数列求和的基本方法与技巧
详解数列求和的六种方法八个典型例题

详解数列求和的六种⽅法⼋个典型例题数列求和是数列的重要内容之⼀,除了等差数列和等⽐数列有求和公式外,⼤部分数列的求和都需要⼀定的技巧。
第⼀类:公式法利⽤下列常⽤求和公式求和是数列求和的最基本最重要的⽅法。
1、等差数列的前n项和公式2、等⽐数列的前项和公式3、常⽤⼏个数列的求和公式第⼆类:乘公⽐错项相减(等差x等⽐)这种⽅法是在推导等⽐数列的前n项和公式时所⽤的⽅法,这种⽅法主要⽤于求数列{a ×b,}的前n项和,其中{a},{b}分别是等差数列和等⽐数列。
第三类:裂项相消法这是分解与组合思想在数列求和中的具体应⽤。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去⼀些项,最终达到求和的⽬的通项分解(裂项)如:解析:要先观察通项类型,在裂项求和时候,尤其要注意:究竟是像例2-样剩下⾸尾两项,还是像例3-样剩下四项。
第四类:倒序相加法解析:此类型关键是抓住数列中与⾸末两端等距离的两项之和相等这--特点来进⾏倒序相加的。
此例题不仅利⽤了倒序相加法,还利⽤了裂项相消法。
在数列问题中,要学会灵活应⽤不同的⽅法加以求解。
第五类:分组求和法有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常见的数列,然后分别求和,再将其合并即可。
这个题,除了注意分组求和外,还要注意分类讨论思想的应⽤。
第六类:拆项求和法在这类⽅法中,我们先研究通项,通项可以分解成⼏个等差或等⽐数列的和或差的形式,再代⼊公式求和。
解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。
这篇⽂章中,有6类重要⽅法,8个典型例题,⼤部分常见数列的前n项和都可以求出来了。
数列求和基本方法和技巧-模板

数列求和基本方法和技巧
数列求和的基本方法和技巧
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、等差数列求和公式:
2、等比数列求和公式:
3、 4、
5、
[例1] 已知,求的前n项和.
解:由
由等比数列求和公式得(利用常用公式)
===1-
[例2] 设Sn=1+2+3+…+n,n∈N*,求的最大值.
解:由等差数列求和公式得,(利用常用公式)
∴ =。
数列求和方法总结

数列求和方法总结数列是数学中常见的一个概念,它由一系列按特定规律排列的数所组成。
在数列中,常常需要求和,即将数列中的所有元素相加得到一个总和。
求和是数列中的一个重要问题,有着多种方法和技巧,本文将对数列求和方法进行总结。
首先,我们来介绍一些常见的数列求和公式。
1.等差数列求和公式:对于等差数列an = a1 + (n-1)d,其中a1为首项,n为项数,d为公差,可以使用以下公式求和:Sn = (a1 + an) * n / 2其中Sn表示前n项和。
2.等比数列求和公式:对于等比数列an = a1 * r^(n-1),其中a1为首项,n为项数,r为公比,可以使用以下公式求和:Sn=a1*(1-r^n)/(1-r)其中Sn表示前n项和。
3.调和数列求和公式:调和数列是指an = 1/n,其中n为正整数。
调和数列没有一个简单的求和公式,但它满足以下性质:Sn=1+1/2+1/3+...+1/nSn = ln(n) + γ + O(1/n)接下来,我们将介绍一些常见的数列求和方法。
1.逐项相加法:这是最简单的求和方法,即将数列中的每一项逐个相加得到和。
例如,对于数列1,2,3,4,5,可以逐项相加得到152.折半相加法:这是一种针对特定数列的求和方法。
对于一些具有对称性质的数列,可以将数列折半后再进行求和。
例如,对于数列1,2,3,4,5,可以将其折半为1,5,3,再相加得到93.和差法:这是一种将数列拆分为两个子数列,并利用数列之间的关系求和的方法。
例如,对于等差数列1,2,3,4,5,可以将其拆分为两个等差数列1,3,5和2,4,并利用等差数列求和公式求和后再相加。
4.差分法:对于一些特定数列,其前后项之间存在一定的差值关系。
通过求得这种差值关系,我们可以将数列转化为差分数列,并利用差分数列的性质进行求和。
例如,对于数列1,4,9,16,25,可以发现相邻项之间的差值为3,5,7,可以将其转化为差分数列3,5,7,并利用等差数列求和公式求和后再进行相加。
求数列前N项和的七种方法(含例题和答案)

