轴支承结构设计

轴支承结构设计
轴支承结构设计

轴支撑结构设计准则

课程名称:结构设计

学院:机械工程与自动化

专业:材料成型及控制工程

班级:材料成控091

学生姓名:关涛(01)林骏(29)

指导教师:陶学恒

轴支撑结构设计准则

1 引言

旋转运动的轴必须由至少两只相距一定距离的滚动(或滑动)轴承来支承,旋转轴的运行性能、支承状况及质量及密切相关,对旋转轴支承状况和质量有决定性影响的不仅是轴承本身而且包括轴承周围的支承结构设计。滚动轴承是标准件,对它的设计主要是选型和确定尺寸,不涉及结构设计问题,而轴承周围的机构,比如轴承座,则必须根据不同的轴承经行具体的结构设计。如何经行整个轴支承结构的设计,以保证轴支承的性能,提高轴支承的质量?本文提出12条轴支承结构设计准则。

2 轴支撑设计准则

轴支承结构设计的主要要求是持久、可靠、经济。要满足这些要求,仅靠正确地选择轴承类型、轴承尺寸是远不够的,轴承周围的结构因素,诸如轴颈、轴承座、定位件等对轴支承性能的影响是显著的,此外,密封、润滑的影响也很大。

轴支承结构设计的首先要确定如何对所选用的轴承根据其工况在圆周方向和轴向进行可靠地固定,周向固定通常利用配合面上的摩擦力,即采取压紧配合的方法,轴向固定一般用结构方法,例如,凸台、挡圈、螺母等。其次轴支承结构的设计要便于安装、拆卸、密封、润滑。下面结合集体结构实例逐一论述轴支承结构设计准则。

轴系的结构设计没有固定的标准,要根据轴上零件的布置和固定方法,轴上载荷大小、方向和分布情况,以及对轴的加工和装配方法决定的。轴的结构设计,要以轴上零件的拆装是否方便、定位是否准确固定是否牢靠来衡量轴结构设计的好坏。轴的结构设计要包括轴的合理外形和全部尺寸,要满足强度、刚度以及装配加工要求,拟定几种不同的方案进行比较,轴的设计要越简单越好。

轴的结构设计主要取决于以下几个方面:轴在机器中的安装形式和位置;载荷的性质、方向、大小及分布情况;轴上安装零件的类型、数量、尺寸以及相应的连接方法等。轴的结构要满足:轴上的零件不仅要有准确的工作位置还要便于调整和装拆;轴要具有良好的制造工艺性。

2.1 轴向静定准则

轴支承结构设计必须使轴在轴线方向处于静定状态——轴在轴线方向既不能有刚体位移(静不定),也不能有阻碍自由伸缩的多余约束(超静定)。轴向静定准则是轴支承结构设计中最基本最重要的准则。

轴在轴向若约束

不够,则表示轴定位

不确定,甚至有从轴

向脱离的危险,这种

情况必须避免,见图

1(左)。将轴在轴线

正反两个方向都分别

固定可避免静不定,

但每个轴上也不能有

多余的约束,否则轴在轴向无法自由伸缩,这样会由于轴和壳体之间不可避免的制造、装配误差、不同的热变形等因素引起的附加轴向力。从而能使轴承因超载而损坏。轴承轴向支承结构设计应特别注意防止超静定问题出现,见图2(左)。在轴支承结构中,理想静定状态不是总能实现的,一定范围之内的轴向刚体移动(准静定)或少量的附加轴向力(拟静定)是不可避免的,也是允许的。在工程实际中准静定和拟静定支承方式也是常见的,它们基本上仍可看做静定状态,重要的是这些少量的轴向刚体移动或附加轴向力的值的范围必须是清楚的。

符合轴向静定准则的常见轴承轴向支承方式有三种:(1)固定——松弛支承方式;(2)单侧止推支承方式;(3)单侧止推——游动支承方式。

固定——松弛支承方式是将两个轴向定位约束安置在轴某一端轴承(或轴承组,下同)上,此轴承称之为固定轴承,固定轴承在轴线正反两个方向都不能移动。轴上另一端轴承(或其他轴承,下同)在轴线两个方向都无固定,即可自由移动,这种轴承称之为松弛轴承。固定——松弛支承是理想的静定状态,它既无刚体位移,也可避免因制造误差,轴和壳体热变形不一样等因素引起的附加轴向力,见图1(右)和图2(右)。

单侧止推支承方式是将两个轴向定位约束分别安置在轴两端的轴承上,它通常由两圆锥滚子轴承或两向心推力球轴承组成,这种轴承既能承受大的径向力,也能承受大的轴向力,通常用于径向和轴向均有外载的场合。装配时用螺母或其他方法调节轴承圈,保证所需的轴向间隙或径向预紧,由于期间可调,这种支承方式特别适合于传动精度要求高的场合。它一般无轴向刚体位移,但当轴的热膨胀比支承它的壳体热膨胀大时,会引起附加轴向力,这种附加轴向力可用下面的方法限制于容许范围内:

(1)籍可调节的轴承轴向间隙,来平衡轴和壳体的变形差额;

(2)用弹簧,从而能保证其处于近似的静定状态。

单侧止推支承方式是拟静定状态,因为轴向间隙的值有限,因此单侧止推支承方式一般仍不宜用于长轴,图3所示是一圆盘犁,其轴的支承方式是单侧止推支承。

单侧止推——游动支承方式近似于单侧止推支承方式,即将两个轴向止推件和欲固定的轴承圈(通常为外圈)之间留有一定的间隙S,轴有一定的轴向刚体位移,其最大值为S。当轴的热膨胀比轴承它的壳体热膨胀大时,只要差额不超过S,不会引起附加轴向力。单侧止推——游动支承是准静定状态,见图4。它可用于既有较大的径向和轴向载荷,又有较大的轴向变形差异的场合,显然,这种支承方式轴向支承精度不高。

上述三种实际中典型的支承方式在同一机器中可根据轴的工况任意组合使用,图5是一个二级变速箱,三根轴的支承方式各异,集上述三种支承方式于一体,从左到右依次为:固定——松弛、单侧止推和单侧止推——游动支承方式。

2.2 固定轴承轴向能双向受力准则

在固定——松弛支承方式中,由于松弛轴承在轴向完全自由,即不能承担任何轴向力,因此,固定轴承必须要能承担轴向正反双向力,这就是说,能作固定轴承的一个先决条件是:他必须能承担正反双向轴向力。向心球轴承、内外圈带折边的圆珠滚子轴承和按X方式组合的两向心推力球轴承等可做固定轴承,而滚针轴承、单只圆锥滚子轴承和向心推力球轴承等不可做固定轴承,见图6。

图7所示为用于电梯上的蜗轮蜗杆变速箱,采用固定-松弛支撑方式,左图用单只向心推力球轴承作固定轴承,因此是错误的支撑结构。

在两个方向均无轴向外载荷的情况下,例如,直齿轮啮合的轴、皮带轮轴等,

固定轴承仍必须

要能双向受力

吗?回答是肯定

的,理由是,尽管

这些轴上无轴向

外载荷,仅有周向

和径向外载荷,但

轴承上仍有轴向

力作用,而且极可

能是两个方向都

有,并随机变化

着。一个很简单的

原因:没有一个实

际中的机械能保

证其周向和径向

外载荷绝对理想

地垂直于它的轴

线。但这个准则还

是可以有例外的,

当轴在任何工况

下,其轴向外载荷

都朝一个方向,而

且其值远远大于

其他各种原因可

能引起的轴向力,

即轴承所受的力肯定只朝一个方向,此时,如受其他因素的制约,不宜安置轴向能双向受力的轴承,可采用仅能受单向力的轴承,当然,轴承的安置方向必须和轴向力的方向相

对应,图8是一立式交流电机主轴简图,转子重

1200kg,其支承方式就是这种例外。

2.3 固定轴承四面定位准则

由于固定轴承必须独立承担阻止双向轴向刚体位移的任务,因此固定轴承内外圈左右两侧四个面都得轴向定位。无轴向外载荷是亦应如此,理由参见固定轴承轴向能双向受力准则,这里说的轴向定位,必须采用结构的方法,从而可保证轴支承可靠,见图9和图7。

