齐次线性方程组解的结构
(完整word版)齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的构造(解法)一、齐次线性方程组的解法【定义】r ()=r<n, 若AX=0(A为m n矩阵)的一组解为ξ1,ξ2,L ,ξn r, 且知足:A(1)ξ1,ξ2,L, ξn r线性没关 ;(2)AX=0的) 任一解都可由这组解线性表示 .则称ξ,ξ,L ,ξ为 AX=0的基础解系 .12n r称 X k1ξ1k2ξ2L k n rξn r为 AX = 0的通解。
此中 k1, k2, , k n-r为随意常数).齐次线性方程组的重点问题就是求通解,而求通解的重点问题是求基础解系.【定理】若齐次线性方程组AX=0有解,则(1)若齐次线性方程组AX=0( A 为m n 矩阵)知足 r ( A)n ,则只有零解;(2)齐次线性方程组有非零解的充要条件是 r ( A) n .(注:当 m n 时,齐次线性方程组有非零解的充要条件是它的系数队列式 A 0.)注: 1、基础解系不独一,可是它们所含解向量的个数同样,且基础解系所含解向量的个数等于n r ( A) .2、非齐次线性方程组AX B 的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O 所对应的同解方程组。
由上述定理可知,若 m 是系数矩阵的行数(也即方程的个数), n 是未知量的个数,则有:( 1)当 m n 时, r ( A) m n ,此时齐次线性方程组必定有非零解,即齐次方程组中未知量的个数大于方程的个数就必定有非零解;( 2)当m n 时,齐次线性方程组有非零解的充要条件是它的系数队列式 A0 ;( 3)当m n 且 r ( A) n 时,若系数矩阵的队列式 A 0 ,则齐次线性方程组只有零解;( 4)当m n 时,若 r ( A)n ,则存在齐次线性方程组的同解方程组;若 r ( A)n ,则齐次线性方程组无解。
1、求AX = 0 ( A 为m n矩阵)通解的三步骤(1)A行 C (行最简形);写出同解方程组CX =0.(2)求出 CX =0的基础解系ξ1,ξ2,L,ξn r;(3)写出通解X k1ξ1k2ξ2 L k n rξn r此中 k1, k2, , k n-r为随意常数.2x 1 3x 2 x 3 5x 4 0, 3x 1 x 2 2x 3 x 4 0,【例题 1】 解线性方程组x 2 3x 3 6x 4 0,4x 1 x 12x 24x 37x 40.解法一: 将系数矩阵 A 化为阶梯形矩阵明显有 r ( A)4 n ,则方程组仅有零解,即x 1 x 2 x 3 x 4 0 .解法二: 因为方程组的个数等于未知量的个数(即 mn )(注意: 方程组的个数不等于未知量的个数 (即m n ),不能够用队列式的方法来判断) ,进而可计算系数矩阵 A 的队列式:2 3 1 5 3 1 2 1 A1 3 327 0 ,知方程组仅有零解,即 x 1 x2 x3 x4 0 .4 6 1247注: 此法仅对 n 较小时方便x 1 x 2 x 3 x 4 x 5 0, 3x 12x 2 x 3 x 4 3x 5 0,【例题 2】 解线性方程组x 2 2 x 3 2x 4 6x 5 0,5x 1 4x 23x 33x 4x 50.解: 将系数矩阵 A 化为简化阶梯形矩阵可得 r ( A) 2n ,则方程组有无量多解,其同解方程组 为x 1 x 3x 4 5x 5 ,(此中 x 3 , x 4 , x 5 为自由未知量)x 22x 3 2 x 46x 5.令 x 3 1 , x 4 0 , x 5 0 ,得 x 1 1, x 2 2 ; 令 x 3 0 , x 4 1, x 5 0 ,得 x 1 1, x 2 2 ; 令 x 30 , x 4 0 , x 51,得 x 1 5, x 26 ,于是获得原方程组的一个 基础解系 为1 1 5 22611,20,30.0 1 01所以,原方程组的 通解 为Xk 1 1 k 2 2 k 3 3 ( k 1 , k 2 , k 3 R ) .