普通物理实验3 光学六个实验讲义资料

普通物理实验3 光学六个实验讲义资料
普通物理实验3 光学六个实验讲义资料

实验5 迈克耳孙干涉仪的调节和使用

【实验目的】

1.了解迈克尔逊干涉仪的结构和干涉花样的形成原理。

2.学会迈克尔逊干涉仪的调整和使用方法。观察等倾干涉条纹,测量待测光源的波长。

3.观察等厚干涉条纹,测量钠光的双线波长差。

【仪器和用具】

迈克尔逊干涉仪(WSM-100型),氦氖激光,毛玻璃屏。

【实验原理】

1.迈克尔逊干涉仪的介绍

19世纪末,迈克尔逊为了确定当时虚构的光传播介质—“以太”的性质,设计和制造了该种干涉仪,并在1881年与莫雷合作在该干涉仪上进行了历史上有名的迈克尔逊—莫雷测“以太”风实验,实验得到了否定的结果,为爱因斯坦1905年创立相对论提供了实验基础.迈克尔逊也因此获得1907年诺贝尔物理学奖。

迈克尔逊干涉仪原理简明,构思巧妙,堪称精密光学仪器的典范。其原理是用分振幅的方法产生双光束以实现

干涉的仪器。它的主要特点是

两相干光束完全分开,这就很

容易通过改变一光束的光程来

改变两相干光束的光程差,而

光程差可以以光波的波长为单

位来度量,随着对仪器的不断

改进,还能用于光谱线精细结

构的研究和利用光波标定标准

米尺等实验。因此,根据迈克

尔逊干涉仪的基本原理,研制

的各种精密仪器已被广泛应用

于长度精密计量、光学平面的质量检验和傅里叶光谱技术等方面,迈克尔逊干涉仪是许多近代干涉仪的原型。

WSM-100型迈克尔逊干涉仪的实物图如图29-1所示。

(1)反光镜1和反光镜2:这是两个互相垂直放置的平面镜,镜面镀有金属膜,具有很高的反射率。

(2)分光镜和补偿片:分光镜又称为分光板,是一块平行平面玻璃板,其第二平面上镀有一层半透(反射)膜,可以将以450入射的一列光分成两列振幅近乎相等的反射光和透射光。补偿片也称补偿板,它的厚度和折射率都与分光板相同,且与分光板平行放置,用以补偿通过分光镜的透射光与反射光之间附加的光程差。

(3)传动部分和读数系统:转动大转轮和微调鼓轮,都可使导轨上的转轴转动,从而带动反光镜1沿导轨移动。反光镜1的位置或移动的距离可由机体侧面的毫米刻尺、读数窗口内刻度和微调鼓轮的读数确定。

粗调手轮旋转一周,拖板移动1毫米,即反光镜1移动1毫米,同时,读数窗口内的鼓轮也转动一周,鼓轮的一圈被等分为100格,每格为10-2毫米,读数由窗口上的基准线指示。

微调鼓轮每转过一周,拖板移动0.01毫米,可从读数窗口中可看到读数刻度移动一格,而微调鼓轮的周线被等分为100格,则每格表示为10-4毫米。

如图29-2所示的读数为33.52246mm。

2. 用迈克尔逊干涉仪测量光波波长

迈克尔逊干涉仪的工作原理

如图29-3所示,光束S 以450

角入射到分光板P 1,通过半透膜

的分光作用,分为反射光1和透

射光2,反射光1到达反光镜1

后再次反射沿原路返回,记为反

射光'1,

'1通过P 1得到透射光"1。而透射光2经过补偿板P 2,到达

反光镜2后反射沿原路返回记为'2,经P 1得到反射光"2。光线"1和线"2来自同一光源S 因而是相干光,它们到达E 处时将产生干涉。

光线"2是在分光板P 1的第二面反射得到的,这样使M 2在M 1的附近(前面或后面)形成一个平行于M 1的虚像M 2',因而,在迈克尔逊干涉仪中,自M 1 、M 2的反射相当于自M 1、M 2'的反射。

也就是,在迈克尔逊干涉仪中产

生的干涉相当于厚度为d 的空气

薄膜所产生的干涉。M 1和M 2'反射的两束光的光程程差为

i dn cos 22=δ (29-1)

式中i 为反射光1'在平面反射镜M 1上的反射角,λ为入射光的波长,n 2为空气薄膜的折射率,近似为1,d 为薄膜厚度。它们将处于同一级干涉条纹,并定们于无穷远。如果在E 处放一会聚透镜,将在其焦平面上看到一组明暗相间的同心圆纹。

两束相干光明暗条件为

),3,2,1()21(cos 22???=?????+==k k k i dn 暗亮λδ (29-2)

凡i 相同的光线光程差相等,并且得到的干涉条纹随M 1和M 2'的距离d 而改变。当i =0时光程差最大,在E 点处对应的干涉级数最高。由(29-2)式得

2

cos cos 2λλi k d k i d =

?= (29-3)

由式(29-3)可知,当M 1和M 2'的距离d 增大时,对于任一K 级干涉条纹,其COSI 的值将减小,此干涉条纹将向i 变大的方向移动,即条纹向外扩展,我们

将看到条纹从中心向外“涌出”,且当距离d 每增加λ2

1时就有一个条纹从中心“涌出”。反之,当距离d 每减少λ2

1时,就会有一个条纹向中心“陷入”。由此可知,连续“涌出”或“陷入”N 个条纹时,距离d 的改变量d ?满足如下关系: 2λN d =? (29-4)

所以在实验时只要数出“涌出”或“陷入”的条纹个数N ,读出d 的改变量Δd 就可以计算出光波波长λ的值 N

d ?=2λ (29-5) 从迈克尔逊干涉仪装置中可以看出,S 发出的凡与M 1的入射角均为i 的圆锥面上所有光线,经透镜L 会聚在半径为r 的同一个圆上,实际实验时,如果调节M 2与M 1严格垂直,则我们用眼睛观察到的图像就是明暗相间的同心圆环,称为等倾干涉条纹如图29-6(a )所示,如果M 2与M 1严不严格垂直,则出现等厚干涉条纹(图29-6中(b),(c))。根据式(29-5)测量波长λ时必须在等倾干涉下进行。

(a) (b) (c)

图29-4等倾干涉条纹(a)和可能的等厚干涉条纹(b)(c)

【实验内容与步骤】

1、迈克尔逊干涉仪的调整

(1)按图29-5原理图摆放好钠灯和迈克尔逊干涉仪。在钠光的灯罩窗口上放置毛玻璃,点亮钠灯,得到均匀的扩展光源,在光源和P1之间加一指针或尖状物(如笔尖)。

(2)旋转粗调手轮,使M1和M2至P1镀膜面的距离大致相等,沿EP1方向观察,将看到尖状物有三个像(在其中两个像基本会固定不动,称为固定动像,第三个像则会随着对M1和M2背后的三个螺丝的调节会发生移动,称为可动像)。

