热红外卫星的成像原理
遥感专题讲座——热红外遥感

热红外遥感热红外遥感是利用热红外波段研究地球物质特性的技术手段,可以获取地球表面温度,在城市热岛效应、林火监测、旱灾监测等领域有很好的应用价值。
由于热红外遥感涉及知识多而且深,特别是地表温度反演,需要大气传输、几个定律等方面的知识,本文用通俗语言总结了热红外遥感基本原理和方法,能知道热红外遥感怎么回事及简单的应用。
本文主要包括:●基本定义和原理●常见名词●简单应用与温度反演●ENVI下地表温度反演1、基本定义和原理热红外遥感(infrared remote sensing )是指传感器工作波段限于红外波段范围之内的遥感。
这是一个狭义的定义,只是说明的数据的获取。
另外一个广义的定义是:利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
热红外遥感的信息源来自物体本身,其基础是:只要其温度超过绝对零度,就会不断发射红外能量,即地表热红外辐射特性。
如下图为黑体的辐射光谱曲线(不同温度下物体辐射能量随波长变化的曲线),常温的地表物体(300K左右)发射的红外能量主要在大于3μm的中远红外区,即地表热辐射。
热辐射不仅与物质温度的表面状态有关,物质内部组成和温度对热辐射也有影响。
在大气传输过程中,地表热辐射能通过3-5μm和8-14μm两个窗口,这也是大多数传感器的设计波段范围。
热红外遥感在地表温度反演、城市热岛效应、林火监测、旱灾监测、探矿、探地热,岩溶区探水等领域都有很广的应用前景。
2、常见名词热红外遥感涉及的知识多而且深,下面来了解热红外遥感中几个基本的名词。
● 辐射出射度单位时间内,从单位面积上辐射出的辐射能量称为辐射出射度,单位是 2-⋅m W● 辐射亮度辐射源在某一方向上单位投影表面、单位立体角内的辐射通量,称为辐射亮度 (Radiance),单位是瓦/平方米*微米*球面度(1-12μm --⋅⋅⋅Sr m W )。
很多地方会将辐射亮度和辐射强度区分,我这里理解的是一个概念。
红外热成像仪的介绍及工作原理

1.红外热成像技术红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。
红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。
由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。
因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。
2.什么是红外热像图一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
3.红外热像仪的原理热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。
红外热像仪的原理4.红外热成像的特点自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。
大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。
因此,这两个波段被称为红外线的“大气窗口”。
我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。
5.在线式红外热像仪采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。
红外热像仪成像原理

带温度信息的热图像
不带温度信息的热图像
名词解释
红外探测器: 红外探测器是将不可见的红外辐射转换成可测量的信号的器件,是红
外整机系统的核心关键部件。
探测器尺寸: 探测器尺寸指探测器上单个探测元的大小,一般的规格有25μm,35μm 等。探测元越小,则成像的质量越好。
名词解释
红外探测器的分辨率: 分辨率是衡量热像仪探测器优劣的一个重要参数,表示了探测器焦平
名词解释
噪声等效温差(NETD): 热像仪对测度图案进行观察,当系统的基准电子滤波器输出的信号电
压峰值和噪声电压的均方根之比为1时,黑体目标和黑体背景的温差称为噪 声等效温差。NETD越小,表示成像画面质量越好。
名词解释
鬼影: 其指红外图像中出现的不随目标变化的或明或暗的纹路,它是由于红
外探测器的探测元对红外辐射的响应红外探测器
显示器
图像信号处理 与显示
探测器读出电路
名词解释
红外热像仪按照工作温度分为制冷型和非制冷性
制冷式热成像仪: 其探测器中集成了一个低温制冷器,这种装置可以给探测器降温度,
这样是为了使热噪声的信号低于成像信号,成像质量更好。
非制冷式热成像仪: 其探测器不需要低温制冷,采用的探测器通常是以微测辐射热计为基
通俗的说,红外热成像是将不可见的红外辐射变为可见的热图像。 不同物体甚至同一物体不同部位辐射能力和它们对红外线的反射强弱 不同。利用物体与背景环境的辐射差异以及景物本身各部分辐射的差异, 热图像能够呈现景物各部分的辐射起伏,从而能显示出景物的特征。 热图像其实是目标表面温度分布图像。
如图:热图像可以分辨出物体表面的热辐射差异。
红外线原理
2. 红外线波段范围
太阳发出的光波又叫电磁波。可见光是人眼能够感受的电磁波,经三棱镜折 射后,能见到红、橙、黄、绿、青、蓝、紫七色光。
红外热成像仪的原理