二、非齐次线性方程组的解法求 AX = b 的解( A m n, r ( A)r )用初等行变换求解,不如设前r 列线性没关c 11 c12L c1 rL c1n d1 c22 L c2r L c2 n d2 O M M M行c rr L crn d r此中 c ii0(i 1,2,L , r ), 所以知( AMb)dr 1 0 M 0(1) d r 10 时,原方程组无解.(2)d r 1 0, r n 时,原方程组有独一解.(3) d r 10, r < n 时,原方程组有无量多解.其通解为 X0k1ξ1 k2ξ2 L kn rξn r, k1 , k2,L , k n r为随意常数。
§6线性方程组解的结构

§6 线性方程组解的结构在解决线性方程组有解的判别条件之后,进一步来讨论线性方程组解的结构.所谓解的结构问题就是解与解之间的关系问题.一、齐次线性方程组的解的结构设⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0,0,0221122221211212111n sn s s n n n n x a x a x a x a x a x a x a x a x a (1) 是一齐次线性方程组,它的解所成的集合具有下面两个重要性质:1. 两个解的和还是方程组的解.2. 一个解的倍数还是方程组的解.从几何上看,这两个性质是清楚的.在3=n 时,每个齐次方程表示一个过得点的平面.于是方程组的解,也就是这些平面的交点,如果不只是原点的话,就是一条过原点的直线或一个过原点的平面.以原点为起点,而端点在这样的直线或平面上的向量显然具有上述的性质.对于齐次线性方程组,综合以上两点即得,解的线性组合还是方程组的解.这个性质说明了,如果方程组有几个解,那么这些解的所有可能的线性组合就给出了很多的解.基于这个事实,我们要问:齐次线性方程组的全部解是否能够通过它的有限的几个解的线性组合给出?定义17 齐次线性方程组(1)的一组解t ηηη,,,21 称为(1)的一个基础解系,如果1)(1)的任一个解都能表成t ηηη,,,21 的线性组合;2)t ηηη,,,21 线性无关.应该注意,定义中的条件2)是为了保证基础解系中没有多余的解.定理8 在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含解的个数等于r n -,这里r 表示系数矩阵的秩(以下将看到,r n -也就是自由未知量的个数).定理的证明事实上就是一个具体找基础解系的方法.由定义容易看出,任何一个线性无关的与某一个基础解系等价的向量组都是基础解系.二、一般线性方程组的解的结构如果把一般线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111,, (9) 的常数项换成0,就得到齐次线性方程组(1). 齐次线性方程组(1)称为方程组(9)的导出组.方程组(9)的解与它的导出组(1)的之间有密切的关系:1. 线性方程组(9)的两个解的差是它的导出组(1)的解.2. 线性方程组(9)的一个解与它的导出组(1)的一个解之和还是这个线性方程组的一个解.定理9 如果0γ是线性方程组(9)的一个特解,那么线性方程组(9)的任一个解γ都可以表成ηγγ+=0其中η是导出组(1)的一个解.因此,对于线性方程组(9)的任一个特解0γ,当η取遍它的导出组的全部解时,(10)就给出(9)的全部解.定理9说明了,为了找出一线性方程组的全部解,只要找出它的一个特殊的解以及它的导出组的全部解就行了.导出组是一个齐次线性方程组,在上面已经看到,一个齐次线性方程组的解的全体可以用基础解系来表示.因此,根据定理我们可以用导出组的基础解系来表出一般线性方程组的一般解;如果0γ是线性方程组(9)的一个特解,r n -ηηη,,,21 是其导出组的一个基础解系,那么(9)的任一个解γ都可以表成r n r n k k k --++++=ηηηγγ 22110推论 在线性方程组(9)有解的条件下,解是唯一的充要条件是它的导出组(1)只有零解.线性方程组的理论与解析几何中关于平面与直线的讨论有密切的关系.