高一数学必修一强化训练三:定义域

合集下载

必修一专题复习高一数学(讲义2)求函数的定义域

必修一专题复习高一数学(讲义2)求函数的定义域

必修一专题复习高一数学(讲义2)复习范围:必修1 第一章——第三章第一章 集合与函数的概念(2)求函数的定义域知识点1:函数定义域 常见函数定义域的求法例1函数y =log 2(x -12-x的定义域为________.变式1:求下列函数的定义域: (1)f (x )=1x +2; (2)f (x )=3x +2; (3)f (x )=x +1+13-x .知识点2:复合函数的定义域口诀:f 后整体范围一致;定义域为自变量x 的取值范围。

例2、设函数)(x f 的定义域是[0,2],求 ①|)12(|-x f ;②)1()1(-++x f x f 的定义域.知识点:不等式0>a(1)a x a a x <<-⇔<; (1)a x a a x <<-⇔<2;(2)a x a x a x >-<⇔>或; (2)a x a x a x >-<⇔>或2;(3)a b x a a b x <+<-⇔<+; (3)a b x a a b x <+<-⇔<+2)(;(4)a b x a b x a b x >+-<+⇔>+或;(4)a b x a b x a b x >+-<+⇔>+或2)(;变式1:设函数()f x 的定义域为[]1,1-,则函数1()2x g x f f x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭的定义域是_____________.例3、已知函数)12(+=x f y 的定义域是[0,1],求函数)(x f y =的定义域。

例4、已知(1)y f x =+的定义域为 []23-,,求函数(21)y f x =-的定义域。

变式1:已知函数(1)f x +的定义域为122⎛⎫- ⎪⎝⎭,,求2()f x 的定义域变式2:已知函数(21)f x -的定义域为[)01,,求(13)f x -的定义域.变式3:已知函数f (2x -1)的定义域为[1,4],则函数f (2x )的定义域为____________.变式4:若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4] D .(0,1)。

