Generating Semantics-Based Trajectories of Moving Objects
基于MPC的麦克纳姆轮移动平台轨迹跟踪控制

2023年第47卷第11期Journal of Mechanical Transmission基于MPC的麦克纳姆轮移动平台轨迹跟踪控制黄晓宇1,2孙勇智1,2李津蓉1,2王翼挺1,2杨颀伟1,2(1 浙江科技学院自动化与电气工程学院,浙江杭州310023)(2 浙江省机器人产业学院,浙江杭州310023)摘要针对麦克纳姆轮全向移动平台轨迹跟踪控制问题,提出了一种模型预测控制(Model Pre⁃dictive Control,MPC)和微分先行比例-积分-微分(Proportional plus Integral plus Derivative,PID)协同的双闭环控制策略。
基于麦克纳姆轮运动学特点,设计了位姿控制环和速度控制环;在位姿控制环建立麦克纳姆轮底盘的线性误差模型,设计二次型目标函数,将路径跟随问题转化为对非线性模型的预测控制;在速度控制环引入微分先行PID控制器,避免输入量频繁的阶跃变化对系统产生高频干扰,加快麦克纳姆轮的角速度收敛,增强了系统稳定性。
仿真实验表明,设计的控制器在收敛速度、跟踪精度方面均高于常见的轨迹跟踪器,对麦克纳姆轮移动平台的控制具有良好的鲁棒性。
关键词麦克纳姆轮轨迹跟踪线性误差模型模型预测控制微分先行PIDTrajectory Tracking Control of Mecanum Wheels Mobile Platform Based on MPC Huang Xiaoyu1,2Sun Yongzhi1,2Li Jinrong1,2Wang Yiting1,2Yang Qiwei1,2(1 School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China)(2 Key Institute of Robotics of Zhejiang Province, Hangzhou 310023, China)Abstract For the trajectory tracking control problem of the omnidirectional mobile platform of Mecanum wheels, a strategy of double closed-loop control with model predictive control (MPC) and differential forward proportional plus integral plus derivative (PID) is proposed. The attitude control loop and velocity control loop are designed based on the kinematics characteristics of Mecanum wheels. The linear error model of the Mecanum wheels chassis is established by the attitude control loop, the quadratic objective function is designed, and the problem of path following is transformed into predictive control for the nonlinear model. In the velocity control loop, the differential forward PID controller is used to avoid the high-frequency disturbance to the system caused by frequent step changes of the input quantity, accelerate the convergence of the angular velocity of the Mecanum wheels, and enhance the stability of the system. Simulation experiments demonstrate that the controller designed in this study has better convergence speed and tracking accuracy than the commonly used trajectory algorithm, and it can provide good robustness to control the mobile platform of Mecanum wheels.Key words Mecanum wheel Trajectory tracking Linear error model Model predictive control Dif⁃ferential forward PID0 引言随着计算机的应用和传感技术的发展,移动机器人技术在智能制造、工业物流等领域得到广泛应用[1-2]。
基于手势交互的机械臂轨迹示教系统

软件工程 SOFTWARE ENGINEERING 第24卷第8期2021年8月V ol.24 No.8Aug. 2021文章编号:2096-1472(2021)-08-55-04DOI:10.19644/ki.issn2096-1472.2021.08.013基于手势交互的机械臂轨迹示教系统花傲阳(上海理工大学机械工程学院,上海 200082)*****************摘 要:为了解决传统机械臂示教方式上手难度高、效率低、人机交互系统不友好的问题,结合机器视觉与神经网络,提出一种基于手势交互的机械臂轨迹示教系统。
该系统通过机器视觉定位指尖位置,记录下指尖的运动轨迹并将其用于机械臂的轨迹示教;通过卷积神经网络识别静态手势,用于与机械臂进行如抓取、放置、开始示教等动作的人机交互。
系统通过ROS(机器人操作系统)与机械臂通信,驱动机械臂完成示教轨迹的复现。
通过设计实验对系统的性能进行评估,结果显示本示教系统具有编程难度低、易用性好、项目部署周期短的优点,可用于复杂轨迹的示教工作,极大地提升了机械臂示教工作的效率。
关键词:机械臂;轨迹示教;机器视觉;神经网络;人机交互中图分类号:TP391.4 文献标识码:AManipulator Trajectory Teaching System based on Gesture InteractionHUA Aoyang(College of Mechanical Engineering , University of Shanghai for Science and Technology , Shanghai 200082, China )*****************Abstract: Aiming at the problems of difficulty to learn, low efficiency and unfriendly human-computer interaction system in traditional manipulator teaching methods, this paper proposes to establish a gesture interaction-based manipulator trajectory teaching system combining machine vision and neural network. Fingertip position is located through machine vision, and the movement trajectory of the fingertip is recorded and used for teaching manipulator trajectory. Convolutional neural network is used to identify static gestures, which are used for Human-computer interaction with the manipulator's actions, such as grasping, placing, and teaching. The system communicates with the manipulator through ROS (Robot Operating System), and drives the manipulator to complete the reproduction of the teaching trajectory. The performance of the system is evaluated through experiment designing. Results show that this teaching system has the advantages of low programming difficulty, user-friendliness, and short project deployment cycle. It can be used for teaching complex trajectories, which greatly improves teaching efficiency of the manipulator.Keywords: manipulator; trajectory teaching; machine vision; neural network; human-computer interaction1 引言(Introduction)近年来,我国制造业发展经历了从制造大国向制造强国的转型升级。
基于单目摄像机的无人机动态目标实时跟踪