来看线性方程组⎩⎨⎧=++=++.,23232221211313212111b x a x a x a b x a x a x a (11) (11)中每一个方程表示一个平面,线性方程组(11)有没有解的问题就相当于这两个平面有没有交点的问题.我们知道,两个平面只有在平行而不重合的情形没有交点.(11)的系数矩阵与增广矩阵分别是⎪⎪⎭⎫ ⎝⎛=232221131211a a a a a a A 与⎪⎪⎭⎫ ⎝⎛=22322211131211b a a a b a a a A , 它们的秩可能是1或者2.有三个可能的情形:1. 秩A =秩A =1.这就是的两行成比例,因而这两个平面平行.又因为A 的两行也成比例,所以这两个平面重合.方程组有解.2. 秩A =1,秩A =2.这就是说,这两个平面平行而不重合. 方程组无解.3. 秩A =2.这时A 的秩一定也是 2.在几何上就是这两个平面不平行,因而一定相交. 方程组有解.下面再来看看线性方程组的解的几何意义.设矩阵A 的秩为2,这时一般解中有一个自由未知量,譬如说是3x ,一般解的形式为⎩⎨⎧+=+=.,32223111x c d x x c d x (12) 从几何上看,两个不平行的平面相交在一条直线.把(12)改写一下就是直线的点向式方程3222111x c d x c d x =-=-. 如果引入参数t ,令t x =3,(12)就成为⎪⎩⎪⎨⎧=+=+=.,,3222111t x t c d x t c d x (13)这就是直线的参数方程.(11)的导出方程组是⎩⎨⎧=++=++.0,0323222121313212111x a x a x a x a x a x a (14) 从几何上看,这是两个分别与(11)中平面平行的且过原点的平面,因而它们的交线过原点且与直线(12)平行.既然与直线(12)平行,也就是有相同的方向,所以这条直线的参数方程就是⎪⎩⎪⎨⎧===.,,32211t x t c x t c x (15)(13)与(15)正说明了线性方程组(11)与它的导出组(14)的解之间的关系. 例1 求线性方程组⎪⎪⎩⎪⎪⎨⎧0793,083,032,054321432143214321=+-+=++-=+-+=-+-x x x x x x x x x x x x x x x x的一个基础解系.例2 设线性方程组⎪⎪⎩⎪⎪⎨⎧.2193164,432,14523,42354321543215432154321-=-+++-=+----=--++-=-+-+x x x x x x x x x x x x x x x x x x x x用它的导出齐次方程组的基础解系表示它的全部解.。
25线性方程组解的结构

a21x1
a22x2
am1x1 am2x2
a1nxn b1 a2nxn b2
amnxn bm
a11
a 21
a12 a 22
... ...
a1n
a2n
x1 x2
b1 b2
a
m
1
am2
...
a
m
n
x
n
bm
( 2 .2 3 )
中,将常数项全换为零,得到对应的齐次线性方程组
证
设 是方程组(2.19)的解, 则 AO 所以 A(c ) c(A) cO O 即 c 也是( 2.19 ) 的解.
(3’)若1,2,...,s都是方程组(2.19)的解,c1,c2,...,cs 是任意s个常数,则c 11 c 22 ... c ss也是(2.19) 的解.
x 1 x 2 x 3 x 4 0 ( * )
a22
x2
amnxn bm am1x1 am2x2
a1nxn 0 a2nxn 0
amnxn 0
( 2 .2 3 )
( 2 .1 9 )
定理2.14 如果0 是 方程组(2.23)的一个解, 是 其导出组(2.19) 的全部解, 即
c 11 c 22 ... c n rn r
c1η1c2η2
c
1
7 5 4 5
c
2
1 0 0
1 0
1
例
x1 x2 5x3 x4 0 x1 x2 4x3 3x4 0
3x1 x2 9x3 5x4 0
1 15 10
解
A
1 3
14 19
3 50 0
1
2
1
1
3.6 线性方程组解的结构A (1)

x
r
2
xn
0
0
1
0
0
1
这是方程组的通解.
