永磁电机磁路结构和设计计算

合集下载

电机永磁体尺寸计算

电机永磁体尺寸计算

电机永磁体尺寸计算摘要:I.引言- 介绍电机永磁体的概念及应用背景II.永磁体尺寸计算的重要性- 阐述永磁体尺寸对电机性能的影响- 强调计算永磁体尺寸的必要性III.永磁体尺寸计算方法- 介绍永磁体尺寸计算的基本原理- 详述计算过程中需要考虑的因素- 列举常用的计算公式IV.计算实例- 给出一个具体的计算实例,展示计算过程及结果V.结论- 总结永磁体尺寸计算的重要性- 强调在实际应用中需要考虑的因素正文:电机永磁体尺寸计算电机永磁体是一种具有强大磁力的磁性材料,广泛应用于各类电机中,以提高电机的效率和性能。

然而,永磁体的尺寸对电机的性能有着至关重要的影响。

因此,准确地计算永磁体的尺寸是电机设计和制造过程中的一个重要环节。

永磁体尺寸计算的重要性永磁体的尺寸直接影响到电机的磁性能。

如果永磁体过大或过小,都可能导致电机性能不佳,如效率低下、输出功率不足等。

因此,在设计和制造电机时,必须准确地计算永磁体的尺寸。

永磁体尺寸计算方法永磁体尺寸的计算涉及到多个因素,包括电机的功率、转速、磁路长度等。

常用的计算方法有经验公式法、解析法、数值模拟法等。

下面以经验公式法为例,介绍永磁体尺寸的计算过程。

经验公式法是一种基于实验数据和经验积累的方法,其优点是计算简便、结果较可靠。

在实际应用中,可以根据电机的类型、功率、转速等参数,查阅相应的经验公式,从而得到永磁体的尺寸。

计算实例假设我们要设计一个功率为10kW、转速为1500rpm 的永磁同步电机,采用径向磁路。

根据经验公式法,可以先计算出电机的磁通密度B:B = (P × 60) / (2 × π × N × μ0 × L)其中,P 为功率,N 为转速,μ0 为真空磁导率,L 为磁路长度。

代入参数,得到:B = (10 × 10^3 × 60) / (2 × 3.1416 × 1500 × 4π × 10^-7 × L)接下来,可以根据电机的额定电压、电流等参数,计算出永磁体的尺寸。

永磁容错电机的结构设计与分析

永磁容错电机的结构设计与分析

永磁容错电机的结构设计与分析1. 引言1.1 背景介绍永磁容错电机是一种新型的电机技术,具有在故障状态下仍能正常运行的能力,因此在电动汽车和工业机械领域有着广泛的应用前景。

传统的永磁电机在受到故障时容易损坏,而永磁容错电机通过引入容错机制,可以在一定程度上提高电机的可靠性和稳定性。

目前,研究人员对永磁容错电机的结构设计和分析方法进行了广泛的探讨,以提高其性能和效率。

传统的永磁电机主要由定子、转子和永磁体组成,而永磁容错电机在此基础上引入了容错绕组或容错磁路结构,使得在部分磁场损失时能够保持电机的正常运行。

永磁容错电机的结构设计是实现其容错功能的关键,同时也需要对其进行有效的分析方法,以评估其性能和稳定性。

目前,研究人员已经提出了多种结构设计和分析方法,并进行了实验验证,为永磁容错电机的进一步研究和应用奠定了基础。

1.2 研究目的永磁容错电机是一种具有高效、高性能和高可靠性的电机,在电动汽车、风力发电等领域有着广泛的应用前景。

本文旨在通过对永磁容错电机的结构设计和分析,探讨其在电力系统中的优势和特点,为相关领域的研究和应用提供理论参考和指导。

研究目的包括但不限于:1. 分析永磁容错电机的结构特点和工作原理,探讨其与传统电机的优势和差异;2. 探讨永磁容错电机的设计方法和关键技术,以提高其性能和效率;3. 探讨永磁容错电机在不同应用场景下的应用价值和潜力,为相关行业提供指导和支持;4. 分析永磁容错电机的发展趋势和未来的研究方向,为相关研究人员和企业提供战略规划和决策支持。