第三章 函数的概念与性质 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册

第三章 函数的概念与性质 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册

第三章 函数的概念与性质(单元检测卷)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =-x 2+2x +3的定义域为( )A.[-3,1] B.[-1,3]C.(-∞,-3]∪[1,+∞)D.(-∞,-1]∪[3,+∞)2.已知函数y =f(x +1)定义域是[-2,3],则函数y =f(x -1)的定义域是( )A.[0,5] B.[-1,4]C.[-3,2]D.[-2,3]3.已知函数f(x)=Error!若f(-a)+f(a)≤0,则实数a 的取值范围是( )A.[-1,1] B.[-2,0]C.[0,2]D.[-2,2]4.设f(x)是定义域为R 的奇函数,且f(1+x)=f(-x).若f =13,则f =( )A.-53B.-13C.13D.535.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B.y =14x 2-1C .y =4x 2-16 D.y =-4x 2+166.拟定从甲地到乙地通话m min的话费(单位:元)符合f(m)={3.71,0<m ≤4,1.06×(0.5×[m]+2),m >4,其中[m]表示不超过m 的最大整数,从甲地到乙地通话5.2min 的话费是A.3.71元 B.4.24元C.4.77元D.7.95元7.若函数f(x)在R 上是减函数,则下列关系式一定成立的是( )A.f(a)>f(2a) B.f(a 2)<f(a)C.f(a 2+a)<f(a)D.f(a 2+1)<f(a 2)8.若函数f (x)是奇函数,且当x>0时,f (x)=x 3+x +1,则当x<0时,f (x)的解析式为( )A .f (x)=x 3+x -1B .f (x)=-x 3-x -11()3 5()3C .f (x)=x 3-x +1D .f (x)=-x 3-x +1二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知f (2x -1)=4x 2,则下列结论正确的是( )A .f (3)=9 B.f (-3)=4C .f (x)=x 2D.f (x)=(x +1)210.函数f(x)的图象是折线段ABC ,如图所示,其中点A ,B ,C 的坐标分别为(-1,2),(1,0),(3,2),以下说法正确的是( )A.f(x)=Error!B.f(x -1)的定义域为[-1,3]C.f(x +1)为偶函数D.若f(x)在[m ,3]上单调递增,则m 的最小值为111.下列说法正确的是( )A.若幂函数的图象经过点,则该幂函数的解析式为y =x -3B.若函数f(x)=,则f(x)在区间(-∞,0)上单调递减C.幂函数y =x α(α>0)始终经过点(0,0)和(1,1)D.若函数f(x)=x ,则对于任意的x 1,x 2∈[0,+∞)有f(x 1)+f(x 2)2≤f 三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.设f(x)=11-x,则f(f(x))=__________13.已知二次函数f(x)=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________14.若函数f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.1(,2)845x-12x x ()2+15.(13分)已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f的值;(2)若f(2a+1)=f(a),求实数a的值.16.(14分)已知函数f(x)=Error!(1)求f(f(f(5)))的值;(2)画出函数的图象.17.(16分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x-12x2,0≤x≤400,80 000,x>400,其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)18.(16分)已知函数f(x)=x21+x2+1,x∈R.1 () 2(1)判断并证明函数的奇偶性;(2)求f(x)+f 的值;(3)计算f(1)+f(2)+f(3)+f(4)+f +f +f .19.(18分)已知二次函数f(x)=x 2-2(a -1)x +4.(1)若a =2,求f(x)在[-2,3]上的最值;(2)若f(x)在区间(-∞,2]上单调单减,求实数a 的取值范围;(3)若x ∈[1,2],求函数f(x)的最小值.参考答案及解析:一、单选题1()x 1()21()31()41.B 解析:由题意,令-x 2+2x +3≥0,即x 2-2x -3≤0,解得-1≤x ≤3,所以函数的定义域为[-1,3].故选B .2.A 解析:由题意知-2≤x ≤3,所以-1≤x +1≤4,所以-1≤x -1≤4,得0≤x ≤5,即y =f(x -1)的定义域为[0,5].3.D 解析:依题意,可得Error!或Error!或Error!解得-2≤a ≤2.4.C 解析:由题意,f =f =f =-f =-f =-f =f =13.5.B 解析:把点(0,-1)代入四个选项可知,只有B 正确.故选B .6.C 解析:f(5.2)=1.06×(0.5×[5.2]+2)=1.06×(0.5×5+2)=4.77.7.D 解析:因为f(x)是R 上的减函数,且a 2+1>a 2,所以f(a 2+1)<f(a 2).