这个准则也可以例外,图10是一车床尾部顶架,因它的轴向始终受一很大的向右的压力,无向左的力,因此在无法采用结构的方法防止可能向左的轴向刚体位移是(自重作用),用紧配合的方法代替之也是可行的方案。这个固定轴承(圆锥滚珠轴承+轴向向心球轴承)的优点是:既能承受大的轴向力(轴向向心球轴承),又能保证高的径向精度(可调间隙的圆锥滚珠轴承)。另外,轴上的作力点应优先靠近固定轴承,这样既便于松弛轴承自由移动,又可缩短力的传递路径,从而减少不必要的变形及不良影响。

轴上零件的轴向定位主要取决于零件所受轴向力的大小,轴向定位是要以圆螺母、轴承端盖、轴肩、套筒、轴端挡圈等来确定。轴的制造以及轴上零件的拆装难易程度、工作可靠性以及对轴强度的影响等因素都会影响到零件的轴向定位。用于周向定位常用的定位零件有销、键、花键、过盈配合以及一些紧定螺钉等,主要目的是为了防止轴上零件与轴发生相对转动。

2.4 松弛轴承至少一圈定位准则

在固定-松弛支承方式中,松弛轴承的功能是保证轴在轴向能完全自由伸缩,它不容许承担任何轴向力。松弛轴承轴向定位准则是:在满足轴承不承担轴向力的前提下,尽量多加轴向定位,避免轴承游动。当滚珠体和一轴承圈之间在轴向有相对移动的可能性时,比如用有一圈不带折边的圆柱滚子轴承作松弛轴承,松弛轴承内外圈四个面都得轴向定位,而当滚动体和任一轴承圈之间在轴向都无相对移动的可能性时,比如用向心球轴承作松弛轴承,为保证轴在轴向不承担任何轴向力,最多只能将一圈轴向定位,而为避免轴承游动,至少将一圈轴向定位,见图11。

轴承在载荷的作用下应具有一定的旋转精度和寿命,这就要求轴承以及与轴承相配的轴、轴承座或箱体都应具有足够的刚度。一般外壳及轴承座孔壁均应有足够的厚度,壁板上的轴承座的悬臂应尽可能地缩短,并用加强筋来增强支承部位的刚度。如果外壳是用轻合金或非金属制成的,安装轴承处应采用钢或铸铁制的套杯。

对于一根轴上两个支承的座孔,必须尽可能地保持同心,以免轴承内外圈间产生过大的偏斜。最好的办法是采用整体结构的外壳,并把安装轴承的两个孔一次镗出。如在一根轴上装有不同尺寸的轴承时,外壳上的轴承孔仍应一次镗出,这时可利用衬筒来安装尺寸较小的轴承。当两个轴承孔分在两个外壳上时,则应把两个外壳组合在一起进行镗孔。

无论是固定轴承还是松弛轴承其圆周方向的相对运动只应出现在滚动体和内外圈之间,不应出现在内圈与轴颈或外圈与壳体之间,而松弛轴承轴向的相对运动,当滚动体和任一轴承圈之间在轴向都无相对移动的可能性时,则必须出现在内圈与轴颈或外圈与壳体之间。究竟应让内圈与轴颈还是让外圈与壳体之间有轴向的相对运动?这取决于内圈或外圈的受力状况,其准则是受变载作用的轴承圈周向和轴向全部固定,从而避免可能出现的配合生锈,而仅在一点受静载作用的轴承圈可与其外圈有轴向的相对运动。一般情况下,内圈和轴颈同时旋转,受力点在整个圆周上不停地变化着,而外圈和壳体一样,静止不动,只在一处受静载,比如,齿轮轴、皮带轮轴,此时,作为松弛轴承只能将外圈用于周向运动,图12所示为圆盘锯轴的支承结构,其驱动轮为皮带轮。

在轴上安装轴承内圈时,一般都由轴肩在一面固定轴承的位置,而另一面则用螺母、止动垫圈或弹簧档圈等固定。轴肩和轴向固定零件与轴承内圈接触部分的尺寸,可按轴承尺寸表格所列各类轴承的安装尺寸确定。

(1)螺母定位

在轴承转速较高、承受较大轴向负荷的情况下,螺母与轴承内圈接触的端面要与轴的旋转中心线垂直。否则即使拧紧螺母也会破坏轴承的安装位置及轴承的正常工作状态,降低轴承旋转精度和使用寿命。特别是轴承内孔与轴的配合为松动配合时,更需要严格控制。为了防止螺母在旋转过程中发生松动,需要采取适当的防止松动的技术措施。使用螺母和止动垫圈定位,将止动垫圈内键齿置入轴的键槽内,再将其外圈上各齿中的一个弯入螺母的切口中。

(2)弹簧档圈定位

承受轴向负荷不大、转速不高、轴既较短又在轴颈上加工成螺纹有困难的情况下,可采用断面为矩形的弹性档圈定位。此种方法装卸很方便,所占位置小,制造简单。

(3)止推垫圈定位

在轴颈较短、轴颈上加工成螺纹有困难,轴承转速较高、轴向负荷较大的情况下,可采用垫圈定位,即用垫圈在轴端面上用两个以上螺钉进行定位,用止动垫圈或铁丝拧死,防止松动。

(4)紧定套定位

轴承转速不高,承受平稳径向负荷和不大的轴向负荷的调心滚子轴承,可在光轴上借助锥形紧定套安装。紧定套用螺母和止动垫圈进行定位。利用螺母锁紧紧定套的摩擦力将轴承定位。

(5)内孔有锥度的轴承定位

内孔有锥度的轴承在锥度轴上安装,需要使轴向负荷检顶紧轴与轴承,因此安装时应注意内孔锥度的方向性。如轴承位于轴端并且在轴端允许加工成螺纹,可以直接用螺母定位。如果轴承不是安装在轴端,并且轴上不允许加工成螺纹。在这种情况下,可用两半合并的螺纹环卡到轴的凹槽内,再用螺母定位轴承。

(6)特殊定位

在某些特殊情况下,轴的台肩和圆角尺寸不能按本目录所列的安装尺寸确定时,可以采用过渡垫片作为轴向支承。

圆锥滚子轴承、向心推力球轴承等内外圈可分离,各元件之间无固定配合,因此,在使用这类轴承时,必须将各元件配合为一确定的整体,即其内外圈在轴向必须有支撑,可见,这种轴承不能做松弛轴承。图13是一车床尾部顶架,其轴左端不是固定轴承,因为它只能承受向右的轴向力,阻止向右的刚体位移,即使左端是固定轴承,右端的向心推力球轴承外圈也不能缺少轴向固定,这种可分离轴承轴向若不配合固定好,根本无法正常运转。

滚动轴承的轴向固定,包括轴承外圈与机座的固定和轴承内圈与轴的固定。对这两种固定的要求取决于轴系 ( 轴、轴上零件、轴承与机座的组合 ) 的使用和布置情况。一方面,轴和轴承相对于机座应有确定的位置,以保证轴上零件能正常地传递力和运动;另一方面,由于工作中轴和机座的温度不相等 ( 通常轴的温度高于机座的温度 ) ,而温差可能产生较大的温度应力。为保证轴系中不致产生过大的温度应力,应在适当的部位设置足够大的间隙,使轴可以自由伸缩。常见的滚动轴承的轴向固定形式有如下几种。

(1)、两端固定轴承

轴两端的轴承各限制轴在一个方向的轴向移动,合起来就限制轴的双向移动。为补偿轴的受热伸长,轴承盖与外圈端面之间应留有 0.25 ~ 0.4mm 的补偿间隙 c。间隙值可用改变轴承盖和箱体之间的垫片厚度进行调整。两端固定,结构简单,调整方便,适用于工作温度变化不大的短轴(跨距 L<400mm )。工作温度变化不大和支承跨距较小)的短轴,宜采用两端都单向固定的形式,如图1所示。利用轴上两端轴承各限制一个方向的轴向移动,合在一起就可以限制轴的双向移动,轴的热伸长量可由轴承自身的游隙进行补偿,或用调整垫片调节。