(3)仔细调节M1和M2背后的三个螺丝,改变M

和M2的相对方位,直至可动

1

像与两固定动像之一在水平方向和铅直方向均完全重合;再继续微调三个螺丝,可观察到干涉条纹,(此时一般是等厚干涉条纹)。

(4)细致缓慢调节M1下方的两个微调节拉簧螺丝,使干涉条纹中心随观察者的眼睛左右上下的移动而移动,但不发生条纹的“涌出”或“陷入”现象。此时,才是严格的等倾干涉。

(5该系统中M2为动镜,传动比为20∶1,即从螺旋测微计上读出的最小分度值0.01mm相当于动镜移动0.0005mm

2、测量激光的波长

(1)旋转粗调手轮,使M2移动,观察条纹“涌出”或“陷入”现象,观察d的取值与条纹粗细、疏密的关系。掌握干涉条纹“涌出”或“陷入”个数、速度与调节微调手轮的关系。

(2)当视场中出现清晰的、对比度好的干涉圆环时,读出动镜M2所在的相对位置,此为“0”位置,然后沿同一方向转动微调手轮,仔细数干涉条纹“涌出”或“陷入”的个数。每隔50或100个条纹,记录一次动镜M2的位置,连续记录5个这样的位置。

(3)由(29-5)计算激光的波长。取其平均值 与公认值(632.8纳米)比较,计算相对误差。

【实验数据记录及处理】

氦氖激光的波长 =?=N

λ 计算相对误差

【注意事项】

1. 在调节和测量过程中,一定要非常细心和耐心,转动手轮时要缓慢、均匀。

2. 为了防止引进螺距差,每项测量时必须沿同一方向转动手轮,途中不能倒退。

3. 在用激光器测波长时,M 1镜的位置应保持在29-60毫米范围内。

4. 为了测量读数准确,使用干涉仪前必须对读数系统进行校正。

实验6 单缝衍射实验

【实验目的】

1.观察单缝衍射现象,加深对衍射理论的理解。

2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。

3.学会用衍射法测量微小量。

【仪器和用具】

光学平台或光具座,单缝,薄透镜,物屏,光源,准直透镜(焦距大一些),平面反射镜,白屏,测微目镜,二维、三维平移底座,升降调节座等。

【实验原理】

1.单缝衍射

光的衍射是指光波在传播过程中遇到障碍物时,当障碍物(小孔、狭缝、毛发、细针等)的线度与光的波长相差不多时,所发生的偏离直线传播的现象,即光可绕过障碍物,传播到障碍物的

几何阴影区域中,并在障

碍物后的观察屏上呈现

出光强的不均匀分布。通

常将观察屏上的不均匀

光强分布称为衍射图样。

本实验涉及的是光通过

单缝时的衍射,即单缝衍射。

单缝衍射可分为两类:菲涅耳

衍射、夫琅和费衍射。夫琅和费衍射是指狭缝和障碍物与观察屏的距离都是无限远的。在夫琅和费衍射中,入射到狭缝的光是平行光,传播到观察屏的也是平行光,即入射光和衍射光都是平行光,所以夫琅和费衍射是平行光的衍射,在实验中可以借助两个透镜来实现。

本实验只研究夫琅和费单缝衍射,如图25-1所示,将波长为 的单色光源S 置于透镜1L 的焦平面上,由光源S 发出经1L 出射的平行光垂直照射在宽度为a

的狭缝上,

当a 很小时,根据惠更斯-菲涅尔原理,狭缝上每一点都可看成是发射子波的新波源。由于子波叠加的结果,可以在透镜2L 的焦面处的接收屏上看到一组平行于狭缝的明暗相间的衍射条纹,中央是亮而宽的明条纹,在它两侧是较弱的明暗相间的条纹,中央明条纹宽度是两侧明条纹宽度的两倍。

从单缝衍射理论可以得出在k P 点出现亮条纹的条件是

()2

12sin λ?+=k a () ,2,1±±=k (25-1)

在k P 点出现暗条纹的条件是 λ?k a =sin () ,2,1±±=k (25-2)

式中a 是单缝的宽度,?是衍射角,λ是入射光的波长(650nm )。

设狭缝2S 与观测屏的距离为f ,第k 级亮条纹与衍射图样中心的距离为k x ,则

f

x tg k =? 因?角极小,??sin ≈tg ;又因衍射图样中心位置不易准确测定,可以测量两条同级条纹间的距离k x 2,据式(25-1)得

()212λ+=k f x a k

(25-3) 所以 ()k x f

k a 212λ+=

(25-4) 可见,某一级暗条纹至衍射

图样中心的距离k x 与缝宽a 成

反比,a 大,k x 2小,各级衍射

条纹向中央收缩,当a 宽到一

定程度,衍射现象便不再明显,只能看到中央位置有一条亮线,这时可以认为光线是沿直线传播的。

由单缝衍射理论计算可得,垂直入射于单缝平面的平行光经单缝衍射后光强分布的规律为

220sin ??I I = 其光强分布如图25-1所示,当0=?时,0I I =,在整个衍射图样中,此处光强最强,称为中央主极大;当() 2,1±±==k k π?,在这些地方为暗条纹。暗条纹是以光轴为对称轴,呈等间隔、左右对称的分布。

【实验内容与步骤】

1.单缝宽度的测量

(1)在光学平台或光具座上沿米尺调节各光学元件同轴等高。

(2)衍射条纹清晰且视场亮度合适。

(3)定性观察衍射条纹。,观察衍射条纹的分布(疏密)与屏距变化的关系。然后调节一个适当的屏距,使中央明纹两侧有6~8级衍射条纹。

(4)测量。调节光电探头逐一对准中央零级两侧1~5级亮条纹,分别记录其位置,算出k x 2。记录分划板与光电探头在光学平台或光具座米尺上的位置,算出距离f 。

(5)重复测量3次。然后根据式(25-4)可得出单缝的宽度,并计算相对误差。验证中央明条纹宽度是两侧明条纹宽度的两倍。

(6)绘制衍射光的相对强度I /Io 与位置坐标x 的关系曲线。由于光的强度与检流计所指示的电流读数成正比,因此可用检流计的光电流的相对强度,i /io 代替衍射光的相对强度I /Io

(7)自行设计表格记录数据,并按要求处理数据。

(25-5)