通过本文的研究,期望能够深入了解永磁容错电机的结构设计和分析方法,为其在电力系统中的应用和推广做出贡献。

2. 正文2.1 永磁容错电机的结构设计永磁容错电机的结构设计是该电机性能的关键之一。

在结构设计过程中,首先需要确定电机的定子和转子结构。

定子结构通常采用铁芯绕组的形式,而转子通常采用永磁体作为励磁源。

接着需要确定电机的轴向长度、直径和绕组参数等关键尺寸。

电机学:第一章 磁路2

电机学:第一章 磁路2

将铁磁材料放入磁场后,磁场会显著增强,铁磁材料在磁场中 呈现很强的磁性这一现象,称为铁磁物质的磁化。
原因:铁磁物质中有许多称为磁畴的天然磁化区,当未投入磁场时, 磁畴杂乱无章的排列,磁效应相互抵消对外不显磁性。当放入磁场 后,磁畴按外磁场方向排列起来,形成一附加磁场叠加在外磁场上。
如图1-6所示。
二.磁化曲线
1-3直流磁路
本节介绍直流磁路的分析和计算 一、直流磁路的计算
磁路计算分为:1、给定磁通,计算所需的励磁磁动势(正问题)
2、给定励磁磁动势,计算磁路内的磁通量(逆问题)
1、正问题计算步骤:
1)将磁路按材料性质和不同截面分成数段
2)计算各段的有效面积和平均长度Ai、Li
3)根据各段中的 i 计算各段
磁路中的磁通与磁动势成正比,与磁阻成反比。
例1-1 有一闭合的铁心磁路,铁心的截面积 A 9104 m2。磁路的 平均长度L=0.3m ,铁心的磁导率 Fe 5000 0 ,0 4 10 7 。套
装在铁心上的励磁绕组为 500 匝。试求在铁心中产生1T的磁通密度
时所需的励磁磁动势和励磁电流。
n
n
Ni H k lk k Rmk
k 1
k 1
该定律称为磁路的基尔霍夫第二定律。
电机和变压器的磁路是由数段 不同截面,不同材料的铁心组成, 而且还可能含有气隙,在进行磁路 计算时总是将磁路分成若干段,每 段为同一材料,且截面积相等,则 磁场强度相等。由左图可见,磁路 由三段组成,两段为截面积不同的 铁磁材料,一段为空气隙,励磁磁
范围内。所以电机和变压器的铁心用导磁率较高的铁磁材料组成。
一、铁磁物质的磁化
1 、铁磁物质
铁磁物质的磁导率都很大,一般是

永磁同步电动机设计及结构的设计(论文)【范本模板】

永磁同步电动机设计及结构的设计(论文)【范本模板】

毕业设计论文题目永磁同步电动机的设计及结构的研究(院)系电气与信息工程系专业电气工程及其自动化班级0 学号0 号学生姓名高富帅导师姓名完成日期2005年6月8日目录摘要 (1)Abstract (2)第1章绪论 (3)1.1永磁性材料简述 (3)1。

1。

1 稀土永磁材料 (3)1.1。

2 其它永磁材料 (4)1.1.2。

1 铝镍钴永磁 (5)1.1。

2.2 铁氧体永磁材料 (6)1。

1。

2。

3 粘结永磁材料 (6)1。

2永磁同步电机的发展概况 (6)1。

2.1永磁同步电机在国内的发展概况 (7)1。

2.2永磁同步电机在同外的发展概况 (7)1。

3永磁同步电动机的分类 (8)1.3.1永磁同步电动机简介 (8)1。

3.2永磁同步电动机的分类 (8)1.4永磁同步电动机的主要特点和应用 (9)第2章永磁材料的性能和选用 (11)2.1 永磁材料磁性能的主要参数 (11)2。

1.1退磁曲线 (11)2.1.2 回复曲线 (12)2.1。

3 内禀退磁曲线 (13)2。

1。

4 稳定性 (14)2.2 永磁材料的选择和应用注意事项 (15)2。

2.1永磁材料的选择 (15)2.2.2 永磁材料的应用注意事项 (16)第3章永磁同步电动机的结构和基本理论 (16)3.1永磁同步电动机的结构 (18)3.1。