故选D .8.A 解析:∵函数f (x)是奇函数,∴f (-x)=-f (x),当x<0时,-x>0,∵x>0时,f (x)=x 3+x +1,∴f (-x)=(-x)3-x +1=-x 3-x +1,∴-f (x)=-x 3-x +1,∴f (x)=x 3+x -1.即x<0时,f (x)=x 3+x -1.故选A .二、多选题9.BD 解析:令t =2x -1,则x =t +12,∴f (t)=4=(t +1)2.∴f (3)=16,f (-3)=4,f (x)=(x +1)2.故选BD .10.ACD 解析:由图可得当-1≤x <1时,图象过(1,0),(-1,2)两点,设f(x)=kx +b ,∴Error!解得Error!=-x +1,当1≤x ≤3时,根据图象过点(1,0),(3,2),同理可得f(x)=x -1,∴f(x)=Error!A 正确;由图可得f(x)的定义域为[-1,3],关于x =1对称,∴f(x -1)的定义域为[0,4],f(x +1)为偶函数,即B 错误,C 正确;当f(x)在[m ,3]上单调递增,则1≤m <3,故m 的最小值为1,D 正确.故选ACD .11.CD 解析:若幂函数的图象经过点,则该幂函数的解析式为y =,故A 错误;函数f(x)=是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y =x α(α>0)始终经过点(0,0)和(1,1),故C 正确;对任意的x 1,x 2∈[0,+∞),要证f(x 1)+f(x 2)2≤f ,即x 1+x 22≤x 1+x 22,即x 1+x 2+2x 1x 24≤x 1+x 22,即(x 1-x 2)2≥0,易知成立,故D 正确.三、填空题5()32(1)3+2()3-2(31[1(3+-1()31()3-2t 1()2+1(,2)813x -45x -12x x ()2+12.答案:x -1x (x ≠0且x ≠1)解析:f(f(x))=11-11-x =11-x -11-x=x -1x .13.答案:-3或38解析:f(x)的对称轴为直线x =-1.当a >0时,f(x)max =f(2)=4,解得a =38;当a <0时,f(x)max =f(-1)=4,解得a =-3.综上所述,a =38或a =-3.14.答案:13,0解析:因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f(x)=13x 2+bx+b +1为二次函数,结合偶函数图象的特点,则-b2×73=0,易得b =0.四、解答题15.解:(1)由m 2-5m +7=1,得m =2或m =3.当m =2时,f(x)=x -3是奇函数,所以不满足题意,所以m =2舍去;当m =3时,f(x)=x -4,满足题意,所以f(x)=x -4.所以f ==16.(2)由f(x)=x -4为偶函数且f(2a +1)=f(a),得|2a +1|=|a|,即2a +1=a 或2a +1=-a ,解得a =-1或a =-13.16.解:(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.1()241()217.解:(1)设月产量为x 台,则总成本为(20 000+100x)元,从而f(x)={-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f(x)=-12(x -300)2+25 000,所以当x =300时,f(x)max =25 000.当x >400时,f(x)=60 000-100x 单调递减,f(x)<60 000-100×400=20 000<25 000.所以当x =300时 ,f(x)max =25 000,即每月生产300台仪器时利润最大,最大利润为25 000元.18.解:(1)f(x)是偶函数,理由如下.f(x)的定义域为R ,关于y 轴对称.因为f(-x)=(-x)21+(-x)2+1=x 21+x 2+1=f(x),所以f(x)=x 21+x 2+1是偶函数.(2)因为f(x)=x 21+x 2+1,所以f =+1=1x 2+1+1,所以f(x)+f =3.(3)由(2)可知f(x)+f =3,又因为f(1)=32,所以f(1)+f(2)+f(3)+f(4)+ff +f +f =f(1)+=32+3×3=21219.解:(1)当a =2时,f(x)=x 2-2x +4,x ∈[-2,3],因为f(x)的对称轴为x =1,所以f(x)在[-2,1]上单调递减,在[1,3]上单调递增,所以当x =1时,f(x)取得最小值为f(1)=1-2+4=3,当x =-2时,f(x)取得最大值为f(-2)=22+4+4=12.1()x 221()x 11()x +1(x 1()x 1()21()31()4111[f (2)f ()][f (3)f ()][f (4)f ()]234+++++(2)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,f(x)在区间(-∞,2]单调递减,则a -1≥2,解得a≥3.所以实数a 的取值范围为[3,+∞).(3)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,当a -1≤1,则a≤2,此时f(x)在[1,2]上单调递增,所以f(x)min =f(1)=1-2(a -1)+4=7-2a .当1<a -1<2,则2<a <3,此时f(x)在[1,a -1]上单调递减,在[a -1,2]上单调递增,所以f(x)min =f(a -1)=(a -1)2-2(a -1)2+4=-a 2+2a +3.当a -1≥2,则a ≥3,此时f(x)在[1,2]上单调递减,所以f(x)min =f(2)=22-4(a -1)+4=12-4a .综上,f(x)min ={7-2a ,a ≤2,-a 2+2a +3,2<a <3,12-4a ,a ≥3.。