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

普通物理实验思考题及答案

实验一. 1求λ时为何要测几个半波长的总长? 答:多测几个取平均值,误差会减小 2为何波源的簧片振动频率尽可能避开振动源的机械共振频率? 答 当簧片达到某一频率(或其整数倍频率)时,会引起整个振动源(包括弦线)的机械共 振,从而引起振动不稳定。 3弦线的粗细和弹性对实验各有什么影响,应该如何选择? 答 弦线应该比较细,太粗的话会使振动不明显,弹性应该选择较好的,因为弹性不佳会造 成振动不稳定 4横波在弦线上传播的实验中,驻波是由入射波与反射波迭加而成的,弦线上不振动的点称 为波节,振动最大的点称为波腹,两个波节之间的长度是半波长 5因振簧片作水平方向的振动,理论上侧面平视应观察不到波形,你在实验中平视能观察得 到吗?什么情况能观察到,为什么? 答 平视不能观察到,因为。。。。。。 6为了使lg λ—lgT 直线图上的数据点分布比较均匀,砝码盘中的砝码质量应如何改变? 答 每次增加相同重量的砝码 实验二. 1.外延测量法有什么特点?使用时应该注意什么问题? 答 当需要的数据在测量数据范围之外而不能测出,为了求得这个值,采用作图外推求值的 方法,即先用已测的数据绘制出曲线,再将曲线按原规律延长到待求值范围,在延长线部分 求出所需要的值 使用时要注意在所要值两边的点要均衡且不能太少并且在研究的范围内 没有突变的情况 2.物体的固有频率和共振频率有什么不同?它们之间有何联系? 答 物体的固有频率和共振频率是不同的概念,固有频率指与方程的根knl=4.7300对应的振 动频率,它们之间的关系为f 固= f 共2^4/11Q 前者是物体的固有属性,由其结构,质量材质等决定,而后者是当外加强迫力的频率等于物 体基频时,使其发生共振时强迫力的频率 实验三. 1.为什么实验应该在防风筒(即样品室)中进行? 答:因为实验中的对公式 要成立的条件之一是:保证两样品的表面状况相同,周围介质(空气)的性质不变, m:强迫对流时m=1;自然对流时m=5/4; (实验中为自然冷却即自然对流) 所以实验要在防风筒(即样品室)中进行,让金属自然冷却。 2.用比较法测定金属的比热容有什么优点?需具备什么条件? 答:优点是可以简单方便测出待测金属的比热容。如果满足下列条件:两样品的形状尺寸都 相同(例如细小的圆柱体);两样品的表面状况也相同; 于是当周围介质温度不变(即室温恒定),两样品又处于相同温度时,待测金属的比热容为: 3.如何测量不同的金属在同一温度点的冷却速率? 答:法一:测出不同金属在该温度点附近下 降相同的温度差Δθ以及所需要的时间Δt,可 得各个金属在该温度点的冷却速率。 法二:通过实验,作出不同金属的θ~t 冷却曲线,在各个冷却曲线上过该温度点切 线,求出切线的斜率,可得各温度点的冷却速率。 4、可否利用本实验中的方法测量金属在任意温度时的比热容?

LED照明系统设计指南完全版

照明系统设计指南完全版 本文详细讨论照明系统设计的六个设计步骤:(1)确定照明需求;(2)确定设计目标估计光学;(3)热和电气系统的效率;(4)计算需要的数量;(5)对所有的设计可能都予以考虑,从中选择最佳设计;(6)完成最后步骤。虽然本文以一个室内照明设计为例,但所述的设计过程可以用于任何照明设计中。 现在的照明应用,具有普通照明所需的亮度、效率、使用寿命、色温以及白点稳定性。因此,绝大多数普通照明应用设计中都采用这类,包括路面、停车区以及室内方向照明。在这些应用中,由于无需维护(因为的使用寿命比传统灯泡的要长得多)且能耗降低,所以基于的照明降低了总体拥有成本()。 全世界有200亿以上的灯具使用白炽、卤素或荧光灯。其中许多灯具用作方向照明,但都是采用在所有方向发光的灯。美国能源部()称,在新住宅建筑里,嵌顶灯是安装最普遍的照明灯。此外,报告称,采用非反射灯的嵌顶灯一般效率只有50%,就是说,这类灯所产生光的一半都浪费到灯具内了。 相反,照明级具有至少50,000小时的高效、方向性照明。利用照明级的所有优点设计的室内照明有以下优点: 1 功效超过所有白炽灯和卤素灯具 2 能与甚至最好的(紧凑荧光)嵌顶灯的性能相媲美 3 与这些灯具相比,需要维修前的寿命要长5到50倍 4 降低光对环境的影响:不含汞、电站污染小、垃圾处理费用低。 照明还是灯? 在普通照明中设计需要在两种方法间作出选择,是设计基于的完整的照明,还是设计安装到已有灯具上的基于的灯。一般来说,一个完整的照明设计,其光学、热和电气性能要好于式样翻新的灯,因为现有灯具不会约束设计。对目标应用,到底是新照明的总体系统性能重要还是式样翻新的灯的方便性更重要,这要由设计师来决定。 针对已有照明的设计方法 如果目标应用采用构造新型照明更好,那么就设计照明的光输出,使其相当于或者超过现有照明匹配具有多种优点。首先,现有设计已经针对目标应用进行了优化,可以在围绕有关光输出、成本和工作环境而确定设计目标时提供指导。其次,现有设计的外形尺寸已经得到认可。如果外形尺寸相同,终端用户转换成照明更容易一些。 遗憾的是,有些照明制造商错误报告或者夸大了照明的效率和使用寿命特性。在替换灯泡的早期的数年,照明业也遇到了类似问题。行业标准的缺乏,以及早期产品质量的巨大差异将技术的采用推迟了很多年。美国能源部意识到了早期照明也可能存在相同的标准和质量问题,并且这些问题可能以类似的方式延迟了照明的使用。作为应对措施,美国能源部发起了“ 商用产品测试计划()”,对照明制造商声称的指标进行测试。该计划以匿名方式测试照明的下列4个特性:照明光输出(流明)、 照明效率(流明每瓦)、相关色温(开氏度)、显色指数。 的将关注点放在了照明可用光输出上,而不仅仅是照明的光输出上,这为照明设计设定了一个很好的先例。灯的概念可能过时了