v求基础解系的方法 ——也可以由基础解系求通解
方程组Ax0等价于
x1 x2
b11 b21
xr1 xr1
b12 xr2
b22 xr2
b1,nr xn b2,nr xn
xr br1 xr1 br2 xr2 br,nr xn
v非齐次线性方程组解的结构
定理6.2 若*是方程组Axb的某个解 1 2 nr是方程组Ax0的基础解系
则方程组Axb的通解为
xk11k22 knr nr* (k1 knr R).
Ax b的通解= Ax b的特解+ Ax 0的通解.
例6. 3 求解方程组
法一: 令x2 c1 x4 c2
v齐次线性方程组解的性质
v性质6.1
若x1 x2为Ax0的解 则x12也是Ax0的解.
v性质6.2
若x1为Ax0的解 k为实数 则xk1也是Ax0的解.
思考 假如Ax0有无穷多解,如何把这些解表示出来? 设S是Ax0的解的集合
S0 1 2 t是S的一个极大无关组
那么 一方面 Ax0的任一解都可由S0线性表示 另一方面 S0的任何线性组合
c1
1 1 0 0
c2
1 0 2 1
1 2
102,(c1,c2
0
R).
于是对应齐次方程组的基础解
系为
1(1 1 0 0)T 2(1 0 2 1)T.
非齐次方程的一个解(特解)为
xx13
x2 x4 1/ 2x4 1/ 2
2
.
*(1/2 0 1/2 0)T.
第五节 线性方程组解的结构

定理 n元齐次线性方程组 Amn x 0的全体解所构成的 集合S是一个向量空间,当系数矩阵的秩为r时,解空
间S的维数为n-r.
当rank( A) n时,线性方程组只有零解,故没有基础
解系(此时解空间只含有零向量,称为0维向量空间)
当rank( A) n时,线性方程组必有含n-r个向量的基
础解系 1,2 ,L ,nr ,此时线性方程组的解可以表示为 k11 k22 L knr nr
L
a12 L a22 L L
am1
am 2
L
a1n a2n L
,x
x1 x2
amn
xn
则上述方程组(1)可写成向量方程 Ax 0.
二、基础解系及其求法
1、基础解系的定义
方程组 Ax 0 解空间V的一组基称为齐次线性方程组的 一组基础解系,即解空间的某一个部分组 1,2 ,L ,s满足:
a 2 1 1 a 2 1 1
:
a 4a
2 10
1 3
0 0
b c
1 4
:
a 2 a4
1 0
0 0
c
b 3b
1
1
当a 4 0 时,b可由 1,2 ,3 线性表示,且表达式唯一. 当a 4 0 且 c 3b 1 0 时,b可由 1,2 ,3 线性表示,
但表达式不唯一;
1
2 10
,
2
1 5
,
3
1 4
,
b c
,
试问,当a,b,c 满足什么条件时
(1)b可由 1,2 ,3 线性表示,且表达式唯一?
(2)b可由 1,2 ,3 线性表示,且表达式不唯一?
(3)b不能由1,2 ,3 线性表示?
线性方程组解的结构(重要知识)

3x5
令自由变量为任意实数
x1 2k1 k2 3k3
x2 x3
k1 4k2 5k3
x2 k1, x4 k2 , x5 k3
x4
k2
x5
k3
2
1
3
说明:
1
0ห้องสมุดไป่ตู้
0
1.基础解系不惟一
x
k1
0 0
k2
4 1
k3
-5 0
2.但所含向量的 个数唯一且等于n-R(A)
1
2
3
2
3 2
,2,
5 2
,3
T
0
通解为:X 2,3,4,5T k3,4,5,6T ,k R
-13-
例6
x
1
x1
x2 x2
x3 x3
x4 0, 3 x4 1,
x1 x2 2 x3 3 x4 1 2.
