例题精校版

数列的通项公式专题 题型一【积差求商】形如1 1++?=-n n n n a ka a a 例1:已知数列}{n a 满足112++?=-n n n n a a a a ,且2 11=a ,求数列}{n a 的通项公式.变式训练1:已知数列}{n a 满足113++?=-n n n n a a a a ,且911=a ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 满足113++?=-n n n n a a a a ,且21=a ,求数列}{n a 的通项公式.题型二【n a 与n S 】 例2:已知数列}{n a 的前n 项和22+=n S n ,求数列}{n a 的通项公式.

变式训练1:已知数列}{n a 的前n 项和n S 满足1)1(log 2+=+n S n ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 的前n 和为n S ,21=a ,且)1(1++=+n n S na n n ,求n a .变式训练3:已知数列}{n a 的前n 和为n S ,且满足21),2(,0211=≥=?+-a n S S a n n n ,求n a .变式训练4:已知数列}{n a 的前n 项和n S 满足2)1(4 1+=n n a S 且0>n a ,求}{n a 通项公式.变式训练5:数列{}n a 满足11154,3 n n n a S S a ++=+=,求n a .

题型三【累加法】形如已知1a 且()1n n a a f n +-=(()f n 为可求和的数列)的形式均可用累加法。例3:已知数列}{n a ,且21=a ,n a a n n =-+1,求通项公式n a .变式训练1:已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练2:已知数列}{n a ,且21=a ,n n n a a 21+=+,求通项公式n a .变式训练3:数列{}n a 中已知11=a ,3231+++=+n a a n n n ,求{}n a 的通项公式.

数列通项公式的求法教案

课 题:数列通项公式的求法 课题类型:高三第一轮复习课 授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法 求通项(3)累乘法求通项,并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养学生观察、辨析、运用的 综合思维能力,掌握由特殊到一般、无限化有限的化归转化的数学思想, 提高学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识—再实践”的辨证唯物 主义观点。 教学重点、难点: 重 点:数列通项公式的基本求法 难 点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,灵活运用解题。请同学们思考解决数列问题的关键是什么?(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的 重视,提高学习的积极性。 二、启发诱导、总结方法 1、利用公式求通项 《先给出例题,分析总结方法》 师生互动: 请同学分析叙述解题过程,老师板书。 {}{}{}{}的通项公式求且数列是各项都为正数的等比 为等差数列设高考卷一例、n n n n b a b a b a b a b a ,,13,21,1,,)07(355311=+=+=={}{}1 2223545322)1(212,202 74,1341,21210,,-==-+===>-===++=+=++=+>n n n n n b n n a d q q q q q d b a q d b a q q b d a ,,则所以所以(舍)因为或解得依题得的公比为等比数列的公差为解:设等差数列

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

高中数学复习——数列通项公式的十种求法及相应题目

高中数学复习——数列通项公式的十种求法及 相应题目 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出 3 1(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或11-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则???-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =12-n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥? ? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1 -n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n Λ ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( )* ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析:Q 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈ 故3241123123411231 n n n a a a a n a a n a a a a n -===-g g g g L g g g g L g () 2,n n N *≥∈ 而11a =也适合上式,所以() n a n n N *=∈ 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是 关于1n a -的“一次函数”的形式,这时用下面的方法: 一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k = - 故111n n b b a k a k k -? ?+=+ ?--? ?

数列的通项公式练习题通项式考试专题

数列的通项公式练习题通项式考试专题 This model paper was revised by LINDA on December 15, 2012.

数列求和公式练习 1、 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=, 5313 a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ?? ????的前n 项和n S . 2、(){213}.n n n -?求数列前项和 3、已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S .(Ⅰ)求n a 及 n S ;(Ⅱ)令2 1 1 n n b a = -(n N +∈),求数列{}n b 的前n 项和n T . 4、已知等差数列{}n a 的前3项和为6,前8项和为-4。(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1*(4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 的前n 项和n S 5、等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数 (0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(2)当b=2时,记 1 ()4n n n b n N a ++= ∈ 求数列{}n b 的前n 项和n T 6、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列 {}n a 的通项公式;(Ⅱ)求数列{}n a 的前n 项和n S ; 7、已知数列{n a }满足:}{,2)32()12(3121n n n b n a n a a 数列+?-=-+++ 的前n 项和 n n n n W n b a n n S 项和的前求数列}{.222?-+=.