普通物理实验思考题及答案

实验一. 1求入时为何要测几个半波长的总长? 答:多测几个取平均值,误差会减小 2为何波源的簧片振动频率尽可能避开振动源的机械共振频率? 答当簧片达到某一频率(或其整数倍频率)时,会引起整个振动源(包括弦线)的机械共振,从而引起振动不稳定。 3弦线的粗细和弹性对实验各有什么影响,应该如何选择? 答弦线应该比较细,太粗的话会使振动不明显,弹性应该选择较好的,因为弹性不佳会造成振动不稳定 4横波在弦线上传播的实验中,驻波是由入射波与反射波迭加而成的,弦线上不振动的点称为波节,振动最大的点称为波腹,两个波节之间的长度是半波长 5因振簧片作水平方向的振动,理论上侧面平视应观察不到波形,你在实验中平视能观察得到吗?什么情况能观察到,为什么? 答平视不能观察到,因为。。。。。。 6为了使lg入一lgT直线图上的数据点分布比较均匀,砝码盘中的砝码质量应如何改变?答每次增加相同重量的砝码实验 1.外延测量法有什么特点?使用时应该注意什么问题? 答当需要的数据在测量数据范围之外而不能测出,为了求得这个值,采用作图外推求值的 方法,即先用已测的数据绘制出曲线,再将曲线按原规律延长到待求值范围,在延长线部分求出所需要的值使用时要注意在所要值两边的点要均衡且不能太少并且在研究的范围内 没有突变的情况 2.物体的固有频率和共振频率有什么不同?它们之间有何联系? 答物体的固有频率和共振频率是不同的概念,固有频率指与方程的根kn1=4.7300对应的振 动频率,它们之间的关系为f固=f共11/4Q A2 前者是物体的固有属性,由其结构,质量材质等决定,而后者是当外加强迫力的频率等于物 体基频时,使其发生共振时强迫力的频率 实验三. 1 ?为什么实验应该在防风筒(即样品室)中进行? 答:因为实验中的对公式 要成立的条件之一是:保证两样品的表面状况相同,周围介质(空气)的性质不变, m:强迫对流时m=1;自然对流时m=5/4;(实验中为自然冷却即自然对流)所以实验要在防风筒(即样品室)中进行,让金属自然冷却。 2.用比较法测定金属的比热容有什么优点?需具备什么条件? 答:优点是可以简单方便测出待测金属的比热容。如果满足下列条件:两样品的形状尺寸都 相同(例如细小的圆柱体);两样品的表面状况也相同;于是当周围介质温度不变(即室温恒定),两样品又处于相同温度时,待测金属的比热容为: 3、如何测量不同的金属在同一温度点的冷却速率? 答:法一:测出不同金属在该温度点附近下降相同的温度差以及所需要的时间△t,

大学物理实验PN结正向压降温度特性及正向伏安特性的研究讲义

PN 结正向压降温度特性 及正向伏安特性的研究 一、实验目的 1.了解PN 结正向压降随温度变化的基本关系式,了解用PN 结测温的方法。 2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。 3.了解二极管的正向伏安特性,测量波尔兹曼常数。 二、实验原理 (一)PN 结正向压降与温度的关系 理想PN 结的正向电流I F 和压降V F 存在如下近似关系 )exp(kT qV Is I F F = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明 ]) 0(ex p[kT qV CT Is g r -= (2) (注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节) 其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。 将(2)式代入(1)式,两边取对数可得

11)0(n r F g F V V InT q kT T I c In q k V V +=-??? ? ??-= (3) 其中 () r n F g InT q KT V T I c In q k V V -=???? ??-=11)0( 这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。 设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得 []r n F g g F T T q kT T T V V V V ???? ??---=1111)0()0( (4) 按理想的线性温度影响,V F 应取如下形式: )(111T T T V V V F F F -??+=理想 (5) T V F ??1等于T 1温度时的T V F ??值。 由(3)式可得 r q k T V V T V F g F ---=??111)0( (6) 所以

普通物理实验3+光学六个实验讲义

实验5 迈克耳孙干涉仪的调节和使用 【实验目的】 1.了解迈克尔逊干涉仪的结构和干涉花样的形成原理。 2.学会迈克尔逊干涉仪的调整和使用方法。观察等倾干涉条纹,测量待测光源的波长。 3.观察等厚干涉条纹,测量钠光的双线波长差。 【仪器和用具】 迈克尔逊干涉仪(WSM-100型),氦氖激光,毛玻璃屏。 【实验原理】 1.迈克尔逊干涉仪的介绍 19世纪末,迈克尔逊为了确定当时虚构的光传播介质—“以太”的性质,设计和制造了该种干涉仪,并在1881年与莫雷合作在该干涉仪上进行了历史上有名的迈克尔逊—莫雷测“以太”风实验,实验得到了否定的结果,为爱因斯坦1905年创立相对论提供了实验基础.迈克尔逊也因此获得1907年诺贝尔物理学奖。

迈克尔逊干涉仪原理简明,构思巧妙,堪称精密光学仪器的典范。 其原理是用分振幅的方法产生双光束以实现干涉的仪器。它的主要特点是两相干光束完全分开,这就很容易通过改变一光束的光程来改变两相干光束的光程差,而光程差可以以光波的波长为单位来度量,随着对仪器的不断改进,还能用于光谱线精细结构的研究和利用光波标定标准米尺等实验。因此,根据迈克尔逊干涉仪的基本原理,研制的各种精密仪器已被广泛应用于长度精密计量、光学平面的质量检验和傅里叶光谱技术等方面,迈克尔逊干涉仪是许多近代干涉仪的原型。 图29-1 WSM-100型迈克尔逊干涉仪实物图 WSM-100型迈克尔逊干涉仪的实物图如图29-1所示。 (1)反光镜1和反光镜2:这是两个互相垂直放置的平面镜,镜面镀有金属膜,具有很高的反射率。

(2)分光镜和补偿片:分光镜又称为分光板,是一块平行平面玻璃板,其第二平面上镀有一层半透(反射)膜,可以将以450入射的一列光分成两列振幅近乎相等的反射光和透射光。补偿片也称补偿板,它的厚度和折射率都与分光板相同,且与分光板平行放置,用以补偿通过分光镜的透射光与反射光之间附加的光程差。 (3)传动部分和读数系统:转动大转轮和微调鼓轮,都可使导轨上的转轴转动,从而带动反光镜1沿导轨移动。反光镜1的位置或移动的距离可由机体侧面的毫米刻尺、读数窗口内刻度和微调鼓轮的读数确定。 粗调手轮旋转一周,拖板移动1毫米,即反光镜1移动1毫米,同时,读数窗口内的鼓轮也转动一周,鼓轮的一圈被等分为100格,每格为10-2毫米,读数由窗口上的基准线指示。 微调鼓轮每转过一周,拖板移动0.01毫米,可从读数窗口中可看到读数刻度移动一格,而微调鼓轮的周线被等分为100格,则每格表示为10-4毫米。 如图29-2所示的读数为33.52246mm。

大学物理实验 复摆实验讲义

复 摆 【实验目的】 (1)研究复摆的物理特性; (2)用复摆测定重力加速度; (3)用作图法和最小二乘法研究问题及处理数据。 【仪器用具】 复摆,光电计时器,电子天平,米尺等。 【实验原理】 1.复摆的振动周期公式 在重力作用下,绕固定水平转轴在竖直平面内摆动的刚体称为复摆(即物理摆).设一复摆 (见图1-1)的质量为m ,其重心G 到转轴O 的距离为h ,g 为重力加速度,在它运动的某一时刻t,参照平面(由通过O 点的轴和重心G 所决定)与铅垂线的夹角为0,相对于O 轴的恢复力矩为 M=-mgh sin θ (1.1) 图 1-1复摆示意图 根据转动定理, 复摆(刚体)绕固定轴O 转动,有 M=I β (1.2) 其中M 为复摆所受外力矩,I 为其对O 轴的转动惯量,β为复摆绕O 轴转动的角加速度, 且 22dt d θβ= 则有 M=I 2 2dt d θ (1.3) 结合式(1.1)和式(1.3),有 I 22dt d θ +mgh sin θ=0 (1.4) 当摆角很小的时候, sin θ≈θ, ,式(1.4)化为