1永磁同步电动机的总体结构 (18)3。

1。

2永磁同步电动机的转子磁路结构 (19)3。

1。

2.1表面式转子磁路结构 (20)3.1.2.2内置式转子磁路结构 (21)3.1.2。

3爪极式转子磁路结构 (23)3.1.3隔磁措施 (23)3.2 永磁同步电动机的基本理论 (23)3.2。

1 稳态运行和相量图 (23)3。

2。

2永磁同步电动机的稳态性能分析和计算 (25)3。

2。

2。

1电磁转矩和矩角特性 (25)3。

2.3 工作特性曲线 (27)3.3永磁同步电动机的磁路分析与计算 (27)3。

3.1磁路计算特点 (27)3。

轴向磁场盘式永磁电机等效磁路网络及气隙漏磁的分析计算

轴向磁场盘式永磁电机等效磁路网络及气隙漏磁的分析计算
并计 算 组成 该模 型 的各 等 效磁 阻 ,得到 该种 电机 漏 磁 系数 的 解析 表达 式。 通过 3 D . F E M方 法及样 机 永磁 电动 势 的 试验 测 试 ,证 明本 文给 出的轴 向磁 场盘 式 永磁 电机 等 效磁路 网络模 型 及 漏磁 计
算 的正确性 。
关键 词 :轴 向磁 场 永磁 电机 ; 漏磁 系数; 等 效磁路 网络 ; 三 维 有限 元
a na l y t i c a l f o m ul r a of t he l e ka a g e c o e ic f i e nt o f a x i a l f l ux p e r ma ne n t ma g n e t mo t o r wa s g i v e n whi c h i s v e r i i f e d b y 3 D— FEM a nd t he p r o t o t y pe e xp e r i me n t .
中图分类号 :T M 3 5 1 文献标志码 :A 文章编号 :1 0 0 7 - 4 4 9 X ( 2 0 1 3 ) 1 0 - 0 0 5 9 - - 0 6
Lum pe d pa r a me t e r ma g ne t i c c i r c u i t a n a l y s i s o f a x i a l lu f x pe r ma n e n t
( S c h o o l o f E l e c t r i c a l E n g i n e e r i n g , S h a n d o n g U n i v e r s i t y , J i n a n 2 5 0 0 6 1 ,C h i n a ) Ab s t r a c t : T o a v o i d t h e h u g e t i me c o n s u mp t i o n i n t h e i n i t i a l a n d o p t i mu m d e s i g n o f a x i a l l f u x p e r ma n e n t ma g n e t mo t o r wh e r e 3 D— F E M wa s u s e d t o c a l c u l a t e t h e l f u x l e a k a g e c o e f i f c i e n t ,b y c o n s t i t u t i n g t h e a c c u r a t e l u mp e d p a r a me t e r ma g n e t i c c i r c u i t mo d e l nd a c o mp u t i n g t h e r e l a t i v e ma g n e t i c r e l u c t nc a e s , he t