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

数列专题五构造法求通项公式

1.已知数列{a n}中,a1 =1,a n+1=2a n+4,,求数列{a n}的通项公式。 2.已知数列{a n}中,a1 =1,a n+1=3a n+4n+1,求数列{a n}的通项公式。 3.已知数列{a n}中,a1 =1,3a n a n+1+2a n+1- a n=0, 求数列{a n}的通项公式。4.[2012·广东卷] 设数列{a n}的前n项和为S n,满足2S n=a n+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列. (1)求a1的值; (2)求数列{a n}的通项公式; (3)证明:对一切正整数n,有1 a1+1 a2+…+ 1 a n< 3 2.

5.2010全国(20)设数列满足且 . (1)求的通项公式; (Ⅱ)设. 6.2011广东20. 设数列满足, (1)求数列的通项公式; (2)证明:对于一切正整数n,. {}n a 10a =111111n n a a +-=--{}n a 1,1n n n k n k b b S == =<∑记S 证明:0,b >{}n a 111=,(2)22 n n n nba a b a n a n --= ≥+-{}n a 1 112 n n n b a ++≤+

7.(2010全国)已知数列{}n a 中,1111,n n a a c a +==- . (Ⅰ)设51,22 n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 . 8. [2012·全国卷] 函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标. (1)证明:2≤x n

数列的通项公式练习题(通项式考试专题)

求数列通项公式专题练习 1、 设n S 就是等差数列}{n a 得前n 项与,已知 331S 与441S 得等差中项就是1,而551S 就是331S 与44 1 S 得等比中项,求数列}{n a 得通项公式 2、已知数列{}n a 中,3 1 1= a ,前n 项与n S 与n a 得关系就是 n n a n n S )12(-= ,试求通项公式n a 。 3、已知数列{}n a 中,11=a ,前n 项与n S 与通项n a 满足)2,(,1 222 ≥∈-=n N n S S a n n n ,求通项n a 得表达式、 4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 得表达式。 5、已知数}{n a 得递推关系为43 2 1+=+n n a a ,且11=a 求通项n a 。 6、已知数列{}a n 得前n 项与S n b n n =+()1,其中{}b n 就是首项为1,公差为2得等差数列,数列{}a n 得通项公式 7、已知等差数列{a n }得首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别就是等比数列{b n }得第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }得通项公式;lTsK3。 8、已知数列}{n a 得前n 项与为n S ,且满足322-=+n a S n n )(* N n ∈.(Ⅰ)求数列}{n a 得通项公式; 9、设数列{}n a 满足2 1 123333 3 n n n a a a a -++++= …,n ∈* N .(Ⅰ)求数列{}n a 得通项; 10、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 得通项公式。 11、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 得通项公式。 数列求与公式练习 1、 设{}n a 就是等差数列,{}n b 就是各项都为正数得等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 得通项公式;(Ⅱ)求数列n n a b ?? ???? 得前n 项与n S . 2、(){213}.n n n -?求数列前项和 3、已知等差数列{}n a 满足:37a =,5726a a +=、{}n a 得前n 项与为n S 、(Ⅰ)求n a 及n S ;(Ⅱ)令2 1 1 n n b a =-(n N +∈),求数列{}n b 得前n 项与n T 、 4、已知等差数列{}n a 得前3项与为6,前8项与为-4。(Ⅰ)求数列{}n a 得通项公式; (Ⅱ)设1* (4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 得前n 项与n S 5、等比数列{n a }得前n 项与为n S , 已知对任意得n N + ∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为 常数)得图像上、(1)求r 得值;(2)当b=2时,记 1 ()4n n n b n N a ++= ∈ 求数列{}n b 得前n 项与n T lJ30p 。

数列的通项公式练习题(通项式考试专题)

2010届高考数学快速提升成绩题型训练 ——数列求通项公式 在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。 已知数}{n a 的递推关系为43 2 1+= +n n a a ,且11=a 求通项n a 。 在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。 已知数列{n a }中11=a 且1 1+=+n n n a a a (N n ∈),,求数列的通项公式。 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. (1)求数列{}a n 的通项公式; 已知等差数列{a n }的首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }的通项公式; 已知数列}{n a 的前n 项和为n S ,且满足 322-=+n a S n n )(*N n ∈. (Ⅰ)求数列}{n a 的通项公式; 设数列{}n a 满足2 1 123333 3 n n n a a a a -++++= …,n ∈* N . (Ⅰ)求数列{}n a 的通项;