2020_2021学年高一数学期中复习高频考点函数值域的求法强化训练含解析北师大版必修1

2020_2021学年高一数学期中复习高频考点函数值域的求法强化训练含解析北师大版必修1

高一数学期中复习高频考点:函数值域的求法考点1 图像法求值域1.函数f(x)在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )A .3,0B .3,1C .3,无最小值D .3,-2【答案】C【解析】【分析】 观察图象由最高点与最低点确定最大值与最小值.【详解】观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.【点睛】本题考查图象的识别,(1)函数的定义域,判断图象的左右位置;函数的值域,判断图象的上下位置;(2)函数的单调性,判断图象的变化趋势;(3)函数的奇偶性,判断图象的对称性.2、设()2x x 1f x x 11x 2x x 2-≤-⎧⎪=--⎨⎪≥⎩,,<<,. (1)在图的直角坐标系中画出f (x )的图象;(2)若f (t )=2,求t 值;(3)求函数f (x )的最小值.【答案】(1)见解析;(2)t=-2或,或t=2;(3)-1. 【解析】【分析】(1)根据分段函数的解析式,分三段画图,即可得到函数的图象;(2)对t分三种情况讨论,得出相应的方程求解,即可得到答案;(3)由(1)中函数的图象,结合图象,即可得到函数的最小值. 【详解】(1)f(x)的图象如右边:(2)当t≤-1时,f(t)=-t=2,∴t=-2;当-1<t<2时,f(t)=t2-1=2,解得:当t≥2时,f(t)=t=2,∴t=2,综上所述:t=-2或,或t=2.(3)由图可知:当x∈(-1,2)时,f(x)=x2-1≥-1,所以函数f(x)的最小值为-1.【点睛】本题主要考查了分段函数的解析式的应用,以及分段函数的图象的应用,其中解答中分段的函数的解析式,正确画出分段函数的图象是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题. 考点2 分离参数法求值域3、函数()3452x f x x -+=-的值域是( ) A .()(),22,-∞+∞ B .()(),22,-∞--+∞ C .55,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .R【解析】()344341077252252525x x x f x x x x x -+--+==-=-=-+----,()2f x ∴≠-,值域为()(),22,-∞-⋃-+∞.故选:B. 4、求函数3254x y x +=-的定义域与值域. 【解析】要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠. 32112813(45)233235445445444(54x x x y x x x x ++-+==⨯=⨯=-+---⨯-),因为540x -≠,所以10(54x ≠-),即2304(54x ≠⨯-),所以34y ≠-,即值域为3{|}4y y ≠-. 5、求函数y =2211x x-+的值域. 【答案】(-1,1].【解析】【分析】运用分离常数的方法,将函数解析式变形,然后根据观察法求得函数的值域.【详解】 由题意得()2222212121111x x y x x x -++-===-+++, 因为1+x 2≥1, 所以22021x <≤+,所以221111x-<-≤+, 即11y -<≤.所以函数的值域为(-1,1].【点睛】求分式型函数的值域时,可先将函数的解析式通过分离常数进行化简,然后通过不等式或观察的方法求得函数的值域.考点3 利用函数的单调性求值域6、函数224y x x =-+,[]0,2x ∈的值域为_____.【答案】[]3,4【解析】【分析】先由二次函数的开口方向,以及函数对称轴,得到函数在给定区间的单调性,进而可求出结果.【详解】因为224y x x =-+开口向上,对称轴为:1x =,又[]0,2x ∈,所以函数224y x x =-+在[)0,1上单调递减,在(]1,2上单调递增;因此min 1243=-+=y ;又当0x =时,4y =;当2x =时,4y =;所以max 4y =.因此函数224y x x =-+,[]0,2x ∈的值域为[]3,4.故答案为:[]3,4【点睛】本题主要考查求二次函数的值域,熟记二次函数的性质即可,属于常考题型.7、已知函数()1xf x x =+,[](1,4)x ∈,(1)试判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值【答案】见解析.【解析】试题分析:(1)利用定义作差,定号,下结论即可;(2)结合第一问的单调性可求最值.试题解析:任取[]12,1,4x x ∈,且12x x <, ()()12121211x x f x f x x x -=-++ ()()()121211x x x x -=++ ∵1214x x ≤<≤∴120x x -<,()()12110x x ++>,所以,()()120f x f x -<,即()()12f x f x <,所以函数()f x 在[]1,4上是增函数,函数的最大值为,最小值为. 点睛:利用定义判断函数的单调性一般步骤为:(1)任取;(2)作差;(4)变形;(3)定号;(4)下结论. 考点4 判别式法求值域8、求函数221x y x x =-+的最值.【答案】最大值为2,最小值为-23 【解析】【分析】对y 进行讨论,当y ≠0时,利用判别式Δ≥0和y ≠0,求出y 的最值.【详解】当y =0时,x =0;当y ≠0时,关于x 的一元二次方程yx 2-(y +2)x +y =0,由于x 是实数,所以其判别式Δ≥0一定成立.由y ≠0以及Δ=(y +2)2-4y 2≥0,解得-23≤y ≤2且y ≠0. 综上所述:函数y 的最大值、最小值分别是2和-23. 【点睛】本题考查函数最值的知识点,涉及到判别式法求最值,属于基础题型.9、求函数22211x x y x x --=++的值域. 【解析】 由22211x x y x x --=++得2(2)(1)10y x y x y -++++=, 当2y =时,方程的根为1x =-,当2y ≠时,根据一元二次方程有解得2(1)4(2)(1)0y y y ∆=+--+≥,即2230y y --≤,解得12y -≤<或23y <≤, 综上可得函数211x y x x +=++的值域为[1,3]-. 考点5 换元法求值域10、求函数2y x =+【解析】令t =()0t ≥,则212t x -=. ∴原函数可化为22151()24y t t t =-++=--+. ∵当12t =,即38x =时,max 54y =;且原函数无最小值. 故原函数的值域为5,4⎛⎤-∞ ⎥⎝⎦. 10、求函数y x =+.【解析】(0)t t =≥,则212t x -=,所以2211(1)122t y t t -=+=--+,当1t =时,此时函数取得最大值1,所以函数的值域为(,1]-∞.故选:A.易错专攻(易错点提醒:忽略定义域而致错)11、求函数()[]21,1,21fx x x =∈+的值域. 【答案】11,52⎡⎤⎢⎥⎣⎦【解析】分析:根据自变量的范围求21x +的取值范围即可. 详解:因为[]1,2x ∈,所以2215x ≤+≤,故()1152f x ≤≤,故()f x 的值域为11,52⎡⎤⎢⎥⎣⎦.点睛:本题考察函数值域的求法,属于基础题.。