(2)、一端固定、一端游动支承

当轴较长或工作温度较高时,轴的热伸长量大,宜采用一端固定一端游动的支承结构。固定端轴承应能承受双向轴向力,故内外圈在轴向都要固定,而游动端轴承可沿轴向自由游动,以补偿轴的热胀冷缩。游动支承若采用内外圈不可分离型轴承,如深沟球轴承,只需固定内圈,其外圈在座孔内可以轴向游动,并应在轴外圈与端盖之间留有间隙,;若使用的是可分离型的圆柱滚子轴承或滚针轴承,则内外圈都要固定,靠滚子与套圈间的游动来保证轴端移动。当轴向载荷较大时,固定支承可以采用若干轴承组合的形式,如向心轴承和推力轴承组合在一起的结构;也可以采用两个角接触球轴承 ( 或圆锥滚子轴承 ) 组合在一起的结构。

(3)、两端游动支承

要求能左右双向移动的轴,可采用两端游动的轴系结构。例如一对人字齿轮轴,由于人字齿轮本身的相互轴向限位作用,它们的轴承内外圈的轴向紧固应设计成只保证其中一根轴相对机座有固定的轴向位置,而另一根轴上的两个轴承都必须是游动的,以防止齿轮卡死或人字齿两侧受力不均匀。显然,不论滚动轴承是采用哪种固定方式,轴承内圈与轴、轴承外圈与座孔之间必须有轴向固定。轴承内圈一端一般用轴肩或套筒定位,另一端常用的轴上固定方法有:①轴用弹性挡圈固定,它主要用于转速较低,较小轴向载荷的地方;②轴端挡圈固定,可用于较高转速、较大轴向载荷处,并仅适用于轴端;③圆螺母及止动垫圈固定,主要用于转速高、承受较大轴向载荷的场合。要求能左右双向游动的轴,可采用两端游动的轴系结构。

2.7 可分离轴承调隙准则

圆锥滚子轴承、向心推力球轴承等可根据需要自由调隙,可用于传动精度要求高的场合,这种轴承内外圈可分离,间隙不确定,必须在安装时通过调节确定

合适的间隙,否则轴承不能正常运行,因此,在使用这类轴承时,支承结构的设计必须保证调隙的可能。常见的结构调隙方法是用螺母,也可用厚薄可选择的垫圈,在轴一端保证调隙即可,见图14。

2.8 便利安装拆卸准则

便利安装拆卸准则首先要求结构设计必须保证安装拆卸的可能性,比如不能将轴承安装途经处的直径设计得大于轴承座处的直径,为便利安装,配合公差不要选得太紧,剖分式轴承座和可分离轴承的拆卸通常比较容易,在轴周边开槽,用轴承拉拔工具拆卸。对于整体式轴承座,可在轴承座端面开孔,用螺栓旋挤轴

承,更难的轴承拆卸,比如有锥形垫的轴承,可用液压挤撑的方法,这种情况下,结构设计时必须留有液压通道,见图15。

2.9 滚动、滑动轴承不混用准则

滚动和滑动轴承它们各有特点,可根据具体情况灵活应用,但在同一支承轴上滚动和滑动轴承不可混用,其原因在于滑动轴承比滚动轴承磨损大,若在同一根支承轴上同时使用磨损不同的轴承,则载荷集中在磨损小的轴承上,滚动轴承会因此超载而失效。

由于滚动轴承的配合通常较紧,为便于装配,防止损坏轴承,应采取合理的装配方法,保证装配质量,组合设计时也应采取相应措施。安装轴承时,小轴承可用铜锤轻而均匀地敲击配合套圈装入;大轴承可用压力机压入。尺寸大且配合紧的轴承可将轴承放入温度 80 ~ 90 ℃的油中加热,然后套到轴颈上。需注意的是,力应施加在被装配的套圈上,否则会损伤轴承。拆卸轴承时,可采用专用工具。为便于拆卸,轴承的定位轴肩高度应低于内圈高度;加力于外圈以拆卸轴承时,座孔的结构也应留出拆卸高度,其值可查阅轴承样本。装配滚动轴承时,

不可用手锤直接敲打轴承外圈和内圈,这样受力不均,容易倾斜,应加附具。当轴承内圈与轴过盈较小时,可用铜或软钢制的套筒垫在内圈端面上用手锤敲入。当过盈较大时,对于尺寸较小的轴承可用压入法,即用压力机在内圈上施加压力将轴承压套入轴颈中,对于尺寸较大的可用热胀法,即把内圈放在热油中加热,然后用压力机装在轴颈上,如图所示。轴承上标有规格、牌号的端面应装在可见部位,以便将来更换。

2.10 保障轴向定位可靠准则

用轴肩对轴承进行端面定位是常用的轴向定位方式,轴肩处由于几何特变,会引起应力集中。减低应力集中的办法是在轴肩处留有圆角,圆角半径越大,应力集中越小,但是轴承内圈的圆角一般较小,这样轴承端面和轴肩端面无法贴合,定位不可靠,解决的办法是在两端面之间放一个过渡件或将轴肩处圆角向后移,见图16。

圆锥滚子轴承、向心推力球轴承等常用于较大轴向力场合,因此,其轴向固定件要有对应的承载能力。用安全挡圈作这类轴承的轴向固定件原则上是不行的,因为安全挡圈是为定位目的而设计的,不一定有承载能力,见图16。

2.11 过渡配合准则

轴承不但要在轴向进行可靠的固定,在圆周方向也应如此,轴向固定一般用结构方法,在周向用结构方法固定轴承一方面是难以实施的,另一方面也无此必要,因为轴承在周向不传递载荷,因此,用配合方法,即利用配合面上的摩擦力即可,这样既简单也可靠。那么选用什么样的配合恰当呢?过松的配合,无法保证固定的要求,而过紧的配合,装配不方便,实际中,根据经验,一般采取过渡配合,需要轴向移动的轴承圈,配合偏松,可分离轴承轴承圈的配合很紧,可用轻微的过盈配合,例如:

(1)图3所示是一圆盘犁,其左边轴颈的公差为k6,右边轴颈的公差为j6,箱体公差为N7。

(2)图7所示为一用于电梯上的蜗轮蜗杆变速箱,固定轴承轴颈的公差为j5,箱体公差为j6,松弛轴承轴颈的公差为k5,箱体公差为J6。

(3)图17所示的叶轮泵轴,固定轴承轴颈的公差为j5,箱体公差为J6。

2.12 避免双重配合准则

用盖板兼作轴承固定件可一举两得,是一个较好的结构设计,此时,盖板上有一个面必须和箱体紧密配合,以期密封;另一个面必须和轴承端面紧贴配合,保证轴承定位准确。在一个构件上,要求两个配合面其加工精度是很难满足的,

这种结构必须避免,但是用盖板兼作轴承的轴向固定件结构在实际中常被采用,因为,通过在密封面上加一层软性的密封片可有效的避免双重配合问题,图17所示为一叶轮泵轴的支承结构,两端都用盖板兼作轴承的轴向固定件。

3 传动轴支撑的案例

前段时间卡车之家报道过一个奥铃传动轴脱落的事故,引起了不少人的关注,那辆车是由于传动轴螺丝脱落导致传动轴晃动并最后出现脱落。在分析事故原因的过程中,我们也注意到各个厂家在传动轴支撑角板的设计强度也不一样,这其实也存在一定的安全隐患。

目前中轻型卡车的设计偏向于长轴距与高承载性,当驱动桥与变速器之间的距离不大时(短轴距),普遍采用两个万向节与一根传动轴的传动结构。当驱动桥与变速器相距较远(长轴距),传动轴长度超过1.5米时,自振频率低,容易出现共振。为了提高传动轴的临界转速,常将传动轴断开两根或三根,万向节三个或四个。这个时候,必须在中间传动轴上加设中间支撑。

万向节所连两轴之间的夹角,理论设计要求不超过15°- 20°,即使4X4越野汽车(特别是短轴距),最大也不超过30°。传动轴夹角的大小直接影响到万

向节十字轴和滚针轴承的寿命,万向节传动的效率和十字轴旋转的不均匀性。

上图即为传动轴中间支承的附加角板,减小了万向节的夹角,这一布置形式已为我们所常见。

短、长轴距不同的传动轴布置形式

底盘高度决定传动轴夹角的变化

传动轴中间支撑出现故障的原因很多,最常见的故障我们称之“吊架皮圈”损坏,也就是传动轴中间支撑其中橡胶减震元件的损坏。如果出现传动轴弯曲、动平衡失效、十字轴松旷,传动轴中间支撑将承受严重振动负荷,损坏也就不可避免。

支撑角板的损坏也时有发生,甚至中间支撑并没有损坏而角板首先变形报废,这又是何原因呢?