红外热成像仪的原理1.红外热成像技术红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。
红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。
由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。
因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。
2.什么是红外热像图一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
3.红外热像仪的原理热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。
红外热像仪的原理4.红外热成像的特点自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。
大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。
因此,这两个波段被称为红外线的“大气窗口”。
我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。
5.在线式红外热像仪采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。
远红外热感成像 原理

远红外热感成像原理
远红外热感成像技术,也称为热红外成像或红外热成像,其工作原理基于自然界中所有温度高于绝对零度(-273.15℃)的物体都会不断向外发射红外辐射这一物理现象。
不同温度的物体发出的红外辐射强度和波长各不相同,其中远红外波段主要涵盖了8-14微米的长波红外区域。
具体原理包括以下几点:
1. 红外辐射与温度关系:
- 物体温度越高,其发出的红外辐射能量越强。
- 根据维恩位移定律,物体辐射出的红外光峰值波长与其绝对温度呈反比关系。
2. 探测转换过程:
- 热像仪利用敏感元件(如焦平面阵列,FPA)来捕捉这些红外辐射,并将其转换为电信号。
- 电信号经过放大、处理后形成数字信号,进而生成代表温度分布的图像。
3. 图像显示:
- 将不同的温度对应不同的颜色等级,在显示器上以伪彩色热图的形式呈现出来,使得肉眼可以直观地看到被测物体表面温度的分布差异,也就是所谓的“热像图”。
4. 应用优势:
- 远红外热成像技术能够实现非接触式、全天候的温度测量
和监控,尤其在黑暗、烟雾等视线受限环境中仍能有效工作,因此广泛应用于军事侦察、工业检测、医疗诊断、建筑节能、消防救援等领域。
清科热像红外成像技术

清科热像红外成像技术全文共四篇示例,供读者参考第一篇示例:近年来,随着科技的发展和进步,热像红外成像技术在各个领域的应用越来越广泛。
清科热像红外成像技术是一种高端的热成像技术,在安防、工业、医疗、军事等领域都有着重要的应用价值,深受用户青睐。
清科热像红外成像技术是指利用红外辐射技术来获取目标物体的红外图像,从而实现对目标物体的监测、检测和识别。
这种技术可以通过探测目标物体的不同热量来显示出目标物体的轮廓和特征,对于一些肉眼无法看到的目标物体有着很好的辨识能力。
清科热像红外成像技术采用了高清晰度的红外传感器,能够在不同的环境下准确地捕捉目标物体的热量分布情况,为用户提供准确的图像信息。
在安防领域,清科热像红外成像技术被广泛应用于监控系统中。
通过设置红外监控摄像头,可以实时监测目标物体的热量分布情况,对于夜间和恶劣天气下的监控有着很好的效果。
清科热像红外成像技术还可以实现对目标物体的自动识别和跟踪,为安防人员提供了强大的帮助。
在工业领域,清科热像红外成像技术被广泛应用于设备检测和维护中。
通过对设备进行热成像检测,可以发现设备运行中的潜在问题,并及时采取措施进行修理。
清科热像红外成像技术可以帮助企业提高设备的使用效率和延长设备的使用寿命,对于生产线的安全和稳定有着重要的意义。
在医疗领域,清科热像红外成像技术被广泛应用于疾病的诊断和治疗。
通过热成像技术可以发现人体内部的异常热量分布情况,帮助医生诊断各种疾病。
清科热像红外成像技术还可以用于手术中的辅助,提高手术的准确性和安全性,为患者带来更好的医疗体验。
清科热像红外成像技术是一种先进的热成像技术,在各个领域都有着广泛的应用前景。
随着科技的不断进步和研发的深入,清科热像红外成像技术将会为人们的生活和工作带来更多的便利和效益。
我们可以期待清科热像红外成像技术在未来的发展中发挥越来越重要的作用,为社会的发展做出更大的贡献。
第二篇示例:清科热像红外成像技术是一种利用红外辐射来获取物体表面温度信息并将其转化为可视图像的技术。
热成像的原理