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例一. 主要技术指标1. 额定功率:W 30P N =2. 额定电压:V U N 48=,直流3. 额定电流:A I N 1<3. 额定转速:m in /10000r n N =4. 工作状态:短期运行5. 设计方式:按方波设计6. 外形尺寸:m 065.0036.0⨯φ二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P '直流电动机 W P K P NNm i 48.4063.03085.0'=⨯==η,按陈世坤书; 长期运行 N i P P ⨯''+='ηη321 短期运行 N i P P ⨯''+='ηη431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比L/D λ′=27.计算电枢内径m n B A P D N s i i i 23311037.110000255.0110008.048.401.61.6-⨯=⨯⨯⨯⨯⨯=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-⨯= 8. 气隙长度m 3107.0-⨯=δ 9. 电枢外径m D 211095.2-⨯= 10. 极对数p=111. 计算电枢铁芯长 m D L i 221108.2104.12--⨯=⨯⨯='='λ根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-⨯12. 极距 m p D i 221102.22104.114.32--⨯=⨯⨯==πτ 13. 输入永磁体轴向长m L L m 2108.2-⨯==三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22110733.06104.114.3--⨯=⨯⨯==π3. 槽形选择梯形口扇形槽,见下图;4. 预估齿宽: m K B tB b Fe t t 2210294.096.043.155.010733.0--⨯=⨯⨯⨯==δ ,t B 可由设计者经验得,t b 由工艺取m 210295.0-⨯5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056.196.0255.08.02.222-⨯=⨯⨯⨯⨯=≈Φ=δδτ1j B 可由设计者经验得,1j h 由工艺取m 210325.0-⨯根据齿宽和轭高作出下图,得到具体槽形尺寸6. 气隙系数 135.1)5()5(2010101=-++=b b t b t K δδδ7.电枢铁心轭部沿磁路计算长度m h ph h D L j ij t i i 2111110064.2)21(2)2(-⨯=+-⨯++=απ8.槽面积2410272.0m S -⨯=电枢铁芯材料确定从数据库中读取电枢冲片材料DW540-50电枢冲片叠片系数96.01=Fe K 电枢冲片材料密度331/1075.7m j ⨯=ρ电枢冲片比损耗kg W p s /16.2)50/10(=四.转子结构1. 转子结构类型:瓦片磁钢径向冲磁2. 永磁体外径m D D i m 211026.12-⨯=-=δ3. 永磁体内径m H D D m m mi 21086.02-⨯=-=4. 永磁体极弧系数8.0=m α5. 紧圈外经D 2=m 21032.1-⨯6. 永磁材料磁化方向截面积24221043.421026.114.3108.28.02m p D L S mm m m ---⨯=⨯⨯⨯⨯⨯==πα7. 永磁材料的选取永磁体材料:钕铁硼 剩磁r B :矫顽力c H :796 kA/m 永磁体材料密度m ρ:cm 38. r B 对应的磁通Wb S B m r r 41087676.4-⨯=⋅=φ 9.c H 对应的磁势A D D H F mim c c 3200)2(2=-= 10. 转子轭材料选择由于转子较细,故转轴、磁轭为一体,选用10号钢 11.转子磁轭等效宽度 m D D D D b i mi i e j 22222221033.02102.01086.022---⨯=⨯-⨯=-=-=12.转子磁轭沿磁路方向长度瓦片m pD D b L mii e j j 222221083.0)21(4)(-⨯=-++=απ五、磁路计算1. 漏磁系数2.1=σ2. 气隙磁通δδδταB L B i 926.4==Φ3.空载电枢齿磁密δδδB B K b t B B Fe t t 588.296.010295.010733.022=⨯⨯⨯⨯==-- 4. 空载电枢轭磁密δδδB B L K h B Fe j j 819.28.296.0325..02926.4211=⨯⨯⨯=Φ=5. 空载转子轭磁密δδδσB B L b B j j 198.38.233.02926.42.1222=⨯⨯⨯=Φ= 6. 气隙磁势A B B B K F 462610127.010135.11007.06.1106.1⨯=⨯⨯⨯⨯⨯=⨯=-δδδδδδ7. 定子齿磁势A H H h H F t t t t t 22109.01045.022--⨯=⨯⨯== 8. 定子轭部磁势A H L H F j j j j 211110064.2-⨯== 9. 