22dt d θ + θI mgh =0 (1.5) 解得 θ=A cos(ωt+θ0) (1.6) 式中A ,θ由初条件决定;ω是复摆振动的角频率,ω=I mgh /, 则复摆的摆动周期 T=2πmgh I (1.7) 2.复摆的转动惯量,回转半径和等值单摆长 由平行轴定理,I=I G +mh 2,式中I G 为复摆对通过重心G 并与摆轴平行的轴的转动惯量, (1.7) 式可写为 T=2πmgh mh I G 2 + (1.8) 可见, 复摆的振动周期随悬点O 与质量中心G 之间的距离h 而改变。还可将I =I G +mh 2改写 2 2G 2I mR mh mR =+= (1.9) 式中R G = m I G 为复摆对G 轴的回转半径, 同样也有R=m I , R 称为复摆对悬点O 轴的回转半径。复摆周期公式也可表示为 T=2π g h h R G +2 (1.10) 事实上, 总可以找到一个单摆,它的摆动周期等于给定的复摆的周期,令 L =h h R G +2 (1.11) 则 T= 2π g L (1.12) 式中L 称为复摆的等值单摆长。这样, 就它的振动周期而论,一个复摆的质量可以被认为集中到一个点上, 这个点距悬点(支点)的距离为

示波器观察动磁滞回线讲义

示波器观测动态磁滞回线 一、用示波器观测动态磁滞回线简介: 1. 实验原理。 参照《新编基础物理实验》实验四十三《磁滞回线的测量》的实验原理。 2. 测量电路。 3. 相关公式 1R 1 1N H R u =l 2C 2R C B N S u = l ,铁磁样品的磁路长度;S ,铁磁样品磁路的横截面积;N 1,N 2,初级、次级绕组匝数。 对样品1(铁氧体):l = 0.130m ,S = 1.24×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 对样品2(硅钢片):l = 0.075m ,S = 1.20×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 4. 名词术语: 1) 磁中性状态:磁化场H 为零时磁感应强度B 也为零的状态,称为磁中性状态。 对铁磁样品加一个振幅足够大的交变磁场,并逐渐将振幅减小到零,铁磁样品即可被磁中性化。 2) 磁滞回线:磁化场H 循环变化时(-H 0H + )B 的变化轨迹称为磁滞回

线。它是相对于原点对称的闭合曲线。(样品测量前需要先磁中性化) 3) 饱和磁滞回线:磁化场H 在循环变化过程中可以达到足够大,使铁磁材料的磁化强度0B M H μ=?随H 的增大不再增大,由这样的循环变化磁化场得到的 磁滞回线称为饱和磁滞回线。 饱和磁滞回线上磁感应强度最大的值称为饱和磁感强度,用B S 表示。 饱和磁滞回线上B=0所对应的磁化场称为矫顽力,用H C 表示。 饱和磁滞回线上H=0所对应的磁感应强度称为剩余磁感应强度,用B r 表示。 4) 基本磁化曲线:将振幅不同的循环变化磁化场下所得到的磁滞回线的顶点连接 起来的曲线。(样品测量前需要先磁中性化) 5) 起始磁导率i μ:磁导率μ定义为0B H μμ=,通常铁磁材料的μ是温度T 、磁化场H 、频率f 的函数。在很低的磁化场下,磁化是可逆的,H 和B 之间呈线性关系,没有滞后现象,在此区域中,磁导率为常数,该磁导率称为起始磁导率,即i H 00 B lim H μμ→=。 6) 可逆磁导率r μ:当一个直流磁场H 和一个很弱的交变磁场h 同时作用在铁磁材料上时,直流磁场H (也称为直流偏磁场)使铁磁材料偏离磁中性化状态,h 引起磁感应强度B 的交流变化b 。当h 0→ 时,由h 产生的退化磁滞回线(即一条斜线)的斜率与0μ的比值称为可逆磁导率r μ,即00 lim r h h b μμΔ→Δ=Δ,其中h Δ和b Δ分别是h 和b 的变化范围。r μ是H 的函数,一般H 越大,r μ越小。 二、实验内容: 1. 观测样品1(铁氧体)的饱和磁滞回线。 1) 取1R 2.0=Ω,2R =50k Ω,C 10.0F μ=,100Hz f =,调节励磁电流大小 及示波器的垂直、水平位移旋钮,在示波器显示屏上调出一个相对于坐标原点对称的饱和磁滞回线。在回线的上半支上,从-B S 到B S 选取9个以上测量点(其中必须包括S B ,B 0=,H 0=三个点),测量各点的H 和B 。根据测量的数据在坐标纸上画出饱和磁滞回线。给出S B ,r B ,C H 的测量值。 2) 保持1R ,R 2C 不变,测量并比较f =50Hz 和150Hz 时的r B 和C H 。

最新光学系统设计

光学系统设计

用ZEMAX实现对光源的仿真 要精确地模拟一个照明系统,实现对光源的精确模拟是关键。 这里讨论三个问题: 一、如果只知道有关的光源的简单数据,如何模拟? 二、如果已知关于光源的详细数据,又如何模拟? 三、如何模拟一个几何形状复杂的光源? 下面从第一个问题开始讨论:若仅知道光源的简单数据,如何对光源进行仿真? 打开ZEMAX,将其切换到非序列模式: 接下来,完成单位的设置,执行system>general>units

有关光能及其计算的问题,要特别注意物理单位。本例中光照度单位采用勒克司。 将缺省的非序列物的类型设为source_radial。在ZEMAX中,source_radial 代表一个矩形或椭圆形平面光源,它能向半球面空间内发射光线。在半球面内,光线关于本地Z轴呈对称分布,并且光线的强度随角度的分布属立方样条拟合。将null object定义为source_radial是将光源数据输入到ZEMAX的最简单直接的方式。 右键单击null object: 如下图所示,是美国Lumileds(流明)公司的LED产品LXML-PWW1说明书中提供的发光强度分布曲线。它呈明显的余弦分布。

根据上述曲线,我们可以构造这样出表2: 表2 LXML-PWW1的空间强度分布 度相对强度(任意单 位) 0 100 5 99 10 98 15 96 20 94 25 90 30 86 35 82 40 74 45 68 50 63 55 53 60 45 65 38 70 28 75 23 80 16 85 10 90 5 说明书上还注明,LXML-PWW1的直径是6mm,典型输出功率是120 lumens。设layout rays数量为30,analysis rays 数量为10000000。将上述参数输入到ZEMAX中: 我们得到光源的外形图和灰度度:

LED照明灯具与光学系统设计

LED照明技术陕西科技大学 电气与信息工程学院 王进军

第七章LED照明光学系统设计 7.1 LED照明光学系统设计CAD软件 7.2 LED照明光学系统的设计原理 7.3 LED照明数据与计算 7.2 LED照明光学系统的选择 7.3 LED矿灯设计 7.4 应用于博物馆文物展示的白光LED照明系统设计 7.5 白光LED射灯设计

第七章LED照明光学系统设计 LED光学系统设计包括LED发光管内的光学设计和LED 发光管外的光学设计,前者通常称为一次光学设计,而后者则称为二次光学设计。 LED内通常由芯片、反射杯和透明环氧树脂制成的光学透镜组成。LDE芯片、反射杯和透镜的几何形状决定了LED出光后的空间光强分布。

第七章LED照明光学系统设计 LED发光管外的二次光学设计主要是根据不同的实际应用需求使LED出光后的空间光强分布发生改变,即光能量的分布发生变化,从而更有效、更合理地利用有限的光能量。 因此,LED照明光学系统设计主要指的是LED发光外的二次光学设计。

§7.1 LED照明光学系统设计CAD软件 计算机辅助设计(CAD)技术的飞速发展,使得照明光学系统的研究方法发生了巨大的变化,这主要表现在光学机构仿真软件在照明产业中的普及。 目前,国际上采用的照明光学系统的设计软件主要下面有三种:

§7.1 LED照明光学系统设计CAD软件 ?TarcePro光学机构仿真软件、 ?AASP高级系统分析程序、 ?Lighttoo1s照明系统设计软件。 在我国大陆用的较多的是TarcePro ,而台湾地区则以AASP较为流行。

大学物理实验梗概

2011-09-08北京师范大学物理实验中心 为什么要上物理实验课

北京师范大学物理实验中心 发明了用激光冷却和俘获原子的方法 Steven Chu Cohen-Tannoudji William D.Phillips 1998:量子霍耳效应,电子能够形成新型粒子 Robert B. Laughlin Horst L. Stormer Daniel C. Tsui 2011-09-08 北京师范大学物理实验中心 Eric A. Cornell Wolfgang Ketterle Carl E. ieman 授之工具

2. 怎样上好物理实验课 基础物理实验课程不同于一般的探索性的科 学实验研究,每个实验题目都经过精心设计、 安排,实验结果也比较有定论,但它是对学生 进行基础训练的一门重要课程。 它可使同学获得基本的实验知识,在实验方 法和实验技能诸方面得到较为系统、严格的训 练,是大学里从事科学实验的起步,同时在培 养科学工作者的良好素质及科学世界观方面, 物理实验课程也起着潜移默化的作用。 希望同学们能重视这门课程的学习,经 过半年的时间,真正能学有所得。 2011-09-08北京师范大学物理实验中心 实验室)

实验预习三个主要教学环节 ?实验预习—实验能否取得主动的关键 ?实验操作 ?实验报告—实验的总结 2011-09-08北京师范大学物理实验中心

3. 实验误差与测量结果评定 3.1 测量与误差3.2 测量结果评定与计算 3.3 有效数字及近似计算 ?? ???结果评价误差 测量

2011-09-08北京师范大学物理实验中心1 ) ()(1 2 ??= ∑=n x x x n i i σ随机误差特点 2 22)(21 )(σπ σA x e x p ??=概率密度 单个具有随机性,总体服从统计分布规律(正态分布、t 分布、均匀分布)可以降低随机误差多次测量 贝塞尔公式 标准差 n x x n i i /)(1 ∑==算术平均值 ---最佳值 2011-09-08北京师范大学物理实验中心 1 )(?= n x σ] ,σσ+?A n x x n i i /)(1∑==测量量的最佳估计值 算术平均值的标准偏差 2011-09-08 北京师范大学物理实验中心 精密度:高差高正确度:差高高精确度:差 差 高 精确度——综合二者(准确度) 测量结果的不确定度表示

《普通物理实验》

实验一扭摆法测定物体转动惯量 转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量.刚体转动惯量 除了与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度分布)有关。如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定转轴的转动惯量。对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定,例如机械部件,电动机转子和枪炮的弹丸等。 转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量.本实验使物体作扭转摆动,由摆动周期及其它参数的测定计算出物体的转动惯量。 一、实验目的 1、用扭摆测定几种不同形状物体的转动惯量和弹簧的扭转常数,并与理论值进行比较。 2、验证转动惯量平行轴定理。 二、实验原理 扭摆的构造如图(1)所示,在垂直轴 1上装有一根薄片状的螺旋弹簧 2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低磨擦力矩。3为水平仪,用来调整系统平衡。 将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M =-K θ (1) 图 (1)

式中,K 为弹簧的扭转常数,根据转动定律 M =I β 式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 I M =β (2) 令 I 2 K = ω ,忽略轴承的磨擦阻力矩,由式(1)、(2)得 θωθθβ22 2-=- == I K dt d 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。此方程的解为: θ=Acos(ωt +φ) 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为 K I T π ω π 22== (3) 由式(3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。 本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的扭转常数K 值。若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。 理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I O 时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为I O +mx 2。这称为转动惯量的平行轴定理。 三、实验仪器 1.扭摆及几种有规则的待测转动惯量的物体 空心金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆,杆上有两块可以自由移动的金属滑块。 2.转动惯量测试仪 由主机和光电传感器两部分组成。 主机采用新型的单片机作控制系统,用于测量物体转动和摆动的周期,以及旋转体的转速,能自动记录、存贮多组实验数据并能够精确地计算多组实验数据的平均值。

大学物理实验 复摆实验讲义

利用复摆测量重力加速度 【实验目的】 (1)根据复摆的物理特性测量重力加速度; (2)利用拟和方法处理实验数据; (3)练习测量不确定度的评定。 【仪器用具】 复摆,光电计时器,游标卡尺等。 【实验原理】 在测量重力加速度的方法中,有一类利用了摆的性质:小振动周期的平方与成反比(由量纲分析即可得到此结论)。对于大家熟悉的单摆,由于摆球并不是理想的质点,摆线也有一定的质量,导致等效的摆长很难精确测定,严重制约了的测量精度(因为周期测量可以达到很高的精度)。我们这次实验使用的复摆就是为了克服这个困难而设计的专用于重力加速度测量的仪器。 所谓的复摆就是一个刚体摆。在重力作用下,刚体绕固定水平转轴在竖直平面内摆动(见图1)。设复摆的质量为m,其重心G到转轴O的距离为h,从重心到转轴的垂线OG与铅垂线的夹角为,则重力对复摆产生的恢复力矩为 图1 复摆示意图 根据刚体定轴转动定理,复摆的角加速度 其中I为刚体相对O轴的转动惯量,为刚体相对其重心的转动惯量,这里用到了转动惯量的平行轴定理:。