热成像的原理热成像技术是一种利用物体自身发出的红外辐射来获取目标信息的技术。
它是一种非接触式的测温方法,可以在没有接触目标物体的情况下,通过红外热像仪获取目标物体的温度分布图像。
热成像技术在军事、医疗、建筑、工业等领域有着广泛的应用,它的原理主要基于物体的热辐射特性和红外辐射的探测技术。
热成像的原理可以简单概括为:物体受热后会发出红外辐射,红外热像仪可以探测到这种辐射并将其转换成热图像。
具体来说,热成像技术的原理主要包括以下几个方面:1. 热辐射特性,一切温度高于绝对零度的物体都会发出电磁辐射,其中包括可见光和红外辐射。
而红外辐射是人眼无法看到的,但可以被红外热像仪探测到。
物体的辐射强度和波长分布与其温度有关,根据普朗克辐射定律和斯特藩-玻尔兹曼定律,可以推导出物体的辐射功率与温度之间的关系。
2. 红外探测技术,红外热像仪利用红外探测器可以感应物体发出的红外辐射,并将其转换成电信号。
红外探测器的种类有热电偶、热释电探测器和半导体探测器等。
这些探测器对红外辐射的探测灵敏度和分辨率不同,可以满足不同应用场景的需求。
3. 热图像处理,红外热像仪获取的红外图像需要经过图像处理和分析才能得到有用的信息。
图像处理包括背景校正、非均匀性校正和图像增强等步骤,可以提高图像的质量和清晰度。
而图像分析则可以通过测温算法和图像识别技术来获取目标物体的温度分布和形状特征。
总的来说,热成像技术的原理是基于物体的热辐射特性和红外探测技术,通过红外热像仪获取目标物体的红外图像,并经过图像处理和分析得到目标物体的温度分布和形状特征。
这种非接触式的测温方法在工业、医疗、安防等领域有着广泛的应用前景,可以为人们的生产生活带来便利和安全保障。
热成像食道 胃检查的原理

热成像食道胃检查的原理
热成像食道胃检查的原理是通过红外热像仪来测量食道和胃部的温度变化。
人体组织在不同的状态下会产生不同的热量,通过测量体表的红外辐射,可以得到组织的温度分布情况。
在热成像食道胃检查中,患者会吞服带有红外探头的导管。
红外探头会感应周围组织的红外辐射,并将数据传输给计算机进行处理。
计算机会将传感器所测得的各个部位温度与正常组织温度进行比较,从而分析和确定组织的异常情况。
通过热成像食道胃检查,可以确定食道和胃部的疾病情况,例如胃食管逆流病、食道溃疡、食管炎等。
由于这种检查方法无创伤、无痛苦,且能够全面观察到食道和胃部的情况,因此在临床上被广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热红外卫星的成像原理
热红外卫星的成像原理主要是基于热红外波段扫描成像的辐射测量技术。
这种技术在夜间和雾、雨、雪等天气条件下,以及在完全无云的情况下,都可以有效获取目标图像。
具体来说,热红外成像系统的工作原理是利用目标的辐射加热效应实现成像测量的。
当物体在环境温度下向外辐射能量时,其辐射能量的大小和规律取决于物体的表面温度、发射率以及大气条件等因素。
通过接收并处理这些来自被探测目标的辐射能量信息,可以形成可见光中不可见的目标的热红外图像。
这一过程主要用于探测人类无法直接看到的事物,同时对于军事用途而言也具有伪装侦察的功能。
此外,卫星通过配备的红外感应器来收集数据,并以一种能够将热度转化为易于解释的数字图像的形式呈现出来。
因此,这是一种被动式遥感方式,不需用雷达那样的高性能信号发送装置,也不需地面任何配合,只要有物体有热能向外发射(包括自身的辐射再加之环境的辐射),就可用此设备进行监测拍摄,适用于非透视观测。
综上所述,热红外卫星主要依赖于热红外波段的辐射测量技术和对目标物的热辐射数据进行成像处理,以生成可见之外的热红外图像。