转子轭部磁势A H L H F j j j j 222221083.0-⨯== 10. 总磁势∑+++=21j j t F F F F F δ 11. 总磁通Wb B m 410926.42.1-⨯⨯=Φ=Φδδσ12.空载特性曲线计算见表;因为表面磁钢永磁电机电动机负载时气隙的合成磁场与空载时差不多;六.电路计算1. 绕组形式及电子开关形式:两相导通星形三相六状态 2. 绕组系数采用单层集中整距绕组,即 第一节距)(31槽==τy 每极每相槽数12pmZq ==m 是相数;p 为极对数 故绕组系数1=w K3. 预取空载转速m in /120000r n =' 4. 每相绕组串联匝数φW '0.7V U 24.8025.700为管子压降,取匝,∆=Φ'∆-='δφαpn UU W i取匝82W =φ5. 电枢总导体数根4922==φmW N6. 实际每槽导体数N s =N/Z=82根7. 实际空载转速0nmin /11742109039.28217.02488.05.725.7400r pW U U n i=⨯⨯⨯⨯-⨯⨯=Φ∆-=-δφα8. 计算绕组端部长度m pD D pDav l i b 211101.42)2)(2.122.1-⨯=+=='ππ 9. 计算电枢绕组每匝平均长度m l L L bav 2108.13)(2-⨯='+= 10. 预估导线截面积2661007086.01101463.04830m a J U P S aN N c-⨯=⨯⨯⨯⨯=''='η 式中26'/1014m A J a⨯=为预取导线电流密度 1=a 为每相绕组支路数 11. 导线选取选择F 级绝缘导线QZY-2 导线计算截面积26210066.04m d S c c -⨯==π导线最大截面积262max max 10092.04m d S c c -⨯==π导线直径md m d c c 3max 310342.01029.0--⨯=⨯=12. 槽满率计算公式选择35.01042max=⨯⋅=-S c s s S S N K π13. 实际导线电流密度26'/1015m A aS U P J c N Na ⨯==η 14. 每相电枢绕组电阻Ω==⨯=Φ-31022)20(62)20(20cavcava S a l W S ma Nl r ρρ式中)/(0157.02)20(m mm ⋅Ω=ρ为导线的电阻率 设电机绕组的工作温度t 为75C 0,则导线工作温度电阻Ω=⨯-+=65.3])20(1[20t a at p t r r 式中00395.0=t p 为导线的电阻温度系数七.电枢反应计算1. 起动电流 A r UU I atst 77.722=∆-=2. 起动时每极直轴电枢反应最大值A K W I F w st sdm 27643==φ 3. 额定工作时的反电动势 V n W pC N ie 5.39152'==δφφα 4. 额定工作时电枢电流 A r EU U I ata 97.022=-∆-=5. 额定工作时最大直轴去磁磁势A K W I F W a adm 3443==φ 6. 负载工作点:根据sdm F 和adm F ,可在空载永磁体工作图上作出负载和起动时的特性曲线2、3,求负载特性曲线与永磁体去磁曲线的交点,得负载工作点:负载气隙磁感应强度T B 5872.0=δ 负载气隙磁通Wb 4108925.2-⨯=Φδ负载电枢齿磁感应强度t B = 负载电枢轭磁感应强度j B =7. 额定工作时电磁转矩m N I W pT a iem .0366.04==δφφπα8. 起动电磁转矩 m N I C T st T st .293.0=Φ=δ 八. 性能计算1. 电枢铜损W r I p at a Cu 87.622== 2. 电枢铁损W G B G B f p K p j j t t a Fe 11.4)()50)(50/10(12123.1=+= 式中a K ------铁损工艺系数,取2=a K1j G ------定子轭重kg L h D D G j s j 05816.010])2([43211211=⨯--=-πρt G ------定子齿重kg ZL h b G t t s t 0173.0103=⨯=-ρ3. 轴承摩擦损耗W n G K p N p mp mpn 05.1103=⨯=-Kmp=3,p G 为磁钢重 转子轭重 转轴重 传感器转子重的和 3=mp K 为默认情况,可让用户自己指定kg G G G G r g m p 035.0=++=4. 风损W L n D p N mpb 13.01026332=⨯=-5. 机械损耗和铁损W p p p p mpb mpn Fe 29.5=++='6. 考虑到附加损耗后的机械损耗和铁损 W p p 877.63.1='=系数可选 7. 开关管损耗W U I p a 358.12=∆⨯=∆8. 电机总损耗W p p p p Cu 1.15=++=∆∑9. 输入功率W I U P a N 56.461==10. 输出功率W p P P N 46.311=-=∑ 11. 效率%57.67%1001=⨯=P P N η 12. 摩擦转距m N n p T N.00657.056.90== 13. 额定输出转距 m N T T T em .03.002=-=。