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

②∵顶点横坐标23,4],当x=3时 ,y=-2,x =4时 ,y=1
∴在[3,4]上,Ymin =-2,Ymax=1; 值域为[-2,1].
解③略:
解④∵顶点横坐标2 ∈[0,5]当x=0时 ,y=1,x=2 时 ,y=-3, x=5时 ,y=6,∴ 在[0,1]上, Ymin =-3,ymax =6
② y=x²-4x+1 x∈[3,4]
③ y=x²-4x+1 ,x∈[0,1]④y=x²-4x+1 x ∈[0,5]
图 像
解:∵y=x²-4x+1 =(x-2)²-3

∴顶点为(2,-3),顶点横坐标为2 . (对称轴x=2)
①∵抛物线的开口向上,函数的定义域R
∴x=2时,Ymin=-3 ,无最大值;函数的值域是{yly≥-3 }.
1.2.函数定义域和值域的求法
函数
y=f(x )
因变量
对应法则
自变量
自变量的取值范围为
因变量的取值范围为
定义域
值域
对应法则一般为
函数的解析式
1:在初中我们学习了哪几种函数?函数表达式是 什么?它们的定义域值域各是什么?
一次函数: y=ax+b(a≠0) 定义域为R
反比例函数:
≠0) 定义域为{x|x≠0}
当 - 1<x≤1 时 ,y=(x+1)+(x-1)=2x
当 x>1 时 ,y=(x+1) 一(x-1)=2




由图知: -2≤y≤2

故函数的值域为
[-2,3]
课堂小结
求函数的值域的方法:
(1) 视察法; (2) 图象法;