2020年8期研究视界科技创新与应用Technology Innovation and Application基于单目摄像机的无人机动态目标实时跟踪辛长浩,常玉克,赵宏智,张彬(北京工业大学,北京100000)引言随着现代科学技术的不断发展,四旋翼无人机的单独工作能力已逐步提高。
但是现实中的很多问题由单个无人机完成并不是完成任务的最佳方式,需要由四旋翼无人机和其他动态目标来组成一个系统共同完成。
对空中无人机与动态目标构成的系统协同合作问题的研究,是当前无人机技术领域研究的前沿课题之一。
四旋翼无人机在执行目标识别与跟踪任务时,需要重点解决以下两个关键问题:首先,传统的无人机目标跟踪研究大多采用GPS 定位技术,但是GPS 信号受环境影响较大,无法对动态目标进行稳定的识别和跟踪;其次,在进行目标跟踪时,需要对无人机机载相机所拍摄视频进行实时分析,准确识别并跟踪动态目标。
因此,本文对空中无人机与动态目标构成的系统协同合作问题进行深入研究,进而提高工作效率。
1整体框架目标物体的搜索锁定与跟踪由硬件与软件两部分组成。
硬件部分由单目相机,微型视觉计算机和飞控组成。
单目相机将拍摄的周围视频信息传输到微型视觉计算机中,微型视觉计算机在视频中逐帧识别提取出目标物,并将目标在图像中的位置转化为无人机坐标系下的位置,同时将转化后的位置信息发送到四旋翼无人机飞控,以控制无人机实现目标跟踪。
1.1单目相机单目相机可以实时拍摄无人机周围的视频信息,如周围的各种障碍物,以及目标物。
由于无人机在飞行过程中会受到各种干扰因素导致机身轻微晃动,使得相机拍摄画面模糊不稳定,因此需要选择高清晰度,高帧率,具有防抖功能的运动相机。
同时为了尽可能使拍摄内容更多,最后我们选择了山狗C4高清运动记录仪。
1.2微型视觉计算机微型视觉计算机的功能是处理单目相机拍摄的视频信息,并将相关信息传送给飞控。
因为无人机运动速度较快,运动形式较复杂,所以对视频信息清晰度与视频帧率要求较高。
基于手眼视觉的空间末端操作器的轨迹规划

明, 基于视觉的轨迹规划可 以协助机器人完成对漂浮 目标 的跟踪 和抓捕 。
关键词 : 末端操作器 ; 轨迹规划 ; 视觉 ; 捕 抓
中 图分 类 号 :P 2 T 9 ;H T 24;M 3 T 7 文 献标 志 码 : A 文 章 编 号 :0 1 4 5 (0 2 0 0 5 0 10 — 5 1 2 1 )7— 79— 6
平 动没 有转动 。 和地 面机 器人 不 同 的是 , 近 过 程 的 轨迹 规 划 有 接
个方 向都有 足够 的冗余 , 末端操作 器可 以完成对 捕获接 口的包络 而 至于碰撞捕获接 口导致 h标 的逃逸 。 i
() 3 进入 轨迹 。末端 操 作器 从 跟 踪点 沿 一定 的轨 迹 到 达预捕 获点 叫做进 入轨 迹 。
t e vso a x d o e e d efco o t l h o o ’ v me t r c .T emo e n r g a h i n w sf e nt n —f trt c nr e rb t Smo e n a k h v me t o r mmi g 0 e e d ef co e d d t v i i h e o ot t p n f h n —f trn e e omo e t e t a tr h r e s c n ld d w t h a y v so a e n t e c n e v t n o me tm.S ef g r ft es a e efco o l o c p u e t et g t a wa o cu e i t e l d b iin b s d o h o s r ai fmo n u h e o o t n es o p c f trc u d h i h e a od tu h w t h a g td rn er b tt c e n ls d te a d h e o ga i n i n n ih t e t c ig a d c p u e o b t v i o c i te t re u g t o o a k d a d co e h i .T e z r vt e vr me t h i h r r y o whc h a k n n a tr fr o r o c u d b x mi e o l eea n di n,w s s ltd b h i f o n - o i lt r h e u t i d c t h t h o o a a k a d c p u e t ef ai g a i a e yt e ar o ta d 6 d fsmu ao .T e r s l n iae ta e r b t n t c n a tr o t mu - s t c r h l n
非连续路段下移动机器人的轨迹跟踪