数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ; 已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,1 n n n b a a +=(*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=; (II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; 1. 设数列{a n }的前项的和S n = 3 1(a n -1) (n * ∈N ). (Ⅰ)求a 1;a 2; (Ⅱ)求证数列{a n }为等比数列. 3. 已知二次函数()y f x =的图像经过坐标原点,其导函数为 '()62f x x =-,数列{}n a 的 前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上. (Ⅰ)求数列{}n a 的通项公式; 7. 已知数列{}n a 的前n 项和S n 满足2(1),1n n n S a n =+-≥. (Ⅰ)写出数列{}n a 的前3项;,,321a a a (Ⅱ)求数列{}n a 的通项公式. 8. 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。 9. 已知数列}a {n 满足1a 1 n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 10. 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 11. 已知数列}a {n 满足3a 132a 3a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。

高考数学数列通项公式专题复习

【高考地位】 在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。求通项公式也是学习数列时的一个难点。由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。 【方法点评】 方法一 数学归纳法 解题模板:第一步 求出数列的前几项,并猜想出数列的通项; 第二步 使用数学归纳法证明通项公式是成立的. 例1 若数列{}n a 的前n 项和为n s ,且方程2 0n n x a x a --=有一个根为n s -1,n=1,2,3.. (1) 求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法证明 【解析】(1)1211 ,26 a a = = (2)第一步,求出数列的前几项,并猜想出数列的通项; 由2(1)(1)0n n n n S a S a ----=知2 210n n n n S S a S -+-= 1(2)n n n a S S n -=-≥代入2210n n n n S S a S -+-=

1210n n n S S S --+=(2)n ≥………(*) 第二步,使用数学归纳法证明通项公式是成立的.学&科网 【变式演练1】已知数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的通项公式。

错误!未找 到引用源。错误!未找到引用源。 由此可知,当错误!未找到引用源。时等式也成立。 根据(1),(2)可知,等式对任何错误!未找到引用源。都成立。 方法二 n S 法 使用情景:已知错误!未找到引用源。()()n n n S f a S f n ==或 解题模板:第一步 利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式; 第二步 利用1(2)n n n a S S n -=-≥,求出n a 或者转化为n a 的递推公式的形式; 第三步 根据11a S =求出1a ,并代入{}n a 的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式或根据1a 和{}n a 的递推公式求出n a . 例2 在数列{}n a 中,已知其前n 项和为23n n S =+,则n a =__________. 【答案】1 5,1 { 2,2 n n n a n -==≥ 【解析】第一步,利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式; 当2n ≥时,321 1+=--n n s ;

(完整版)等差数列通项公式基础练习

1、若数列a n的通项公式为a n 2n 5,则此数列是( A.公差为2的等差数列 B. 公差为5的等差数列 C.首项为5的等差数列 D. 公差为n的等差数列 2、2005是数列7,13,19,25,31, L ,中的第()项? A.332 B. 333 C. 334 D. 335 3、等差数列3, 7, 11,L ,的一个通项公式为( )A. 4n 7 B. 4n 7 C. 4n 1 D. 4n 1 5、已知等差数列a n的首项为23, 公差是整数, 从第7项开始为负值, 则公差为( A. —5 B. C. D. 6、在等差数列a n中,若a3 a4a5 a6 a7 450 ,则a2 a8 A.45 B.75 C. 180 D.300 7、若a n是等差数列,则a〔a? a3 , a4 a5 a6 , L, a3n 2 a3n a3n , A. 一定不是等差数列 B. 定是递增数列 C. 一定是等差数列 D. 定是递减数列 1、等差数列a n中, a3 50 , a5 30,则a? 2、等差数列a中, a3 a5 24, a2 3,则a6 3、已知等差数列a n 中 a2与比的等差中项为5 , a3与a7的等差中项为7,则a n , 4、一个等差数列中a15 = 33,a25= 66,贝U a 35 = 1、判断实数17、52, 2k 7(k N )是否为等差数列a n 1 , 1,…中的项,若是,是第几项? 2、在等差数列a n中,a1223 , a42143, a n 239,求n及公差d. 3、已知成差数列的四个数之和为26,第二个数和第三个之积为40,求这四个数. 4、已知等差数列a n中,a p q , a q p,求a p q的值. 第1页共2页