求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和:q=1时,1n S na = ()1111nn a q q S q-≠=-,,特别要注意对公比的讨论。
[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.解:由212loglog3log1log3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n=1-n21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n =nn 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ……………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………. ② (设制错位)①-②得 nn n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 再利用等比数列的求和公式得:nn n x n xxx S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n xn S nn n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn 前n 项的和.解:由题可知,{nn 22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设nn n S 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n n S ………………………………②①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n nn n S (错位相减)1122212+---=n n n ∴ 1224-+-=n n n S3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S ……..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin)2cos 2(sin)1cos 1(sin 2222222++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aaaS n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aaaS n n (分组) 当a =1时,2)13(nn n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11nn a a a n-+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk nk nk ∑∑∑===++1213132 (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n =2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。
数列求和方法

数列求和方法数列是高中数学的重要组成部分,在高考和各类数学竞赛中发挥着重要作用。
级数求和是级数的重要内容之一。
除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
今天学姐就简单介绍一下数列求和的基本方法和技巧。
第一类:公式法用以下几种常见的求和公式求和,是数列求和最基本也是最重要的方法。
第二类:乘公比错项相减(等差×等比)这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
解析:数列{cn}是由数列{an}与{bn}对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。
第三类:裂项相消法这就是分解组合思想在数列求和中的具体应用。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如:分析:第一,要观察通项的类型。
在对拆分项求和时,我们应该特别注意第一项和第二项是否像例2那样被保留,或者像例3那样被保留四项。
第四类:倒序相加法这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)。
解析:这种类型的关键是抓住距离数列首尾等距离的两项之和相等这一特征进行逆序相加。
这个例子不仅使用了逆序加法,还使用了拆分项的消去法。
在数列问题中,要学会灵活运用不同的方法去解决。
第五类:分组求和法有一种数列,既不是等差数列,也不是等比数列。
这类数列如果适当分解,可以分解成几个等差、等比例或常见的数列,然后分别求和,再组合。
第六类:拆项求和法同学们如果想知道更多解题技巧,可以到()领一份《逆向学习法》,包含高中九大科目高分技巧与答题模板,例如“十分钟搞定数学选择题”、“玩转物理电磁场”等等,已经帮助很多同学考上了理想的大学,感兴趣的同学们抓紧领取吧!。
数列求和的七种基本方法