mo d e l a n d oa r d m o d e l o f t h e m o b i l e ob r o t , he t a c q u i s i t i o n o f t h e t r a j e c t o y r i n f o r m a t i o n nd a he t d e s i g n o f t h e c o n t r o l l e r w a s s t u d i e d .F i r s t l y t h e
A b s t r a c t : A i m i n g a t t h e t r a j e c t o r y t r a c k i n g p r o b l e m o f w h e e l e d mo b i l e r o b o t i n d i s c o n t i n u o u s s e c t i o n s , t h e e s t a b l i s h m e n t o f t h e ma t h e m a t i c l a
( 1 .I n s t i t u t e o f E l e c t i r c a l a n d Me c h a n i c a l E n g i n e e i r n g , X i a n P o l y t e c h n i c U n i v e r s i t y , X i a n 7 1 0 0 0 0 ,C h i n a ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
In Proceedings of the Int’l Workshop on Emerging Technologies for Geo-Based Applications,pp. 59-76, Ascona, Switzerland, May 2000.
Generating Semantics-Based Trajectoriesof Moving Objects
Dieter Pfoser1, Yannis Theodoridis21 Department of Computer Science, Aalborg University, Fred. Bajersvej 7E,
DK-9220 Aalborg, Denmark, pfoser@cs.auc.dk2 Computer Technology Institute, Akteou 11 & Poulopoulou,
GR-11851 Theseio, Athens, Greece, ytheod@cti.gr
Abstract. The domain of spatiotemporal applications is a treasuretrove of new types of data as well as queries. For designing andtesting novel data types and access methods that will support theseapplications, large spatiotemporal datasets are needed. As in manycases it is not possible to obtain real datasets, either they do notexist or they are not accessible, synthetic datasets are governed byartificial parameters rather than by the (sometimes invisible) rulesgoverning real-world behavior. In this work we show how, at leastfor some cases, one can generate spatiotemporal datasets thatsimulate real-world behavior. We illustrate example cases andtranslate them into appropriate calls of GSTD, a spatiotemporal datagenerator. The generated data is illustrated using two-dimensionalsnapshot pictures as well as three-dimensional (two spatial plus onetemporal dimension) trajectory images.
Keywords: data generation, spatiotemporal datasets, synthetic data,moving objects.
1 IntroductionSpatiotemporal databases are an emerging technology. Example applications are fleetmanagement, traffic management, and navigational systems, as well as the thrivingdevelopments behind mobile computing [1]. The estimates are that by the year 2003500 million people will use mobile terminals [7]. Most of these terminals will beequipped with a GPS device, and, thus, may make their positions available to theoutside, digital, and geo-referenced world. Applications, here, include spatiotemporaldata mining, as well as providing geo- and time-referenced content.New techniques comprising data structures and access methods are necessary tohandle this new kind of data and queries [13],[19]. The testing of these techniques, inturn, requires the existence of datasets, either real or synthetic. Since real datasets (i)are not accessible for some applications and (ii) may not be useful for stress testingconditions, a lot of work can be found in the literature on generating synthetic data,following some specifications (desirable cardinality, distribution, etc.).Work in the area of data generation includes [5], which aims at generating billion-record SQL databases using C programs running on a shared-nothing computersystem consisting of a hundred processors, with a thousand discs. The data generatedhere is alphanumeric. A generator for Web data, i.e., tables and Web pages, isintroduced in [14]. Soo [18] presents a temporal data generator. This work can beseen as the one-dimensional case of spatial data generators such as presented in [6]; aweb-based spatial data generator that produces sets of rectangles. The generator usesstatistical distributions to compute the size, shape, and location of the data. Examplesof spatiotemporal data generators are GSTD [20] and Oporto [17]. The Oportogenerator uses a driving application, the modeling of fishing ships. Ships are attractedby shoals of fish while by at the same time avoiding storm areas. Fish themselves areattracted by plankton areas. Ships are moving points; shoals, plankton, and stormareas are moving regions. The GSTD generator produces moving point or rectangularregion objects according to several user-defined parameters. The generator usesvarious distributions to control the movement and shape of the objects. Theodoridis etal. [20] present six scenarios on generating spatiotemporal datasets with respect to thedesirable heading of objects, speed, etc. Although useful for access methods testingpurposes [8], the original algorithm turns out to be limiting with respect to specificreal-world behavior, such as directed movement or movement obstructed by buildingsor alike objects, which we term infrastructure.In this paper, we extend GSTD to facilitate building such scenarios. In particular,Section 2 provides the background of this work, namely the issue of spatiotemporalobjects and the rationale of the GSTD generator, Section 3 proposes appropriateextensions to the algorithm in order to support directed and obstructed movements,while some example scenarios are presented in Section 4. Finally, conclusions andfuture work are discussed in Section 5.