解
A~
1 1
1 1
1 1
1 3
0 1 1 0 1 1 2 1 0 0 1 2 1 2,
2.如果当非齐次线性方程组Ax 有无穷多解时,
其通解的结构如何?如何写出其向量形式的通解?
-2-
§4.1 线性方程组解的存在性定理
非齐次方程组解的判别定理
对于非齐次方程组 Amn x b(b 0)
(1) 有解 r( A) r( A~) 无解 r( A) r( A~)
(2) 有惟一解 r( A) r( A~) n (3) 有无限多解 r( A) r( A~) n 齐次方程组解的判别定理
(A)AX 0仅有零解,则AX b有唯一解
(B)AX 0有非零解,则AX b有无穷多解 (C)AX b有无穷多解,则AX 0仅有零解
齐次方程组的基础解系和通解
矩阵表示形式
Amn X 0
r(A) n r(A) n
齐次线性方程组有非零解 齐次线性方程组仅有零解
线性代数
齐次方程组的基础解系
齐次线性方程组
a11 x1 a12 x 2 L a1n xn 0 La21Lx1 a22 x2 L a2n xn 0 am1 x1 am2 x2 L amn xn 0
0
0 0
3
0
0 1 1 0
1 2 2 0
1 11Biblioteka 03 04
0
0 1 0 0
1 2 0 0
1
1
1
0
1
0
0
0
0 1 0 0
1 2 0 0
0
0
1
0
x1 x3 0
等价同解的线性方程组为:
x2 2x3 0 x4 0
0 0
1
1
取自由变元x3
1,
得
2 1
为方程组的基础解系. 通解为:X
x1 k1r1xr1 k1r2 xr2 L k1n xn
x2
k2 r 1 xr 1
k2r2 xr2
L
k2n xn
LLLLLL
xr kr r x 1 r1 kr r2 xr2 L krn xn
其中xr+1,xr+2,…,xn为自由未知量, 对nr个自由未知量分别取:
xr1 1 0
LLLLLLLLLLLL
dxrr kkrrrr11xdrr11kkr rrr2x2rdr22 L L krnkxrndn
k1r1dr1 k1r2dr2 L k1ndn
k2
r
1dr
1
k2
r
2.6线性方程组解的一般理论
x4
0
,
1
,
0
x5 0 0 1
2 2 6
1
1
5
1
1
,2
0
,3
0
0
1
0
0
0
1
一般解 c11 c22 c33
(c1, c2, c3为任意常数.)
8
三、非齐次线性方程组解的结构
x11 x22 xnn (I) 0 (II)
第二章 线性方程组 §2.6 线性方程组解的一般理论
一、线性方程组有解的判定定理 二、齐次线性方程组解的结构 三、非齐次线性方程组解的结构
1
一、线性方程组有解的判定定理
定理1 线性方程组 x11 x22 xnn (I) 有解
r( A) r( A) 推论1 线性方程组(I)无解 r(A) r( A) 推论2 线性方程组(I)有唯一解 r(A) r(A) n 推论3 线性方程组(I)有无穷多解 r(A) r(A) n
方程组的三个解向量 1,2 ,3满足
1
0
1
1 2 2, 2 3 1, 3 1 0
3
1
1
求 非 齐 次 线 性 方 程 组 一 的 般 解.
19
解 A是m 3矩阵, r(A) 1,
导出组的基础解系中有 含3 1 2个线性无关的解向量.
令1 2 a, 2 3 b, 3 1 c,则
其中k1 , k 2为任意实数.