当摆角很小的时候, 上式简化为 这是简谐运动的方程。由此可知,与单摆一样,复摆在平衡位置附近的小振动是周期为 的简谐振动。注意 不是 的单调函数:当 趋于零或无穷大时,周期都趋于无穷大(见图2)。 图2 复摆 曲线(A,C 为一对共轭点) 在实验中,我们可以改变转动轴O 轴(即悬点)的位置。悬点始终在经过复摆重心G 的一条直线(即复摆摆杆的中心线)上。通过改变悬点而改变 ,测量不同 对应的周期 ,用理论公式对测量结果进行拟合,就可以得到 了。 除了上述的曲线拟合方法,这里再介绍一种只需要测量两个点的方法,这也是利用复摆测量重力加速度的传统方法。如图2所示,我们选择的两个悬点O 1和O 2分处重心的两侧,它们到重心的距离分别为 ,振动周期分别为 和 ,根据周期公式有 如果O 1、O 2满足 但 ,则称它们互为共轭点。对于共轭点的情况,上式右边第二项为零,只需要测量两个悬点的距离 就可以计算 了。由于不需要确定重心的实际位置(这一步的精度远比测量两个悬点的距离要低),共轭点法测量重力加速度可以达到很高的精度。注意,即便O 1、O 2不是一对精确的共轭点,只要 和 相差做够小(比如

LED照明系统设计指南完全版

LED照明系统设计指南完全版 本文详细讨论LED照明系统设计的六个设计步骤:(1)确定照明需求;(2)确定设计目标估计光学;(3)热和电气系统的效率;(4)计算需要的LED数量;(5)对所有的设计可能都予以考虑,从中选择最佳设计;(6)完成最后步骤。虽然本文以一个室内照明设计为例,但所述的设计过程可以用于任何LED照明设计中。 现在的照明应用LED,具有普通照明所需的亮度、效率、使用寿命、色温以及白点稳定性。因此,绝大多数普通照明应用设计中都采用这类LED,包括路面、停车区以及室内方向照明。在这些应用中,由于无需维护(因为LED的使用寿命比传统灯泡的要长得多)且能耗降低,所以基于LED的照明降低了总体拥有成本(TCO)。 全世界有200亿以上的灯具使用白炽、卤素或荧光灯。其中许多灯具用作方向照明,但都是采用在所有方向发光的灯。美国能源部(DOE)称,在新住宅建筑里,嵌顶灯是安装最普遍的照明灯。此外,DOE报告称,采用非反射灯的嵌顶灯一般效率只有50%,就是说,这类灯所产生光的一半都浪费到灯具内了。 相反,照明级LED具有至少50,000小时的高效、方向性照明。利用照明级LED的所有优点设计的室内照明有以下优点: 1 功效超过所有白炽灯和卤素灯具 2 能与甚至最好的CFL(紧凑荧光)嵌顶灯的性能相媲美 3 与这些灯具相比,需要维修前的寿命要长5到50倍 4 降低光对环境的影响:不含汞、电站污染小、垃圾处理费用低。 照明还是灯? 在普通照明中设计LED需要在两种方法间作出选择,是设计基于LED的完整的照明,还是设计安装到已有灯具上的基于LED的灯。一般来说,一个完整的照明设计,其光学、热和电气性能要好于式样翻新的灯,因为现有灯具不会约束设计。对目标应用,到底是新照明的总体系统性能重要还是式样翻新的灯的方便性更重要,这要由设计师来决定。 针对已有照明的设计方法 如果目标应用采用构造新型LED照明更好,那么就设计照明的光输出,使其相当于或者超过现有照明匹配具有多种优点。首先,现有设计已经针对目标应用进行了优化,可以在围绕有关光输出、成本和工作环境而确定设计目标时提供指导。其次,现有设计的外形尺寸已经得到认可。如果外形尺寸相同,终端用户转换成LED照明更容易一些。

普通物理实验习题集

一、填空题 1.依照测量方法的不同,可将测量分为和两大类。 2.误差产生的原因很多,按照误差产生的原因和不同性质,可将误差分为疏失误差、和。 3.测量中的视差多属误差;天平不等臂产生的误差属于误差。 4.已知某地重力加速度值为9.794m/s2,甲、乙、丙三人测量的结果依次分别为:9.790±0.024m/s2、9.811±0.004m/s2、9.795±0.006m/s2,其中精密度最高的是,准确度最高的是。 5.累加放大测量方法用来测量物理量,使用该方法的目的是减小仪器造成的误差从而减小不确定度。若仪器的极限误差为0.4,要求测量的不确定度小于0.04,则累加倍数N>。 6.示波器的示波管主要由、和荧光屏组成。 7.已知y=2X1-3X2+5X3,直接测量量X1,X2,X3的不确定度分别为ΔX1、ΔX2、ΔX3,则间接测量量的不确定度Δy= 。 8.用光杠杆测定钢材杨氏弹性模量,若光杠杆常数(反射镜两足尖垂直距离)d=7.00cm,标尺至平面镜面水平距离D=105.0㎝,求此时光杠杆的放大倍数K= 。 9、对于0.5级的电压表,使用量程为3V,若用它单次测量某一电压U,测量值为2.763V,则测量结果应表示为U= ,相对不确定度为B= 。 10、滑线变阻器的两种用法是接成线路或线路。 二、判断题(“对”在题号前()中打√,“错”打×) ()1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。 ()2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。 ()3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。 0 / 28

物理实验 A 教学大纲

物理实验A Physical Experiment A 【学分】2 【学时】48 【性质】实践教学环节 (一)授课对象 四年制本科理工类除应用物理学、材料物理、计算机科学与技术、信息管理与信息系统、工业工程外各专业。 (二)实验的性质和地位 大学物理实验是对高等学校学生进行科学实验基本训练的一门独立的必修基础课程,是学生进入大学后接受系统实验技能训练的开端,是理工科类学生进行科学实验训练的重要基础。是学生通过自身的实践,将知识转化为能力的实践性教学环节。 大学物理实验在培养学生用实验手段去观察、发现、分析和研究问题,最终解决问题的能力方面起着重要作用。也为学生独立进行科学研究,设计实验方案、选择,使用仪器设备以及提出新的实验课题;为进一步学习后续的实验课打下良好的基础。 (三)实验教学的目标 通过本课程的学习学生应达到如下教学目标: 1.培养与提高学生科学实验的能力:自学能力、动手实践能力、思维判断能力、表达书写能力、简单设计能力; 2.培养与提高学生从事科学实验的素质; 3.通过对实验现象的观测,使学生进一步掌握物理实验的基本知识,基本方法和基本技能,加深对物理原理的理解。 (四)课程相关能力培养 1.通过该课程的学习,能够应用物理学基本原理,识别、表达、并通过文献研究分析复杂工程问题,以获得有效结论(G2); 2.具有运用基本物理实验技能解决问题的能力,了解本专业前沿发展现状和趋势(G3); 3.了解物理实验的发展现状和趋势,掌握本领域的先进实验理念,能够基于科学原理并采用科学方法对相关领域的科学问题和工程问题进行研究,包括设计实验、分析与解释数据、并通过信息综合得到合理有效的结论(G4); 4.能够针对工程领域的科学问题和工程问题,利用物理实验技能,开发、选择与使用恰当的技术、资源、现代工程工具和信息技术工具,对相关工程问题进行设计、预测及模拟(G5)。 (五)教学内容 1.绪论

复旦大学普通物理实验期末真题1006.