典型案例:

传动轴中间支承角板严重变形

上图这类车型的支撑角板设计并非刚性连接,这辆车因传动轴螺栓松动,造成了严重故障。分析其原因,当传动轴径向全跳动大于0.5mm-0.8mm时,振动力量和频率随传动轴的转速变化加重。一旦传动轴螺栓折断,传动轴中间支撑中橡胶缓冲元件与角板的下端面,同时发生严重变形和损坏。

刚性传动轴支撑角板(欧马可)

柔性传动轴支撑角板(奥铃)

通过上面两张图篇的对比我们看到,不同两款卡车虽然是同吨位级别的,但传动轴中间支撑角板的设计思路完全不同。一款采用刚性设计,加固了角板的受力点的强度。另一款轻卡车型考虑欠缺,柔性连接的设计在同系列卡车中显得过于单薄。

传动轴中间支撑是很关键的部件,损坏之后如果造成传动轴脱落是严重的事故隐患,行车安全将受到极大威胁。

为了避免造成更大的损失,我们可以更换刚性连接的支承角板,也可以自己动手加固原有的支撑角板总成。除此之外,经常仔细检查传动轴各部件也是非常重要的,传动轴螺栓需要选择高强度自锁式配套产品。如果传动轴有异响,要重点检查传动轴锁紧螺母。

4 结束语

本文论述了保证轴支承性能、提高轴支承质量的结构方法,概括为12条结构设计准则,这些结构设计准则旨在为工程所用,因此着力于其实用性、操作性。并列举了奥铃传动轴脱落的实例说明了轴支撑的重要性。

本文也是系统地研究机械结构设计准则的又一实践,我们认为设计准则这样的知识形式是符合机械设计这种既要求多学科系统理论又要求工程经验工作特点的,它作为建设性、主动性知识形式在结构实践中的作用是不可低估的。

参考文献

1.Roloff,Matek,Maschinenelemente.Braunschweig,1983

2.FAG. Die Gestaltung von Walzlagerungen Germany,1990

3.FAG. Kugellager,Rollenlager,Nadellager,Germany,1992

4.Jordan, W.Maschinenelemente Paderborn,Germany,1995

5.杨文彬·结构设计准则系统·机械设计,1995,12(10)

6.杨文彬·防腐结构设计准则·机械设计,1995,12(11)

7.杨文彬·铸件结构设计准则·机械设计,1995,12(12)

8.杨文彬·焊接结构设计准则·机械设计,1995,13(1)

9.杨文彬·防腐结构设计准则·机械设计,1995,12(11)

10.杨文彬·符合公差原则的结构设计准则·机械设计,1995,13(2)

11.杨文彬·遵循力学原理的结构设计准则(1)·机械设计,1996,13(7)

12.杨文彬·遵循力学原理的结构设计准则(2)·机械设计,1996,13(8)

轴的设计与校核

2.1.1 概述 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类 根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为: ?传动轴:指主要受扭矩作用的轴,如汽车的传动轴。 ?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。 ?转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。 根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又 可以将直轴分为实心轴和空。 2. 轴的设计 ⑴ 轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 3. 轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 ?合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。 ?铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 2.1.2 轴的结构设计

深基坑内支撑梁施工工艺

深基坑内支撑梁施工工艺 一、支撑施工总体原则 本工程采用钢筋混凝土结构作为水平支撑,土方开挖的顺序、方法必须与设计工况一致,并遵循“先撑后挖、限时支撑、分层开挖、严禁超挖”的原则进行施工,尽量减小基坑无支撑暴露时间和空间。同时应根据基坑工程等级、支撑形式、场内条件等因素,确定基坑开挖的分区及其顺序。宜先开挖周边环境要求较低的一侧土方,并及时设置支撑。环境要求较高一侧的土方开挖,宜采用抽条对称开挖、限时完成支撑或垫层的方式。 基坑开挖应按支护结构设计,降排水要求等确定开挖方案,开挖过程中应分段、分层、随挖随撑、按规定时限完成支撑的施工,作好基坑排水,减少基坑暴露时间。基坑开挖过程中,应采取措施防止碰撞支护结构、工程桩或扰动原状土。支撑的拆除过程时,必须遵循“先换撑、后拆除”的原则进行施工。 二、技术参数 该项目基坑面积约33000㎡,周长810m,深度23~25m,基坑围护体采用地下连续墙作为围护体,基坑竖向设置四道钢筋混凝土支撑,支撑采用圆环支撑平面布置形式,支撑信息图表所示: 表一支撑信息一览表

并结合对称和角撑,截面尺寸详见支撑平面布置图; (2)、支撑梁混凝土强度等级(除第二~四道环撑为C40外)为C35,主筋保护层:30mm; (3)、支撑梁采用两侧支模浇筑,并在支撑梁底设置隔离膜,混凝土应整体浇筑,在冠梁、支撑腰梁施工前需将支护桩表面附着物完

全清除;、 (4)、主筋连接采用搭接焊接,单面焊10d,接头在同一截面处数量应不超过50%; 三、施工流程 四、施工方法 混凝土支撑首先进行施工分区和流程的划分,支撑的分区一般结合土方开挖方案,按照盆式开挖、“分区、分块、对称”的原则确定,随着土方开挖的进度及时跟进支撑的施工,尽可能减少围护体侧开挖

轴的结构设计范例

四、低速轴系的结构设计 1、根据轴的工作条件,选择材料及热处理方法,确定许用应力,由(二)(三)已算得从动齿轮转速n 2=71.7r/min 。齿轮分度圆直径d 2=360mm 。选用45号钢调质。查①表11-1得抗拉强度MPa 650b =σ,查①表11-9得许用弯曲应力[]MPa 60b 1=-σ。 2、按扭转强度估算最小直径 由(二)知,P 2=3.87kw ,T 2=516.1N.m 查①表11-5取A=110,按①式(11-3)计算得: mm 57.417 .7187.3110n P A d 33 2==≥ 考虑轴和联轴器用一个键联接,故将轴放大5%并取标准值,即取d=45mm 。 3、轴的结构设计 (1)将轴设计成阶梯轴,按T=516.1N.m ,从②查用TL8型弹性联轴器,孔径为45mm ,长L=112mm ,与轴头配合长度为84mm 。取轴头直径为45mm ,故靠近轴头的轴身直径为52mm ,轴颈直径取55mm 。轴两端选用6011型轴承,轴承宽度B=18mm ,外径D=90mm 。轴承由套筒和轴肩实现轴向定位,圆角r=1mm 。取齿轮轴头直径为60mm ,定位环高度h=5mm ,其余圆角r=1.5mm ,挡油盘外径取D=89mm 。 (2)在(三)已经求得轮毂长为90mm ,因此轴头长度为88mm ,轴颈长度与轴承宽度相等为18mm ,齿轮两端与箱体内壁间距离各取15mm ,由于转速较低,故轴承用润滑脂,所以轴承端面与箱体内壁距离取10mm 。这样可定出跨距为158mm 。伸出箱体的轴段长度取44mm 。为了保证轴端挡圈只压在半联轴器上,应将头长度取短一些,故取轴头长度为75mm 。 3、由于是单级齿轮减速器,因此齿轮布置在中央,轴承对称布置,齿轮与轴环、套筒实现轴向定位,以平键联接及选用过渡配合H7/n6实现周向固定。齿轮轴头有装配锥度,两端轴承分别以轴肩和套筒实现轴向定位,采用过盈配合k6实现周向固定。整个轴系以两端轴承盖实现轴向定位,联轴器以轴肩、平键和选用过渡配合H7/k6实现轴向定位和周向固定。 4、草图如下:

内支撑结构设计

一、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。 二、内支撑结构选型应符合下列原则: 1、宜采用受力明确、连接可靠、施工方便的结构形式; 2、宜采用对称平衡性、整体性强结构形式; 3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工; 4、应利于基坑方开挖和运输; 5、需要时,可考虑内摘除结构作为施工平台。 三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式: 1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆或环形板系支撑; 4、坚向斜撑。 四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。 五、内支撑结构分析应符合下列原则: 1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N 倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取相邻支撑点的中距; 2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算; 3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。 六、内支撑结构分析时,应同时考虑下列作用: 1、有挡土都建传至内支撑结构的水平荷载; 2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载; 3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力; 4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。 七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000,且对混凝土办职称不宜小于20mm,对钢支撑不宜小于40mm。 八、支撑构件的受压计算长度应按下列规定确定: 1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设置立柱时,应取相邻立柱的中心距; 2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的1.5倍; 3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。 九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(0.5~0.8)倍,且应与本规程中的支撑预加轴向压力一致。 十、立柱的受压承载力金额按下列规定计算:

内支撑结构(DOC)

第一章工程概况 一、编制依据 1、昆铁家园小区基坑支护工程施工设计图。 2、采用规范、标准: 《建筑地基基础工程施工质量验收规范》(GB50202—2002) 《建筑工程施工质量验收统一标准》(GB50300—2001) 《钢结构工程施工质量验收规范》GB50205-2001) 《建筑施工安全检查标准》 其他有关现行国家标准及规范、规程。 二、工程概况 本工程支撑结构格构柱,格构柱主要包括格构柱和立柱桩两部分,上部格构柱为钢构件,下部立柱桩为钢筋混凝土钻孔灌注桩基础,部分为利用工程桩作为立柱桩。立柱桩共计60颗,利用工程桩作为立柱桩40颗。工程桩桩径为A800mm,立桩桩桩径为A1000mm,东西栈桥区域格构柱共9颗,尺寸为600×600mm,非栈桥区域格构柱91颗,尺寸460×460mm。桩身砼强度等级为C30水下混凝土。 三、地质、水文条件 根据甲方提供的岩土勘察报告,拟建场地地质分布为: (一)第四系人工活动层(Qml) ①1杂填土:杂色,中压缩性(a1-2=0.40MPa-1)土体结构松散、欠压实,含大量建筑垃圾及砖、瓦碎片等,局部地段上部为混凝土路面。该层填土为原有房屋建筑时回填土,属新近填土,厚度0.50~

9.70m,平均3.77m,整个场地均有分布。 ①2素填土:褐黄、褐红色,中压缩性(a1-2=0.35MPa-1)。主要由粘性土组成,局部地段为粉土。属新近填土,顶板埋深0.50~5.70m,厚度1.10~6.10m,平均3.44m,整个场地大部分地段均有分布。 (二)第四系冲洪积层(Qal+pl) ②粉质粘土:褐、褐黄色,可塑~硬塑状,中压缩性 (a1-2=0.48MPa-1)。切面稍有光泽,韧性中等,干强度中等,顶板埋深1.80~9.70m,厚度0.50~3.40m,平均1.68m,场地的大部分地段有分布。 (三)第四系冲积层(Qal) ③1圆砾:褐黄色,稍密~中密,砾石磨圆中等,粒径1~30mm,成份为砂岩、石英砂岩、灰岩,其成分较杂,由粉质粘土、砾砂充填,级配较为均匀;顶板埋深1.90~11.80m,厚度0.50~6.80m,平均2.88m,整个场地均有分布。 ③a1粉质粘土:灰、深褐灰色,可塑~硬塑状,中压缩性 (a1-2=0.37MPa-1)。切面稍有光泽,韧性中等,干强度低,顶板埋深6.80~9.20m,厚度0.60~4.80m,平均1.93m,呈透镜体分布于③1圆砾中。 ③2圆砾:兰灰色,稍密~中密,砾石磨圆中等,粒径3~40mm,成份为砂岩、石英砂岩、灰岩,由粗中砂充填,级配较为均匀;顶板埋深3.50~20.00m,厚度1.00~14.20m,平均7.60m,整个场地均有分布。

钢框架支撑结构设计实例(书稿例题)

钢框架-支撑结构设计实例 4.10.1 工程设计概况 本建筑为某公司办公楼,位于沈阳市区,共七层。总建筑面积约59002m ,总高度30.6m ,室内外高差0.600m ;底层层高4.5m ,顶层层高4.5m ,其余层均为4.2m 。设两部楼梯和两部电梯。墙体采用聚氨酯PU 夹芯墙板。屋面为不上人屋面。 结构形式为钢框架—支撑体系。设计基准期50年,雪荷载0.502 m kN ,基本风压:0.552 m kN 。抗震设防烈度为7度,设计基本加速度为0.1g ,结构抗震等级四级。结构设计基准期50年。 地质条件:拟建场地地形平坦,地下稳定水位距地坪-9.0m 以下,冰冻深度-1.20m ,地质条件见表4-24,Ⅱ类场地。 4.10.2 方案设计 1.建筑方案概述 1)设计依据 《民用建筑设计通则》GB50352-2005 《办公建筑设计规范》JGJ67-2006 《建筑设计防火规范》GB50016-2006 2)设计说明 (1)屋面(不上人屋面) 防水层:SBS 改性沥青卷材(带保护层); 40mm 厚1:3水泥沙浆找平层; 70mm 厚挤塑板保温层; 1:6水泥炉渣找坡(最薄处30mm,坡度2%); 压型钢板混凝土组合板(结构层折算厚度100mm ); 轻钢龙骨吊顶。 (2)楼面: 20mm 厚大理石面层; 20mm 厚1:3干硬性水泥沙浆找平层; 压型钢板混凝土组合(结构层折算厚度100mm ); 轻钢龙骨吊顶。 (3)门窗 本工程采用实木门和塑钢玻璃窗。 (4)墙体 外墙为双层聚氨酯PU 夹芯墙板300mm (内塞岩棉); 内墙为双层聚氨酯PU 夹芯墙板180mm 厚聚氨酯PU 夹芯墙板; 2. 结构方案概述 1)设计依据 本设计主要依据以下现行国家规范及规程设计: 《建筑结构荷载规范》(GB50009-2001)(2006版) 《钢结构设计规范》(GBJ50017-2003) 《建筑抗震设计规范》(GB50011-2010) 《混凝土结构设计规范》(GB50010-2002)