21
A
2 1
3 0
1 2
1 2
3 6
0 0
0 0
1 0
1 0
1 0
5 0
0
0
4
5
3
线性方程组的参数化形式和解的结构
线性方程组的参数化形式和解的结构线性方程组是高等数学中的一个重要概念,其在各种领域中都有广泛的应用,包括物理、工程、计算机科学等。
在研究线性方程组的参数化形式和解的结构时,我们需要掌握基本的概念及其相关的定理,同时还需要深刻理解它们之间的关系。
本文将探讨线性方程组的参数化形式及其解的结构。
一、线性方程组的基本概念首先,我们需要了解线性方程组的基本概念。
一般来说,一个线性方程组包含n个未知量x1,x2,…,xn,以及m个线性方程。
一般可以表示为:a11x1 + a12x2 + … + a1nxn = b1a21x1 + a22x2 + … + a2nxn = b2…am1x1 + am2x2 + … + amnxn = bm其中,a11,a12,…,anm是方程的系数,b1,b2,…,bm是常数,x1,x2,…,xn是未知量。
此外,方程组中的每个方程都是线性的,可以总结为以下两种基本形式:ai1x1 + ai2x2 + … + ainxn = biai1x1 + ai2x2 + … + ainxn = 0其中,第一种形式是常数项不为零的一般形式,第二种形式是常数项为零的齐次形式。
我们在研究线性方程组的参数化形式和解的结构时,主要关注齐次形式。
二、线性方程组的参数化形式对于一个线性齐次方程组,其形式为:a11x1 + a12x2 + … + a1nxn = 0a21x1 + a22x2 + … + a2nxn = 0…am1x1 + am2x2 + … + amnxn = 0我们将其表示为一个矩阵方程Ax=0,其中:A = (a11 a12 … ana21 a22 … an… … … …am1 am2 … amn)x = (x1 x2 … xn)T其中,T表示矩阵的转置。
我们可以看出,该矩阵是m行n列的矩阵,其秩为r(A)。
根据线性代数的基本定理,其零空间的维数为n-r(A)。
在此基础上,我们可以给出线性齐次方程组的参数化形式:x = c1α1 + c2α2 + … + cmαm其中,c1,c2,…,cm是任意常数,α1,α2,…,αm是满足Ax=0的n维列向量。
线性方程组解的结构
xr
1
br 1 1
0
xr
2
br 2 0
1
L
xn
br ,nr 0
0
(4)
M
xn
M
0
M
0
M
1
令(4)为 k11 k22 L knr nr
(5)
易知:1,2 ,L ,nr 为齐次线性方程组(1)的一个
基础解系,(5)为方程组 Ax 0的通解.
x1 6 x2 4 x3 x4 4 x5 0
- 1 2 3
- 7 2 1
1
4 1
,
2
4 0
;
0
2
基础解系:
0
1
二、非齐次线性方程组解的性质
非齐次线性方程组
Ax b. (1)
与非齐次方程组 Ax b 对应的齐次方程组 Ax 0 称为该非齐次方程组的导出组.
(2)当 1时,方程组的矩阵为
1 2 2 1 0 0
A
2 3
1 1
1 1
:
0 0
1 0
1 0
所以 R A 2
k1, k2 , , ks ,有k11 k22 kss 也是 Ax 的0解.
齐次线性方程组基础解系的求法
若A的秩为r,则(1)的全部解不妨写成:
x1 b11 xr1 b12 xr2 L b1,nr xn
x2
b21 xr1 b22 xr2 L
b2,nr xn
M
xr
br1 xr1 br 2 xr2 L
br ,nr xn
xr1 xr1
(3)
xr
2
xr2
M
xn
xn
其中 xr1, xr2 ,L , xn 是任意实数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 齐次线性方程组解的结构
1. 解向量 齐次线性方程组 Ax0,
若 x 1 1 , x 2 1 2 , , 1 x n n 1 为方程A x0的解,则
11
x
1
21
n 1
称为方程组的解向量.
2
(1)若 x1,x2为 A x0的解,则
x12
也是 Ax0的解.
A 1 2 A 1 A 2 0
(2)若 x1 为A x0的解,k为实数,则
xk1也是 A x0的解. A k 1 k 1 A k 0 0 .