高中数学必修一高一数学第二章(第课时)函数的定义域与区间公开课教案课件课时训练练习教案课件

高中数学必修一高一数学第二章(第课时)函数的定义域与区间公开课教案课件课时训练练习教案课件

课题:2.1.2函数-区间的概念及求定义域的方法教学目的:1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法;2.培养抽象概括能力和分析解决问题的能力;教学重点:“区间”、“无穷大”的概念,定义域的求法教学难点:正确求分式函数、根式函数定义域授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定前面我们已经学习了函数的概念,,今天我们来学习区间的概念和记号二、讲解新课:1.区间的概念和记号在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,b∈R ,且a<b.我们规定:①满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b];②满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);③满足不等式a≤x<b 或a<x≤b的实数x的集合叫做半开半闭区间,分别表示为[a,b) ,(a,b].这里的实数a和b叫做相应区间的端点.在数轴上,这些区间都可以用一条以a和b为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点:{x|a<x ≤b} 左开右闭区间 (a ,b) 这样实数集R 也可用区间表示为(-,+),“”读作“无穷大”,“-”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x<b 的实数x 的集合分别表示为[a ,+∞),(a ,+∞),(- ∞,b ],(- ∞,b). 注意:书写区间记号时:①有完整的区间外围记号(上述四者之一);②有两个区间端点,且左端点小于右端点;③两个端点之间用“,”隔开.2.求函数定义域的基本方法我们知道,根据函数的定义,所谓“给定一个函数”,就应该指明这个函数的定义域和对应法则(此时值域也往往随着确定),不指明这两点是不能算给定了一个函数的,那么为什么又在给定函数之后来求它的定义域呢?这是由于用解析式表示函数时,我们约定:如果不单独指出函数的定义域是什么集合,那么函数的定义域就是能使这个式子有意义的所有实数x 的集合.有这个约定,我们在用解析式给出函数的对应法则的同时也就给定了定义域,而求函数的定义域就是在这个意义之下写出使式子有意义的所有实数组成的集合.3.分段函数:有些函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,这样的函数通常称为分段函数.分段函数是一个函数,而不是几个函数.4.复合函数:设 f (x )=2x -3,g (x )=x 2+2,则称 f [g (x )] =2(x 2+2)-3=2x 2+1(或g [f (x )] =(2x -3)2+2=4x 2-12x +11)为复合函数三、讲解范例:下面举例说明函数定义域的求法. 例1已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ⇒1)]}1([{)0(;0)1(;2)1(+=-==-=ππf f f f f f 例2已知f (x )=x 2-1 g (x )=1+x 求f [g (x )] 解:f [g (x )]=(1+x )2-1=x +2x 例3 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x 11111++ ④x x x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-] ②要使函数有意义,必须:⎩⎨⎧≠-≠-≤-≥⇒⎩⎨⎧≠-+≥--131********x x x x x x x 且或 4133≥-≤<-->⇒x x x 或或∴定义域为:{ x|4133≥-≤<-->x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且 ④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x ∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x 例4 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例5 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须: 43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R ;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 例6 已知f(x)满足x xf x f 3)1()(2=+,求)(x f ; ∵已知x xf x f 3)1()(2=+ ①, 将①中x 换成x 1得xx f x f 3)()1(2=+ ②, ①×2-②得x x x f 36)(3-= ∴xx x f 12)(-=. 例7 设二次函数)(x f 满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,图象过点(0,3),求)(x f 的解析式.解:设)0()(2≠++=a c bx ax x f ,∵图象过点(0,3),∴有f(0)=c=3,故c=3;又∵f(x)满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,∴得对称轴x=2且2122122212)(x x x x x x -+=+=10, 即22=-ab 且10622=-a a b ,∴a=1,b=-4,∴34)(2+-=x x x f 四、练习:1.设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域解:要使函数有意义,必须:223≤-≤-x 得: 221+≤≤-x ∵ x ≥0 ∴ 220+≤≤x 2460+≤≤x∴ 函数)2(-x f 的定域义为:{}2460|+≤≤x x2.已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 3.若x x x f 21(+=+),求f(x) 解法一(换元法):令t=1+x 则x=t 2-1, t ≥1代入原式有1)1(2)1()(22-=-+-=t t t t f∴1)(2-=x x f (x ≥1)解法二(定义法):1)1(22-+=+x x x ∴1)1()1(2-+=+x x f 1+x ≥1∴1)(2-=x x f (x ≥1)五、小结 本节课学习了以下内容:区间的概念和记号,求函数定义域的基本方法,求解析式的方法,分段函数;复合函数六、课后作业:课本第52页习题2.1:6补充:1 已知:)(x f =x 2-x+3 求: f(x+1), f(x 1) 解:f(x 1)=(x 1)2-x1+3; f(x+1)=(x+1)2-(x+1)+3=x 2+x+32 已知函数)(x f =4x+3,g(x)=x 2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)]. 解:f[f(x)]=4f(x)+3=4(4x+3)+3=16x+15;f[g(x)]=4g(x)+3=4x 2+3;g[f(x)]=[f(x)]2=(4x+3)2=16x 2+24x+9;g[g(x)]=[g(x)]2=(x 2)2=x 4.3 若xx x f -=1)1( 求f(x) 解: 令x t 1= 则t x 1= (t ≠0) 则11111)(-=-=t tt t f ∴f(x)=11-x (x ≠0且x ≠1) 七、板书设计(略)八、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

高一数学必修一函数的定义域和值域

高一数学必修一函数的定义域和值域

的定义域如何确定3.通常表示函数的方法有:4. y f x 的定义域为A, x 1, x 2 A 。

函数是增函数,函数是减函数,函数是奇函数,函数是偶函数。

讲授新课: 一、函数的判断例1.<1>下列对应是函数的是注:检验函数的方法(对于定义域内每一值值域内是否存在唯一的值与它对应) ① x y: \y\ x② x x 2 x 1<2>下列函数中,表示同一个函数的是: ( )2.思考:对于不同的函数如:① y x 22x ② y x 1 ③ y1 Ig 2x 5 ⑤ y1 yx注:定义域和对应法则必须都相同时,函数是同一函数练习:其中表示同一函数的是 二:函数的定义域 注:确定函数定义域的主要方法(1)若f x 为整式,则定义域为 R.(2)若f X 是分式,则其定义域是分母不为 0的实数集合(3)若f X 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合;⑷ 若f x 是由几部分组成的,其定义域是使各部分都有意义的实数的集合;(5)实际问题中,确定定义域要考虑实际问题 例:1.求下列函数的定义域:(4) y x 2 3 5 x 2A. f X x, g x ,X 2B.f x x,g xC. f x x 2, g JD. fxx 2x, g x1.设有函数组:①x, y J x 2 ② y x, y 眷x 3 ③ y jG , yxx ④y|x1 x 0,y x(1) y、x2x 2 3x 2(2) y x 1 -1 x(3) yV x 1 (5) f x 4x (6) t 是时间,距离ft 60 3t3 2x2.已知函数f x 的定义域是[-3,0], 求函数f x 1的定义域。