真题1006 一、随机误差正态分布 1、下列说法错误的是( A、测单摆周期应以最高点为起点 B、测单摆周期应以最低点为起点 C、 D、累计频率曲线允许两端误差较大 2、如何避免数据骑墙,错误的是:((多选 A、重新分组; B、 C、归于前一组,最后一组归于其自身; D、归于后一组,最后一组归于其自身; 二、碰撞打靶 1、求碰撞球高度h0的公式:( A、h0=(x2+y2/4y B、 C、h0=(x2+y/4y D、h0=(x2+4y/4y

2、操作没有错误,但是修正了4、5次都一直达不到十环(小于10环且靠近轴线,不可能的原因是( A、碰撞点高于被碰球中心 B、碰撞点低于被碰球中心 C、被碰球与支撑柱有摩擦 D、线没有拉直 三、液氮比汽化热 1、Q等于( A、水从t2升高到t3吸收的热 B、铜柱从t2降到液氮温度放出的热 C、铜柱从室温降到液氮温度放出的热 D、铜柱从t3上升到t1吸收的热 2、测得mN偏小的原因((多选 A、有水溅出 B、瓶口结冰 C、记录tb的时间晚了 D、铜柱在转移时吸热了 四、全息照相 1、实验装置的摆放顺序(

A、电子快门—反光镜—扩束镜—小孔 B、电子快门—反光镜—小孔—扩束镜 C、反光镜—电子快门—小孔—扩束镜 D、反光镜—电子快门—扩束镜—小孔 2、下列说法正确的是((多选 A、有胶剂的一面对光,看到实像 B、有胶剂的一面对光,看到虚像 C、有胶剂的一面背光,看到实像 D、有胶剂的一面背光,看到虚像 五、示波器 1、给你一幅图,问fx/fy=((就是考和切点的关系 2、衰减20db,测得x轴5.00,档位2ms/div;y轴4.00,档位0.1v/div,求频率(和电压( 六、二极管 1、正向导通时是(,反向导通时((填内接或外接 2、已知电压表内阻Rv,电流表内阻RA,测量值R,则内接时真实值是(,外接时真实值是(。 七、RLC电路 1、给你一幅图(两条谐振曲线,一条较高较窄的标有Ra,另一条Rb,问Ra、Rb 的大小关系,问Qa、Qb 的大小关系;

照明光学设计-待续

成都广域 照明光学设计——算法 Snowolf

目录 1、照明光学设计-算法模块分解 2、曲线算法建立 3、能量映射建立 4、实例1:平凸透镜设计(一次曲面为半球面) 5、实例2:平凸透镜设计(一次曲面为直线、球面) 6、实例3:反光杯设计 7、工矿灯透镜设计:60/90/120、反光杯设计15/24/36

1、照明光学设计-算法模块分解 基础参数模块能量映射模块 曲线算法模块 照明光学设计算法分解 输入(如透镜的折射率、尺寸、配光要求) 光源与目标面(即目标需求光斑)关系如:计算光学器件曲线或者曲面坐标点1、基础参数输入信息 2、能量映射theta 与r 一一对应关系 3、折反射定律 光源划分theta(1)theta(2)…theta(90)目标面划分 r(1) r(2) … r(90)

Z 30° B1(r1,h )=B1(-561.5768 ,1000) A1(X1,Z1)=A1 (10,10) Out Out_z = (r1-X1) ^2+ (h-Z1) ^2 (h -Z1) =cos(30/180*pi) Out_x = (r1-X1) ^2+ (h-Z1) ^2 (r1-X1) =-sin(30/180*pi)

30° B1(r1,h )=B1(-561.5768 ,1000) A1(X1,Z1)=A1 (10,10) Out (r1-X1) ^2+ (h-Z1) ^2 (r1-X1) (h -Z1) c a b

A1(X1,Z1)=(10,10) Theta1=45°theta2=50° 30° A2(X 2,Z2) X Z 输入: 1、客户输入尺寸 2、反射器 3、能量映射theta与出射角度(30°)

普通物理实验教学模式探索

普通物理实验教学模式探索 摘要:基于传统普通物理实验课程体系存在的主要问题,以研究性教学思想为指导,将学生的创新能力培养划分为基本能力、综合能力、科研能力培养三个阶段,设计了障碍性、问题性和课题研究性的教学内容,实施启发式、探究式、导师制的研究性教学方法,提出了一种夯实基础、强化综合、面向科研实践的“三位一体”的全程式研究性实验教学新模式. 关键词:研究性教学;创新能力培养;实验教学模式;普通物理实验 普通物理实验是为物理专业类学生专门开设的一门必修基础实验课程,在广度、深度和综合程度上都要高于非物理专业类学生的大学物理实验.在工科院校中,物理专业类学生较少,教学上仍采用传统的教学模式,即根据相同的教材,学生在相同的仪器上按照教师的讲解,按部就班地完成相同的实验内容[1-4],传统的教学模式对学生的基本实验技能培养方面起到了显著的效果,但却不利于学生主观能动性的发挥和创造性思维的培养,不能满足创新人才培养的需求[5-7].为此,笔者提出了“一个目标,三个阶段,三个模块,三种教学方法”的改革思路,以学生的创新能力培养为目标,将创新能力培养划分为基本能力、综合能力、科研能力培养三个阶段,采用基础性、问题性、课题研究性模块化教学内容,实施启发式、探究式、导师制的教学方法,构建夯实基础、注重综合、面向科研实践的“三位一体”的全程式研究性教学新模式. 1全程式研究性教学内容的构建 研究性教学更加强调学生的主体性地位,重视问题的研究,允许怀疑,鼓励争论[8].其显著的特点是通过“自主、探究、合作”的学习方式主动发现和解决问题[9].传统的普通物理实验由验证性、基础性、综合性等不同类型的多个实验项目组成,不同类型之间并没有严格的界限,模式较为单一,不能满足“自主、探究、合作”的教学要求.根据能力培养的“三个阶段”,在不改变实验教学仪器的条件下,本文将传统的实验项目加以改造,设计为基础性、问题性和课题研究性三个教学模块,以保证学生从基础实验能力到创新实验能力培养的全程中实施研究性教学方法.1.1基于人为设置障碍的基础性教学模块实践表明,实验过程中人为的设置实验故障、障碍或者思考点,能培养学生的批判性思维能力

相关文档
最新文档