永磁无刷直流电机设计实例

永磁无刷直流电机设计实例

永磁无刷直流电机设计实例永磁无刷直流电机(Brushless DC Motor,BLDC)是一种形式先进的电机,具有高效率、长寿命、高功率密度、高控制精度等优点,已广泛应用于机床、机器人、电动工具等领域。

在本文中,我们将介绍永磁无刷直流电机的设计实例。

1. 电机参数计算在进行永磁无刷直流电机设计之前,首先需要计算出电机的一些参数,包括额定功率、额定转速、额定电压、额定电流等。

这些参数将作为电机设计的基础。

1.1 标称功率Pn = Tmax × ωnPn 为电机标称功率,Tmax 为电机最大扭矩,ωn 为电机额定转速。

1.2 额定转速永磁无刷直流电机的额定转速通常由应用需求决定。

对于电动工具来说,需要较高的额定转速,而对于机床来说,需要较低的额定转速。

通常情况下,可以根据应用的要求来选择适当的额定转速。

永磁无刷直流电机的额定电压通常由电源系统决定。

通常情况下,可以选择电压稳定器或直流电源来提供稳定的电压。

根据实际需求和电源系统的限制,可以确定电机的额定电压。

2. 永磁体设计永磁体是永磁无刷直流电机中最重要的组件之一,其设计将直接影响电机的性能。

永磁体的设计包括永磁体的形状、尺寸以及选用的材料。

2.1 形状与尺寸永磁体的形状和尺寸对电机的输出特性有着重要的影响。

通常情况下,可以选择方形、圆形、椭圆形等形状,并根据电机设计参数计算出永磁体的尺寸。

2.2 材料选择永磁体选用的材料决定了电机的性能。

目前常用的永磁体材料有 NdFeB、SmCo、AlNiCo 等。

不同的永磁体材料具有不同的磁性能、机械性能和耐温性能,应根据实际应用需求进行选择。

3. 绕组设计绕组是永磁无刷直流电机中的另一个关键组件,在电机的输出特性和效率上起着重要作用。

绕组的设计涉及到绕组的形状、导线直径、匝数和线材材料等方面。

绕组的形状通常与永磁体相对应,可以根据永磁体的形状来确定绕组的形状。

3.2 导线直径导线直径直接影响到电机的电阻和电感,对电机的输出特性和效率有着重要影响。

浅谈永磁电机的设计要点

浅谈永磁电机的设计要点

浅谈永磁电机的设计要点永磁电机是一种利用永磁体产生磁场来驱动电机转动的设备。

它具有体积小、效率高、响应速度快等优点,在现代工业中得到广泛应用。

永磁电机的设计要点是指在设计永磁电机的过程中需要考虑的一些关键因素,包括电机结构、永磁材料、磁路设计、绕组设计等方面。

本文将从这些方面来浅谈永磁电机的设计要点。

一、电机结构设计永磁电机的结构设计是永磁电机设计的首要考虑因素之一。

首先需要确定电机的类型,包括直流永磁电机、交流永磁同步电机、交流永磁异步电机等。

不同类型的电机具有不同的结构特点和工作原理,需要根据具体的使用需求来选择。

其次是确定电机的功率和转速范围,这将直接影响电机的尺寸和重量。

最后是确定电机的散热方式和防护等级,这些因素都将影响电机的可靠性和使用寿命。

二、永磁材料选择永磁电机的性能主要取决于永磁材料的选择。

常用的永磁材料有钕铁硼、钴磁铁、铁氧体等。

钕铁硼磁体具有优良的磁性能,适用于高性能永磁电机的设计,但价格较高;钴磁铁磁体具有良好的抗高温性能,适用于高温环境下的永磁电机;铁氧体磁体价格低廉,适用于一般性能要求的永磁电机。