练习:1.求下列函数的定义域: 2(1) (3) f x 1 1丄; 1 1x(4) f x2.已知f x 的定义域为 0,1,求函数yf x 2x 4的定义域。

3三、函数值和函数的值域例1求下列函数的值域:(观察法)例5.画出函数y x 2 4x 6,x 1,5的图像,并根据其图像写出该函数的值域。

高一数学知识点必修一:函数的定义域

精心整理
高一数学知识点必修一:函数的定义域
(高中函数定义)设A ,B 是两个非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有确定的数f(x)和它对应,那么就称f :A--B 为集合A 到集合B 的一个函数,记作A 叫 )判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本“元件”。

平时数学中,实行“定义域优先”的原则,无可置疑。

然而事物均具有二
精心整理
重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。

如果函数的值域是无限集的话,那么求函数
,而。

高中数学必修1:函数的定义域和值域精品 精品优选公开课件


∴函数求函数 y f (x)2 f
x2
的值域
6,
37 4

思考:已知函数 y x a 有如下性质: x
如果常数 a 0,那么该函数在(0, a ] 上是减
函数,在[ a , ) 上是增函数.
若函数 y x 2b ( x 0) 的值域为[6, ) ,试 x
常用基本函数的值域,这是求其他复杂函数值域的基础。
①函数 y kx b(k 0, x R)的值域为 R.
②二次函数 y ax2 bx c(a 0, x R)
当 a 0时值域是[4ac b2 , );当 a 0 时值域是 ( , 4ac b2 ].
函数的定义域 常见函数的值域
求函数的定义域的方法:找使解析式有意义的条件.
1.常见式子有意义的条件: (1)分式的分母不等于零; (2)偶次方根的被开方数是非负的; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于 1.
2.求定义域的过程实质是解不等式(组)的过 程:如果函数是由一些基本函数通过四则运算 结合而成的,那么它的定义域是使各部分都有 意义的 x 的值组成的集合.
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
儒家的最高境界是“拿得起”,佛家的最高境界是“放得下”,道家的最高境界是“想得开”;所以说,儒释道的最高境界,就是这三句话、九个字。中国历史上还曾有过其他一些“人生境界”说,其中三个最著名的,正好可以与儒释道这三大最高境界对照参悟。 跟儒家学拿得起。儒家是追求入世、讲究做事的,要求奋发进取、勇于担当、意志坚定。概括为三个字,就是“拿得起”。什么是“拿得起”?且看这个“儒”字——左边一个“人”,右边一个“需”,合起来就是“人之所需”。人活世上,有各种精神或生存的需要,满足这些需要就需要去获取。去拿,并且拿到了、拿对了,就是拿得起。

高一数学新教材人教版必修一第三章函数的概念与性质测试卷含答案

值;
(Ⅲ)若 f (x) 在区间[2, ) 上单调递增,求实数 a 的取值范围.
19.(本小题满分 12 分)
已知函数
f
(x)
ax x2
b 1
是定义在
(1,1)
上奇函数,
且 f (1) 3 .
3 10
(Ⅰ)判断函数 f (x) 在 (1,1) 上的单调性,并用
定义证明;
(Ⅱ)若实数 t 满足 f (2t 1) f (t 1) 0 ,求实
4
5.令 t 1 x 0, 则 y 2 2t2 t 2(t 1)2 17 17
4 88
6.
y
x(x 2),(x x(x 2),(
2) x 2)
,作出图象即可.
7.函数 f (x) ax 2a 1,(a 0) 在 (0, ) 上单 x
调递增,又 m2 1 0,m2 m 3 0
x3 数,则实数 a 的取值范围是
15.已知函数 f (x) x5 3x3 5x 3 ,若 f (a) f (a 2) 6 ,则实数 a 的取值范围是
16.已知 m R ,函数 f (x) x 3 m m 在[2, x 1
5] 上的最大值是 5 ,则 m 的取值范围是
三、解答题:(写出必要的文字说明,推理过程或 演算步骤) 17.(本小题满分 10 分) 设函数 f (x) ax2 (b 2)x 3 . (Ⅰ)若 f (1) 3 ,且 a 0,b 0 ,求 b 1 的最
9.已知奇函数 y f (x) 的图象关于直线 x 2 对称,
且 f (m) 3,且 f (m 4) 的值为( )
A. 3
B. 0
C. 3
D. 1
3
10.已知函数 f (x 1) 是偶函数,且 x 1 时, f (x) 单调递减,设 a f ( 1),b f (3),c f (0) ,则 a,