推广: 齐次线性方程组的解的线性组合
k 1 1 k 2 2 k n n
都是方程组的解 3
2. 基础解系
1 A2
1
2 1 -1
2 -2 -4
1 -2 -3
r2 -2r1 r3 - r1
1 0 0
2 -3 -3
2 -6 -6
1 - 4 - 4
1 2 2 1
1 0 - 2 -5/ 3
r3 -r2 r2(-3)
0 0
1 0
2 0
4 / 3
r1 -2r2
0
0
0
1 0
2 0
4/ 3
0
(2) 由标准阶梯形得到方程组为 x x12- 22xx33- ((54//33))xx44 00,.
简化 阶梯形矩阵
方程组有无穷多解 可写出一般解 自由未知 量适当取值 基础解系
是
线性组合
方程组有唯一零解
写出全部解
14
习题4.6 3(2)
( 2 )A 0 x 的任1 一 ,2 , ,t线 解. 性 都
即方程组的通解就是
x k11 k22 ktt 4
定理4.6.2. 当 r (A) < n 时,齐次线性 方程组的基础解系含有 n-r 个解向量.
5
例 求解齐次线性方程组
解 (1) 对系数矩阵施行初等行变换化为标准阶梯形
故原方程组的通解为
x c11
其中c1为任意常数.
例 2 ·求下面齐次线性方程组的一个 基础解系 。
x1 - 2x3 3x3 - 4x4 0 x2 - x3 x4 0 x1 3x2 x4 0
齐次线性方程组求全部解的图示:
系数矩阵 初等行变换
阶梯形矩阵
定自由 未知量 初等行
变换
非零行数 = 未知量个数 ? 否
故原方程组的通解为 xc11c22c33,
其中c1,c2,c3为任意常数。
例 1 ·求下面齐次线性方程组的一个基 础解系 。
x1 x2
- 3x4 0
x1 - x2 2x3 - x4 0 4x1 -2x2 6x3 3x4 0
1
2x1 4x2 -2x3 4x4 0
1 1 0 - 3
1 - 1 2 - 1
当 r(A)n时,有无穷解, 其解向量为 n 维向量. 故这无穷个解必存在一个极大线性无关组
定义1. 齐次线性方程组解的集合的一个极大线性 无关组,称为该方程组的一个基础解系.
若 1 ,2 , ,t是齐次 A 0 x 的 线基 性 ,则 础
(1 )1 ,2, ,t是 A x 0 的一组 的 ;线 解
3 5
-2 6
--71
0 0
1 0 0
-1 0 0
3 0 0
-1
0 0
由于 n - r (A ) 5 - 2 3 ,故方程组有无穷多解, 其基础解系中有三个线性无关的解向量。
得到方程组的一个基础解系为
-2 1
1
1 0 0
,
-
1 3
2
0 1 0
,
2 1
3
0
0 1
.
x1 x2 x3 4x4 -3x5 0, 例 求解线性齐次方程组 2x1x1-x2x233x3x3-25x4x4--x55 x50, 0,
3x1 x2 5x3 6x4 -7x5 0.
1 1 1 4 - 3
1 0 2 1 - 2
解
A
2 1 3
1 3 5 - 5 初等行变换 0
-1 1
4 2
-2 4
6 -2
3 4
1 1 0 - 3 0 - 2 2 2
0 0
0 0
0 0
1 0
1 1 0 - 3
0 - 2 2 2
00
-6 2
6 -2
15 - 10
1 0 1 0 0 1 -1 0
0 0
0 0
0 0
1 0
代入
x x
1 2
-c1 c1
x
4
0
x 3 c 1
(3) 由此得到方程组的解: (4) 写成向量形式为:
x 1 2c1 (5 / 3)c2
x 2 -2c1 - (4 / 3)c2
x 3
c1
x 4
c2
其中 c1 ,c 2 任意取值。
x1
x2 Βιβλιοθήκη x3x4 c1-
2 2
01
c2-
5 / 3 4/3
0 1
故原方程组的通解为
x c11 c22,