专题一 求数列的通项公式

数列专题1:求数列的通项公式 一、观察法 例1、用观察法写出下列数列的一个通项公式: (1)1,6,15,28,45,… (2)5,55,555,5555,55555,… (3)1,2+3,3+4+5,4+5+6+7,5+6+7+8+9,… (4)21,65-,1211,2019-,30 29 ,… 二、由n S 求n a (作差法) 给出数列{}n a 的前n 项和为n S 或1+n S 与n S 的递推关系,或者给出数列{}n a 的前n 项和 n S 与n a 的递推关系,求通项n a 型一:2 111 ≥=?? ?-=-n n S S S a n n n 【法一】“1--n n S S ”代入消元消n a ; 【法二】写多一项,作差消元消n S . 【注意】检验1=n 的值,若1a 的值适合n a 的表达式,应把1a 合并到n a 中去,否则应 写成分段形式. 型二:??? ??≥==-)2( ) 1( 1 1n T T n T a n n n 【法一】“ 1 -n n T T ”代入消元消n a , 【法二】写多一项,作商消元消n T . 例2、(1)若)1(21+-=+n n S n n ,求n a ; (2)若11=a ,)(12 3 *1N n S S n n ∈+=+,求n a .

【变式2】设数列{}n a 的前n 项和为n S (1)若)(3*2N n n n S n ∈-=,求n a . (2)若n n a S 31+=(* N n ∈),0≠n a ,求n a . 三、累加、类乘法 型一:)(1n f a a n n =--或)(1n f a a n n +=+,用累加法求通项公式 ) 1()2()2()1(1223211f a a f a a n f a a n f a a n n n n +=+=-+=-+=--- ? 的情况 检验,1) () 1()2()2()1(21 1 11=+=-+-++++=≥∑-=n i f a n f n f f f a a n n i n 型二: )(1 n f a a n n =-或n n a n f a )(1=+,用累乘法求通项公式 )1()2()2()1(1 223211f f n f n f a a a a a a a a n n n n ???-?-=????--- 1)1()2()2()1(,2a f f n f n f a n n ????-?-=≥ 检验1=n 的情况 ?

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22 n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解: 22(1)4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时 当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 三、累加法

求数列通项公式的各种方法(非常全)

龙文教育-------您值得信赖的专业化个性化辅导学校 龙文教育个性化辅导授课教案 教师: 学生: 时间: 年 月 日 段 课题:数列的通项公式 教学目标:掌握数列通项公式的求法 教学重难点:构造等差等比数列 一、教学内容: 一、利用{ 1(2) 1(1) n n S S n S n n a --≥== 例1.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解: 22(1) 4 231 a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.设数列{}n a 的前n 项的和 1 4122 333 n n n S a += - ?+ ,1,2,3,n = (Ⅰ)求首项1a 与通项n a ; (Ⅱ)设2 n n n T S = ,1,2,3,n = ,证明:1 32 n i i T =< ∑ 解:(I ) 2 11141223 3 3 a S a == - ?+ ,解得:2a =

高考数学玩转压轴题专题复杂数列的通项公式求解问题

专题3.1 复杂数列的通项公式求解问题 一.方法综述 数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为n a 形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略 类型一 数阵(数表)中涉及到的数列通项公式问题 【例1】【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为____. 【答案】12 【指点迷津】1.本题主要考查等差数列通项与整数解问题.根据每行每列都成等差数列,先从第一行入手求出第一行数组成的数列),2,1(1??=j A j 的通项公式,再把第一行的数当成首项,再次根据等差数列这一性质求出第j 数列组成的数列),2,1(??=i A ij ,最后根据整数解方程的解法列举所有解即可. 2.数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项.对于数阵首先要

明确“行”与“列”的概念.横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列.例如:34a 表示第3行第4列.在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列. 【举一反三】【2017江西瑞昌二中第二次段考】把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2015n a =,则n =__________. 【答案】1030 类型二 点列问题中涉及到的数列通项公式问题 【例2】已知点1122(1,),(2,),,(,),n n A y A y A n y L L 顺次为直线11 412 y x = + 上的点,点1122(,0),(,0),,(,0),n n B x B x B x L L 顺次为x 轴上的点,其中1(01)x a a =<<.对于任意*n N ∈,点

相关文档
最新文档