轴的结构设计

例1 已知传递的功率P=3.32kw,从动轮的转速n=76.4r/min,直齿圆柱齿轮分度圆直 径d2=250mm,传递的转矩T=415.82Nm (1)选择轴的材料确定许用应力 由已知条件知减速器传递的功率属于中小功率,材料无特殊要求,故选用45#钢调质处理,由表6-1查得强度极限σB=650Mpa,许用弯曲应力【σ-1b】=60Mpa (2)按扭矩强度估算直径 根据表6-2得C=118~107,又由式(6-5)得d≥c(p/n)1/3 =(107~118)×(3.32/76.4)1/3=37.6~41.5mm 考虑到轴的最小直径处要求安装联轴器,会有键槽存在,故将计算直径加3%~5%取38.73~41.5mm,由设计手册取标准直径d1=42mm (3)设计轴的结构并绘制草图 由于设计的是单级减速器,可将齿轮布置在箱体内部中央,将轴承对称安装在齿轮两 侧轴的外伸端安装半联轴器。 1)、确定轴上零件的位置和固定方式,要确定轴的结构形状,必须确定轴上零件的装 拆顺序和固定方式,确定齿轮从右端装入,齿轮的左端用轴肩(或轴环)定位,右端 用套筒固定,这样齿轮在轴上的轴向位置完全被确定,齿轮的周向固定采用平键联接, 轴承对称安装于齿轮的两侧,其轴向用轴肩固定,周向固定采用过盈配合。 2)、确定各轴段的直径,如图所示,轴段a(外伸端)直径最小,d1=42mm,考虑到要对 安装在轴段a上的联轴器进行定位,轴段b上应有轴肩,同时为能很顺利地在轴段c、 f 上安装轴承,轴段c、f必须满足轴承的内径的标准,故取轴段c、f的直径分别为 d3=55mm d6=55mm,用相同的方法确定轴段b、d、e的直径d2=50mm d4 =60mm d5=68mm,选用6211轴承。 3)、确定各轴段的长度,齿轮的轮毂宽为72mm,为保证齿轮固定可靠,轴段d的长度 应略短于齿轮轮毂宽,取L4=70mm。为保证齿轮端面与箱体内壁不相碰,齿轮端面与箱 体内壁间应留有一定的间距取该间距为13mm。为保证轴承安装在轴承座孔中(轴承宽 度为21mm)并考虑轴承的润滑,取轴承端面距箱体内壁的距离为5mm。所以轴段e的 长度L5=18mm, 轴段f的长度L6=20mm。轴段c由轴承安装的对称性知,L3=40mm,轴段 b的长度L2=66mm,轴段 a的长度由联轴器的长度确定得L1=83mm(由轴颈d1=42mm知联 轴器和轴配合部分的长度为84mm),在轴段a 、d 上分别加工出键槽,使两键槽处于轴 的同一圆柱母线上,键槽的长度比相应的轮毂宽度小约5—10mm,键槽的宽度按轴段直 径查手册得到,a处选用平键12×8×70,d处选用平键18×11×60。 4)、选定轴的结构细节,如圆角、倒角、退刀槽等的尺寸。

结构模型设计方案示例1

湖南省“路桥杯”大学生结构模型创作竞赛 中南大学 参赛设计方案说明书 作品名称剑桥 学校名称中南大学 学生姓名专业班级 学生姓名专业班级 学生姓名专业班级 指导教师 联系电话 二○○六年七月十四日

目录 摘要 (2) 1 设计说明书 (3) 1.1 概述 (3) 1.2 方案简介 (3) 1.3 结构模型及方案特点 (4) 1.4 应用前景 (5) 1.5 施工流程: (5) 1.6 施工要点: (5) 2 结构方案图 (6) 2.1结构效果图 (6) 2.2结构俯视图 (6) 3 设计计算书 (7) 3.1结构计算模型 (7) 3.2结构强度计算 (8) 3.2.1 拱肋强度计算 (8) 3.2.2 拉杆强度计算 (9) 3.3 结构稳定分析 (9) 参考文献 (10)

摘要 本文根据湖南省“路桥杯”土木建筑类大学生结构模型创作竞赛规程和使用材料的特点要求,结合现代桥梁结构的特点,借鉴细杆拱桥结构设计概念构思了本结构模型。 在造型上,空间上主要采用三角形、梯形等几何元素,注重结构的整体性。 在结构设计方面,充分根据木材的力学性能,主要受力构件采用格构式组合构件,利用斜向支撑增加结构空间作用,提高抗侧能力。并通过采用ANSYS有限元软件的空间分析,根据构件的受力情况沿杆件变化,采用了变截面的杆件,充分的利用材料,经过ANSYS 的计算表明,结构在设计荷载作用下,均能满足强度、刚度、稳定性要求。 关键词:结构模型、设计大赛、模型制作

1 设计说明书 1.1 概述 对于结构模型,稳定性起着控制作用,包括整体稳定性和局部稳定性,选择合理有效的结构受力体系对结构模型设计有着重要意义。 模型设计中,主要应考虑充分利用木材薄片受力性能特点。就本次竞赛而言,关键在于充分利用木材薄片受拉性能好,受压则需要组合成柱的特点,选择优化的结构模型,使结构模型能够接近竞赛规定的最大加载荷载,同时尽可能降低结构的自身重量。 本结构模型根据以上思想,进行结构的构思与设计。 1.2 方案简介 本结构整体外型为一个上承式桁架。其造型融入三角形和梯形等美学元素,整体造型简单、受力形式较好,符合本次竞赛的设计理念。 结构根据竞赛规程的要求,确定合理跨度和高度以后,以四根斜杆为主要受力构件向下传力,顶部做成一个加载平台。根据各个面内的抗弯刚度要求,灵活选用杆的形式,通过计算得出合理拱轴线的位置,合理布置杆拱的空间角度;再合理布置支撑杆件,用于抵抗荷载传来的水平力分力并减小侧移;并通过ANSYS软件模拟多种荷载情况下的破坏情况,找出结构构件的薄弱环节进行局部加强,使得结构的破坏向强度破坏靠近,从而使本结构模型具有足够的承

内支撑式支护技术

内支撑式支护技术 一、原理: 内支撑式支护是由内支撑系统和挡土结构两个部分组成,基坑开挖所产生 的土压力和水压力主要是由挡土结构来承担,同时也是由挡土结构来将这两部 分侧向压力传递给内支撑,有地下水时也可防止地下水渗漏,是稳定基坑的一 种临时支挡方式。一般情况下,支撑结构的布置形式有水平支撑体系和竖向支 撑体系两种。 二、支撑的结构型式(支撑材料的选择) 1)支撑结构可采用钢支撑; 优点:自重轻、安装和拆除方便、施工速度快、可以重复利用(环保、绿色)。且安装后能立即发挥支撑作用,减少由于时间效应而增加的基坑位移是十分有 效的。 缺点:节点构造和安装相对比较复杂,施工质量和水平要求较高。适用于对撑、角撑等平面形状简单的基坑。 2)支撑结构可采用钢筋混凝土支撑; 优点:刚度大,整体性好,布置灵活,适应于不同形状的基坑,而且不会因节 点松动而引起基坑位移,施工质量容易得到保证。 缺点:现场制作和养护时间较长,拆除工程量大,支撑材料不能重复利用。 3)支撑结构可采用钢支撑与钢筋混凝土支撑的组合; 4)选型时应考虑的因素:

基坑的平面形状、尺寸和开挖深度;基坑周边环境条件;围护结构(桩、墙)的型式;土方开挖与支撑安装工序;支撑拆除方式;主体结构的设计与施工要求。 三、施工流程: 第一层土方开挖→人工修底→安装第一道腰梁、内支撑梁底模板→绑扎第一道腰梁、支撑梁钢筋→安装梁侧模→浇筑混凝土→养护→第二层土方开挖→人工修底→安装第二道支撑、腰梁底模板→绑扎支撑、腰梁钢筋→安装支撑、腰梁侧模→凝土浇筑→砼养护→开挖第三层基坑土方→人工修底平整、做坑底排水明沟。 四、工程案例: 1、工程概况 某工程建筑总面积96157m2,其中地下室面积11828m2,地下室3层,局部设夹层,埋深12.8-16.3m,地下室平时作为车库使用。本工程为深基坑施工工程,基坑呈矩形,平面尺寸为111.5×44.5m,设二道钢筋砼支撑,相对标高分别为-6m 和-10.5m,设计主要采用人工挖孔桩垂直支护档土,桩顶设圈梁一道,基坑内设钢筋混凝土内支撑梁、腰梁两道,梁顶标高分别为-5.55m及-10.05m,每道支撑由腰梁、角撑、对撑和支顶柱组成。腰梁沿基坑周边布置,基坑四角各设二条斜角撑,基坑中部均匀布设三根对撑。对撑和角撑下共设10个钢格构支柱。腰梁截面尺寸1000×900mm,配筋40φ25+8φ20 2、工程地质情况分析 本工程地处建筑物密集地区, 工程周围环境较为复杂。根据地质勘测报告反映, 场地土质分布为人工填土、冲洪积层、残积层及白垩统砂岩组成, 按工程地质自上而下分布为四个大层, 层序号为a、b、c、d四层。a、b层为人工填土层和冲洪积层;c层为风化残积土,多为紫红色粉质粘土,总的状态趋势上部为可塑一一硬可塑,下部硬可塑一坚硬。近底部夹强风化残留岩块, 岩块厚度分别为0.7m,1.4m,0.8m,本层顶板埋深 5.2~7.1m,平均6.04m , 厚度2.8~12.8m,平均厚度8.56m。d层为上白垩统砂岩, 由紫红色泥质粉砂岩、砂岩、砂砾岩组成,形成了强度各异的岩石, 如强风化岩、中风化岩及微风化岩, 按场地内风化岩石分布及组合特点,自上而下分为两个岩带,即混合风化岩带和微风化岩带。平均厚度6.04m,岩性为紫红色粉砂岩, 砂岩为主夹砂砾岩、岩石呈厚层状, 坚硬、完整。场地地下水较贫乏,地下水水位根据测孔测得有混合地下水位为0.4~7.0m之间。 3、施工流程 第一层土方开挖→人工修底→安装第一道腰梁、内支撑梁底模板→绑扎第一道腰梁、支撑梁钢筋→安装梁侧模→浇筑混凝土→养护→第二层土方开挖→人工修底→安装第二道支撑、腰梁底模板→绑扎支撑、腰梁钢筋→安装支撑、腰梁侧模→凝土浇筑→砼养护→开挖第三层基坑土方→人工修底平整、做坑底排水明沟

轴的设计(有图纸)

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 3 3 10 2.09550?=n d P W T ρ ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π 3 d /16≈0.23d ; P 为轴传递的功率, KW ;n 为轴的转速, r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ [] 3 3 3 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率, KW ;n 为轴的转速,r/min ;d 为轴径,mm 。 表16.7常用材料的[τ]和A 值 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。

2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力 P 作用在齿轮的节圆上, 通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。 力 P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图 16.39(e)),所以此轴是弯扭组合变形。 分别考虑力 P 与力偶 m 的作用,画出弯矩图(图16.39(f))和扭矩图(图 16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于 C 、 D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故 为危险点,其正应力和剪应力分别为 σ=W M τ = ρ W T

第三章支撑结构设计计算

第三章支撑结构设计计算 本方案第一层和第二层支撑均采用钢筋砼支撑结构,现计算如下: 3.1 第一层钢筋砼支撑结构设计计算 根据上述计算和支撑设计平面布置,R=141.48kN/m,对撑间距为9.5米,角支撑间距为7米,最大间距为10米,立柱桩间距10米。 支撑梁截面为500×600,砼等级为C30,受力筋采用HRB335,箍筋采用HPB235。 3.1.1 支撑轴力计算 角撑:N=141.48×10×1.25×1.0/sin45o =2501 kN 对撑:N=141.48×9.5×1.25×1.0 =1680.1kN 3.1.2 支撑弯矩计算 ①第一类支撑配筋计算(角撑) (1)1.支撑梁自重产生的弯矩: q=1.25×0.5×0.6×25=9.375 kN/m M1=1/10×9.375×102=93.75 kNm/m 2.支撑梁上施工荷载产生的弯矩:取q=10.0 kN/m M2=1/10×10×102=100 kN-m/m 3.支撑安装偏心产生的弯矩: M3=N×e=2501×10×3‰=75.03 kNm 则支撑弯矩为:M=93.75+100+75.03=268.78 kNm

(2)初始偏心距e i e0 =M/N=268.78×103/2501=107.5mm 取e a =h/30=20 mm 则e i= e0+e a=107.5+20=127.5 mm (3)是否考虑偏心距增大系数η ∵l0/h=10/0.6=16.7>8.0 ∴要考虑 由η=1+1 1400e i h0(l0 h ) 2 ζ 1 ζ 2 ζ1=0.5×f c×A N =0.5×14.3×500×600 2501×103 =0.857 ζ 2 =1.15?0.01×l0=1.15?0.01×10=0.983 η=1+1 1400×127.5 565 16.72×0.857×0.983=1.74 e=ηe i+h/2-a s=1.74×127.5+600/2-35=486.85mm (4)配筋计算: ηe i =1.74×127.5=221.85>0.32h0=180.8 属于大偏心受压 x=N ?f c b = 2501000 14.3 500 =349.8mm A s=A s′=Ne??f c bx(h0?0.5x) f y′(h0?a′) =2501×103×486.85?1×14.3×500×349.8×(565?0.5×349.8) =1521.6mm ρmin =0.45f t f y =0.45×1.43×300=2.145×10?3 A s=A s′=1521.6mm2>ρ min bh=643mm2 实配:上下均为5Φ20,As=A s’=1570mm2 20

内支撑结构设计

、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。 二、内支撑结构选型应符合下列原则: 1、宜采用受力明确、连接可靠、施工方便的结构形式; 2、宜采用对称平衡性、整体性强结构形式; 3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工; 4、应利于基坑方开挖和运输; 5、需要时,可考虑内摘除结构作为施工平台。 三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式: 1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆或环形板系支撑; 4、坚向斜撑。 四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。 五、内支撑结构分析应符合下列原则: 1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N 倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取 相邻支撑点的中距; 2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算; 3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计 算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内 支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水 平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。 六、内支撑结构分析时,应同时考虑下列作用: 1、有挡土都建传至内支撑结构的水平荷载; 2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载; 3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力; 4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。 七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力 及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力 计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000 ,且对混凝 土办职称不宜小于20mm对钢支撑不宜小于40mm 八、支撑构件的受压计算长度应按下列规定确定: 1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设 置立柱时,应取相邻立柱的中心距; 2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支 撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的倍; 3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。 九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(~)倍,且应与本规 程中的支撑预加轴向压力一致。 十、立柱的受压承载力金额按下列规定计算: 内支撑结构设计 1、在坚向荷载作用下,内支撑结构按框架计算时,立柱应按偏心受压构件计算;内支

轴的结构设计

轴的结构设计 (1)初步确定轴的最小直径 按扭转强度条件初轴的最小直径(245页) mm n P C d 34.2933 .17348.01123322==≥ 考虑键槽的影响,增大3%,则 mm d 22.30)03.01(34.29min =+?= 初定mm d 32= 主动轴最小直径为外链轮处,孔径为mm mm d k 34.2932>=,符合要求。 N F V 3.13925 .538)465.314(4.27921=-?= N F V 1.14003.13924.27922=-= m N F MaV V ?=?= ?=641000 463.1392461 N F H 4.5465 .3076924351=?= N F H 4.29814.54623352=+= m N MaH ?=?= 1681000 694.2981 轴各段的直径和长度如上图所示。 轴的强度校核计算

N F V 5.23255 .2615.525.2614.27921=+?= N F F F V Q V 9.4665.23254.2792122=-=-= m N M aV ?=?=09.1225.525.2325 N F H 3.5275 .2615.526824351=+?= N F F F Q H H 3.296224353.527112=+=+= m N M aH ?=?=58.165243568 考虑最坏情况 m N M M M aV aH a ?=+=+=72.20509.12258.1652222 m N T ?=47.264

()()m N T M M a e ?≈?+=+=26047.2646.072.2052 222α 计算危险截面处轴的轴的直径 轴材料选用45钢,调质处理,查得(248)MPa B 650=σ,得[]MPa b 601=-σ,则 []mm M d b e 4.2660 1.0102601.03331=??=≥-σ 考虑到键槽对轴的削弱,将到d 值加大5%,故 mm mm d 72.274.2605.1≈?= mm mm d k 72.2732>=,符合要求。