在选择永磁材料时,需要综合考虑其磁性能、成本、温度特性等因素。

三、磁路设计磁路设计是永磁电机设计的关键环节之一。

良好的磁路设计能够提高电机的磁路传导能力,减小磁阻,提高电机的工作效率。

在磁路设计中需要考虑的因素包括磁路长度、磁路横截面积、气隙磁密等。

为了最大限度地提高磁路的传导性能,需要采用合理的磁路形状和加强磁路的连接,提高磁路的填充因子。

四、绕组设计绕组设计是永磁电机设计的另一个重要方面。

绕组设计直接影响电机的电磁性能和功率密度。

在绕组设计中需要考虑的因素包括电机的转子类型、绕组方式、导体材料和截面积等。

合理的绕组设计能够提高电机的工作效率和输出功率,减小电机的损耗和温升。

五、控制系统设计控制系统设计是永磁电机设计的重要组成部分。

永磁电机的控制系统主要包括电流控制系统和转速控制系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 磁路结构和设计计算
永磁发电机与励磁发电机的最大区别在于它的励磁磁场是由永磁体产生的。

永磁体在电机中既是磁源,又是磁路的组成部分。

永磁体的磁性能不仅与生产厂的制造工艺有关,还与永磁体的形状和尺寸、充磁机的容量和充磁方法有关,具体性能数据的离散性很大。

而且永磁体在电机中所能提供的磁通量和磁动势还随磁路其余部分的材料性能、尺寸和电机运行状态而变化。

此外,永磁发电机的磁路结构多种多样,漏磁路十分复杂而且漏磁通占的比例较大,铁磁材料部分又比较容易饱和,磁导是非线性的。

这些都增加了永磁发电机电磁计算的复杂性,使计算结果的准确度低于电励磁发电机。

因此,必须建立新的设计概念,重新分析和改进磁路结构和控制系统;必须应用现代设计方法,研究新的分析计算方法,以提高设计计算的准确度;必须研究采用先进的测试方法和制造工艺。

1.2 控制问题
永磁发电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。

这些使永磁发电机的应用范围受到了限制。

但是,随着MOSFET、IGBTT等电力电子器件的控制技术的迅猛发展,永磁发电机在应用中无需磁场控制而只进行电机输出控制。

设计时需要钕铁硼材料,电力电子器件和微机控制三项新技术结合起来,使永磁发电机在崭新的工况下运行。

1.3 不可逆退磁问题
如果设计和使用不当,永磁发电机在温度过高(钕铁硼永磁)或过低(铁氧体永磁)时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。

因而,既要研究开发适合于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时采用相应措施保证永磁式发电机不会失磁。

1.4成本问题
由于稀土永磁材料目前的价格还比较贵,稀土永磁发电机的成本一般比电励磁式发电机高,但这个成会在电机高性能和运行中得到较好的补偿。

在今后的设计中会根据具体使用的场合和要求,进行性能、价格的比较,并进行结构的创新和设计的优化,以降低制造成本。

无可否认,现正在开发的产品成本价格比目前通用的发电机略高,但是我们相信,随着产品更进一步的完美,成本问题会得到很好的解决。

美国DELPHI(德尔福)公司的技术部负责人认为:“顾客注重的是每公里瓦特上的成本。

”他的这一说法充分说明了交流永磁发电机的市场前景不会被成本问题困扰。

1.5永磁转子特点:
结构1:
并联磁场结构;转采用采用铸造压制而成,里面嵌放永磁体,能量大、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。

专利号;ZL96 2 47776.1
结构2:
串联磁场式结构;转子采用钢结构,表面按顺序嵌放永磁铁,转子表面磁通强、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。

专利号:ZL98 2 33864.3
整机稳压系统特点:
采用可控硅和二极管组成半控桥式整流电路。

稳压系统是一种斩波调制型稳压装置,其稳压精度为正负0.1v,故该发电机具有能瞬间承受较大电流、运行可靠和耐用等特点,又因可直接利用发电机发出的交流电的反向电压使可控硅自行关断,故无需加关断电路,使电路结构简单、可靠。

2、永磁发电机的优点。

相关文档
最新文档