高一数学必修一函数的定义域和值域资料

高一数学必修一函数的定义域和值域资料
函数的定义域和值域是高一数学中的重要概念。

它们是相关函数与变量之间的关系,关系到函数求值。

因此,学习高一数学,必须深入了解它们。

定义域:定义域也称为函数的定义区域,是指给定函数f ←→y=f(x)(其中x,y为实变量)的实变量x的取值范围的集合,也就是为了使f(x)的值确实存在,z取值范围的集合。

一般而言,x的取值范围通常为数轴上的所有实数或部分实数,也就是x∈R。

而如果有些函数涉及有理数,那么定义域x取值范围为:x∈Q,也就是定义域只能取到有理数。

值域:函数值域就是函数在给定定义域上可能出现的值集合,称为函数值域。

记f ←→y=f(x)(其中x,y为实变量),则值域Df={y:y=f(x),x∈Df },其中,Df为定义域。

举例说明:
1. 不等式f(x)<2的值域
当x∈R时,函数f(x)的定义域就是R,而值域为{y:y<2,x∈R}={y:y<2}。

以上就是函数的定义域和值域的概念及其具体的表示方法的介绍,希望小伙伴们能够更好的理解这些概念,为学习数学提供助力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

强化训练题(补课) 宁南中学 数学组 刘泽才(邮箱:mymaths@163.com qq:270892361)
1
三 定义域
一、选择题:
1. 函数f(x)的定义域为0≤x≤1则f ( x + 2 )的定义域为[ ]
A.0≤x≤1 B.2≤x≤3 C.-2≤x≤-1 D.无法确定
2. 函数y = f (3x+2)的定义域是[0,1],则函数y = f (x)的定义域是[ ]

[ ]

4. 已知函数f(3-2x)的定义域为[-1,2],则 f ( x ) 的定义域是[ ]
5. 设函数 f (x)的定义域是{x | 0≤x≤2},则函数f(x+3)的定义域为[ ]
A.[3,5] B.[2,2] C.[-3,0] D.[-3,-1]
6. 若y = f ( x ) 的定义域是[0,1],则 f ( x + a ) + f (2 x + a) ( 0<a<1)的定义域
是 [ ]

7. 已知函数()fx的定义域为1,2,则函数()()yfxfx的定义域是( )
.1,1A .2,2B .1,2C 
.2,1D

8. 已知函数2()()fxxabxab的定义域为M,函数
()gxxaxb

的定义域为N(0)ab,则下列关系成立的是( )
.A
MN B. NM C. MN D.M=N

二、填空题:

2. 已知f(x)的定义域为[1,2],则f(2x+1)的定义域为_______.
三、解答题:
1、求函数的定义域

(1)232()1xxfxx (2)0(2)()2xfxxx
强化训练题(补课) 宁南中学 数学组 刘泽才(邮箱:mymaths@163.com qq:270892361)
2
(3)2()23()fxxxxz (4)0(1)xyxx

2. ①若(2)fx的定义域为[2,4],求()fx的定义域;②若(23)fx的定义域为
(2,6),求(3)fx
的定义域;③若函数()fx的定义域为1,1,求(21)fx的定
义域;④已知函数2(1)yfx的定义域为2,5,求()yfx的定义域;
强化训练题(补课) 宁南中学 数学组 刘泽才(邮箱:mymaths@163.com qq:270892361)

3
3. ①已知2(2)fx的定义域是1,求()2xf的定义域;②函数()yfx的定
义域为02xx,求2()()1fxgxx的定义域
强化训练题(补课) 宁南中学 数学组 刘泽才(邮箱:mymaths@163.com qq:270892361)

4
4. ①已知函数269ymxmxm的定义域为R,求实数m的取值范围;②
若函数24()43xfxmxmx的定义域为R,求m的范围

相关文档
最新文档