数列求和的七种基本方法数列求和是数学中常见的问题之一,它在各个领域都有广泛的应用。
本文将介绍数列求和的七种基本方法,包括等差数列求和、等比数列求和、算术平方平均数列求和、等差等比混合数列求和、调和数列求和、几何级数求和和级数求和。
通过了解和掌握这些方法,相信读者能更好地解决数列求和问题。
一、等差数列求和等差数列是指一个数列中的每两个相邻的项之差都相等。
求和等差数列的公式为:Sn = n(a1+an)/2,其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数。
二、等比数列求和等比数列是指一个数列中的每两个相邻的项之比都相等。
求和等比数列的公式为:Sn=a1(1-q^n)/(1-q),其中Sn是数列的和,a1是第一个数,q是公比,n是项数。
三、算术平方平均数列求和算术平方平均数列是指一个数列中的每两个相邻的项的算术平方平均数都相等。
求和算术平方平均数列的公式为:Sn=n(2a1+(n-1)d)/2,其中Sn是数列的和,n是项数,a1是第一个数,d是公差。
四、等差等比混合数列求和等差等比混合数列是指一个数列中的每两个相邻的项之比和差都相等。
求和等差等比混合数列的公式为:Sn = (a1+an)/2*n+(q^n-1)/(q-1),其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数,q是公比。
五、调和数列求和调和数列是指一个数列中的每一项的倒数都与它的序号之比都相等。
求和调和数列的公式为:Sn=Hn/a,其中Sn是数列的和,Hn是调和数列的第n项,a是常数。
六、几何级数求和几何级数是指一个数列中的每个数都与前一项的比值都相等。
求和几何级数的公式为:Sn=a*(1-q^n)/(1-q),其中Sn是数列的和,a是第一个数,q是比值,n是项数。
七、级数求和级数是无穷多个数连加的结果,求和级数的公式为:Sn=a/(1-r),其中Sn是级数的和,a是第一个数,r是比值。
这七种基本的数列求和方法能够解决大部分数列求和问题。
数列的求和方法
数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++= ② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………② (设制错位) ① -②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ]这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序) 又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得n n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5练习:已知lg(xy)=a ,求S ,其中S=nn n n y y x y x x lg )lg()lg(lg 221+∙∙∙+++--解: 将和式S 中各项反序排列,得n n n n x y x y x y s lg )lg()lg(lg 221+∙∙∙+++=--将此和式与原和式两边对应相加,得 2S=n xy )lg(+n xy )lg(+ · · · +n xy )lg( (n+1)项=n(n+1)lg(xy) ∵ lg(xy)=a ∴ S=21n(n+1)a有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得=k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++= 2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211n n 的前n 项和。
专题--数列求和的基本方法和技巧
数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. (1-n 21)[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值. (501)(max =n f )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①( 21)1()1()12()12(x x x n x n S n n n -+++--=+) [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. (1224-+-=n n n S )三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++(n n n S 2)1(⋅+=)[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(S =44.5)四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… [例8] 求数列{n(n+1)(2n+1)}的前n 项和.(2)2()1(2++n n n )五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. [例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313数列综合题1.数列{}n a 的各项均为正数,n S为其前n 项和,对于任意*N n ∈,总有2,,nn n a S a 成等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n T ,且2ln nn n a x b =,求证:对任意实数(]e x ,1∈(e 是常数,e =2.71828⋅⋅⋅)和任意正整数n ,总有n T < 2;(Ⅲ) 正数数列{}n c 中,())(,*11N n c a n n n ∈=++.求数列{}n c 中的最大项.2.设f1(x)=x +12,定义fn+1 (x)= f1[fn(x)],an =2)0(1)0(+-n n f f (n ∈N*).(1) 求数列{an }的通项公式; (2) 若n n na a a a T 23212232++++= ,Qn=144422+++n n nn (n ∈N*),试比较9T2n 与Qn 的大小,并说明理由.3. 设不等式组⎪⎩⎪⎨⎧+-≤>>n nx y y x 30所表示的平面区域为Dn ,记Dn 内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f(n)(n ∈N*).(1)求f(1)、f(2)的值及f(n)的表达式;(2)设bn=2nf(n),Sn 为{bn}的前n 项和,求Sn ;(3)记n n n f n f T 2)1()(+=,若对于一切正整数n ,总有Tn ≤m 成立,求实数m 的取值范围.4.已知0a >,且1a ≠,数列{}n a 的前n 项和为n S ,它满足条件111n n a S a -=-.数列{}n b 中,n n b a =·lg na .(1)求数列{}n b 的前n 项和n T ;(2)若对一切*n N ∈都有1n n b b +<,求a 的取值范围.5、已知函数4444(1)(1)()(1)(1)x x f x x x ++-=+--(0x ≠)。
数列求和方法总结
数列求和的基本方法与技巧一、利用常用求和公式求和:利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S n k n 5、213)]1(21[+==∑=n n k S n k n [例1]已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.二、错位相减法求和:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求“等差比”数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例2] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S …[例3]已知数列}{n a 的前n 项和为n S ,且22n S n n =+,*N n ∈,数列}{n b 满足*,3lo g 42N n b a n n ∈+=. (1)求n a ,n b ; (2)求数列}{n n b a 的前n 项和n T .这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2)()1111;n a n n k k n n k ⎛⎫==- ⎪++⎝⎭(3))121121(21)12)(12(1+--=+-=n n n n a n (4))!1(1!1)!1(+-=+n n n n (5)n n n n a n -+=++=111 (6)()11.n a n k n kn k n ==+-++ (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)121121)12)(12(211---=--++n n n n n (8)n n n n tan )1tan()1cos(cos 1sin -+=+ (7) ,2)1(12121)1()1(221)1(21nn n n n n n n n n n n n n a +-⋅=⋅+-+=⋅++=- [例4] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例5]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++[例6](2010山东理科18) 已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令112-=n n a b (n ∈N *),求数列{}n b 的前n 项和n T .[例7]已知数列}{n a 的各项均为正数,n S 为其前n 项和,且332-=n n a S ,*N n ∈(1)求数列}{n a 的通项公式;(2)设133log log 1+=n n n a a b ,求数列}{n b 前n 项和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +。
数列求和的基本方法和技巧word资料5页
数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和对一个由等差数列及等比数列对应项之积组成的数列的前n 项和,常用错项相减法。
n n n c b a ⋅=, 其中{}n b 是等差数列,{}n c 是等比数列,记n n n n n c b c b c b c b S ++⋯++=--112211,则1211n n n n n qS b c b c b c -+=+⋯⋯++,…[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn n m n C C -=可得①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值四、分组分项法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(五、裂项相消法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) 六、并项法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项) ∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90°(合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2019.解:设S 2019=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2019=2002321a a a a +⋅⋅⋅+++ (合并求和)=5七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k 43421321个个 (找通项及特征) =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n(裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)。