钢框架-中心支撑结构体系设计浅析

钢框架-中心支撑结构体系设计浅析 摘要:通过具体工程实例对钢框架-中心支撑结构体系进行分析,并进一步探讨钢框架-中心支撑结构体系的结构布置、结构分析、特殊构件与节点设计,以供设计参考。 关键词:钢框架-中心支撑;弹性时程分析;支撑与梁柱节点 1工程概况 某管理中心办公楼,地下1层,地上17层,建筑高度69.3m,标准层层高3.9m,总建筑面积44440m2。地下一层为车库及设备用房,地上部分主要功能为办公及会议,标准层结构平面布置见图1。 图1标准层结构平面布置图 工程抗震设防烈度6度,设计基本地震加速度0.05g,II类场地。按百年一遇风荷载取值,基本风压0.45kN/m2,地面粗糙度B类。 2结构体系与布置 主体结构采用钢框架-中心支撑体系,方(或矩形)钢管混凝土柱、H型钢梁及H型钢支撑。地下一层钢框架外包混凝土形成钢骨混凝土结构,支撑下部的地下室部分改为钢筋混凝土剪力墙,基础采用独立基础加防水板。 建筑标准层平面长82m,宽28.2m,长宽比约为2.9,长宽比相对较大。中部为公用区域,左右两边各有一个采光天井,天井外侧仅有3.2m宽楼板相连。根据建筑平面,最终确定的标准层结构平面布置见图1。利用中部公用区域布置六榀、组合成两个槽型的支撑框架(位置见图1中的ZC-1、ZC-2)。考虑到建筑平面两侧楼板透空,仅在端部有部分楼板相连,使得部分框架不能连成整体,以致结构两侧刚度大大降低,扭转效应显著,在③、轴布置两榀混合支撑框架(位置见图1中的ZC-3),以提高结构两端的刚度。各榀支撑框架立面见图2。结合建筑门洞口位置,ZC-1、ZC-2分别采用人字形支撑和V字形支撑。ZC-3上部为迭层混合空腹桁架;为满足建筑使用功能,支撑在五层向两侧框架进行转换,且转换后采用越层单斜杆支撑。为实现建筑主入口处门厅大空间要求,⑦、⑧轴框架局部抽柱并采用转换桁架进行托柱转换,⑦、⑧轴框架立面简图见图3。中部公用区域在、轴和、轴之间因设备管线布置及建筑净高要求,除个别楼层外无法设置钢梁(见图1、3),为更好地协调各部分框架协同受力,增加结构整体性,楼板厚度设计为140mm,并采用双层双向配筋,同时在建筑端部透空楼板外的相连部分板中设斜向抗剪钢筋以增强其受力性能。

支护、支撑系统的结构设计

支护、支撑系统的结构设计 一、支护、支撑结构选型 根据岩土工程勘察报告,本工程基坑开挖深度范围的土层主要为填土和淤泥,地质条件差,同时管道基坑深度较大,且不同地段管道基坑底的地质条件不同,需根据不同的形式采用相应的支护方式。本工程根据基坑开挖深度,管道地基处理方式,以及内支撑的不同采用了四种不同的支护方式。 (一)管道基坑支护形式 1、管道基坑支护方式一 基坑深度<3000㎜,采用6米长III型拉森钢板桩加一道内支撑进行基坑支护,钢板桩之间采用HW250*250*11*11围檩进行连接,直径DN300*10的钢管进行内支撑,支撑距地面1000㎜。 2、管道基坑支护方式二 基坑深度<6000㎜,基坑深度5000㎜的情况。采用9米长III型拉森钢板桩加二道内支撑进行基坑支护,钢板桩之间采用HW250*250*11*11围檩进行连接,直径DN300*10的钢管进行内支撑。第一道支撑距地面1000㎜,第二道支撑距第二道支撑2000㎜。 3、管道基坑支护方式三 基坑深度H<2000㎜的过河钢管的情况。过丹山河围堰截流,采用12米长III型拉森钢板桩加二道内支撑进行基坑支护,钢板桩之间采用HW250*250*11*11围檩进行连接,直径DN300*10的钢管进行内支撑,第一道支撑距地面1000㎜,第二道支撑距钢管顶面500㎜。 4、管道基坑支护方式四 基坑深度H<3500㎜。高压旋喷桩采用双重管法施工,桩径为D500,桩距为30cm,浆液主要材料为32.5R普通硅酸盐水泥,每延米300Kg水泥用量,水灰比为1:1,喷嘴压力大于等于24Mpa,速凝剂水玻璃按水泥用量的2%投加,空压机的压力大于等于0.6 Mpa。 (二)、管道基坑支护图

支撑结构设计施工方法

支撑结构设计施工方法 1.1支撑方式和支撑点选择 由于相机采用全反射光学系统,反射镜的背部不参与光束传输,因此,常采用刚度较高的背部支撑方式。 1.2柔性支撑结构设计 在主镜支撑结构上减弱了个别方向上的刚度,引入了一定的柔性,以此来抵消反射镜由于温度变化产生的热应力和微小变形。柔性铰链被广泛应用于支撑结构的柔性设计领域,其具有无机械摩擦、结构简单、释放自由度和灵敏度高等特点。 柔性铰链通过在某一方向上切开一个柔性槽,以降低该方向上的刚度,体现其柔性,使其能够产生微小变形,释放热应力,只存在一个柔性槽的柔性铰链被称为单向柔性铰链,而在一般情况下,往往将多个柔性槽成组使用,即可实现在多方向上的柔性,达到释放多个自由度的目的,将其称之为多层柔性铰链。 由于主镜采用背部3点支撑方式,在反射镜长度方向上对称分布支撑点位置,基于半运动学安装定位原理,每个柔性支撑结构需要约束两个方向的自由度,因此,采用3层组合式柔性铰链,释放4个方向的自由度,参考Bipod双脚架设计原理,设计柔性支撑结构,其分为两个部分,上部分与反射镜支撑孔粘接,下部分与支撑背板连接,上下两部分通

过螺钉连接。 3个柔性铰链对心安装,便可以恰好约束镜体6个方向的自由度,又不会因为过定位产生装配应力。支撑背板的作用是固定连接3个柔性支撑结构,将反射镜固定安装在框架指定位置,因此采用高强度的加强筋与薄壁组合的结构形式,组成多个结构封闭的四边形单元,以达到支撑背板高刚度的的要求。 对比材料各项性能指标,综合考虑力学性能、热性能、对空间环境的适应性以及加工工艺性等因素,选用线胀系数经过特殊匹配的Invar作为反射镜柔性支撑结构的材料,采用比刚度高、导热性好、线胀系数低的高体份SiC/Al复合材料作为支撑背板的材料。 2镜体轻量化设计 在反射镜背部,布置一系列形状规则的三角形轻量化孔,具有轻量化率较高、刚度好、“网格效应”低、加工制造工艺成熟等优点。为确定主镜镜体最优的结构尺寸,在反射镜刚度最大和质量最小之间取得最佳平衡,需要对镜体进行优化设计。 首先建立反射镜的有限元模型,分析其在1g重力作用下的变形,并提取镜面最大变形结果,生成优化过程中所需要的分析文件,然后,选择优化处理器,确定目标函数为反射镜质量最小,状态变量为1g重力作用下的镜面最大变形

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴 转轴 传动轴 二、轴的材料

轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。 各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

三、轴的结构设计 轴的结构设计包括定出轴的合理外形和全部结构尺寸。 轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。设计时,必须针对不同情况进行具体的分析。但是,不论何种

轴结构设计和强度校核

.. 一、轴的分类轴可分为:按承受的载荷不同, 虚拟。如减速器中的轴——工作时既承受弯矩又承受扭矩的轴。转轴。现实心轴又可分——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴为:。转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。虚拟现实且轴固定。——工作时轴承受弯矩,如自行车轴。固定心轴 。汽车变速箱至后桥的传动轴传动轴——工作时仅承受扭矩的轴。如 '. .. 固定心轴转动心轴 转轴传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 '. .. 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传

递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。 各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。 '. ..

相关文档
最新文档