九年级数学上册第25章概率初步25.2用列举法求概率(1)学案(无答案)(新版)新人教版

合集下载

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版

第2课时用列表法和树状图法求概率※教学目标※【知识与技能】理解并掌握列表法和树状图法求随即事件的概率,并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历列表或画树状图法求概率的学习,让学生在具体情境中分析事件,计算其发生的概率.渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力. 【情感态度】通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.【教学重点】学习运用列表法或树形图法计算事件的概率,能正确区分什么时候用列表法,什么时候用树状图.【教学难点】1.能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.2.列表法和树状图的选取方法※教学过程※一、情境导入教师讲《田忌赛马》的故事,提出以下问题,引入新课:(1)你知道孙膑给的建议是什么吗?(2)在不知道齐王出马顺序的情况下,田忌能赢的概率是多少?二、掌握新知例1 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用这样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A)的结果有6种(表中的红色部分),即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)=636=16.(2)两枚骰子的点数和是9(记为事件B)的结果有4种(表中的绿色阴影部分),即(3,6),(4,5),(5,4),(6,3),所以P(B)=436=19.(3)至少有一枚骰子的点数为2(记为事件C)的结果有11种(表中的蓝色阴影部分),所以P(C)=11 36.归纳总结当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法. 运用列表法求概率的步骤如下:(1)列表;(2)通过表格确定公式中m,n的值;(3)利用P(A)=mn计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?讨论结果“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作改动对所得结果没有影响.例2 甲口袋中装有2和相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全部是辅音字母的概率是多少?分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机取出1个小球,共取出3个小球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?树状图的画法:(1)可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行;(2)可能产生的结果有C,D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C,D和E;(3)可能产生的结果有两个,H和I.两者出现的可能性相等且部分先后,从C,D和E 分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续)(4)把各种可能的结果对应竖写在下面,就得到了所有可能的结果总数,从中再找出符合要求的个数,就可以计算概率了.解:根据题意,可以画出如下的树状图:甲 A B乙 C D E C D E丙 H I H I H I H I H I H I由树状图可以看出吗,所有可能出现的结果共有12种,即A A A A A AB B B B B BC CD DE E C C D D E EH I H I H I H I H I H I这些结果出现的可能性相等.(1)只有1个元音字母的结果(红色)有5种,即ACH,ADH,BCI,BDI,BEH,所以P(1个元音)=512.有2个元音字母的结果(绿色)有4种,即ACI,ADI,AEH,BEI,所以P(2个元音)=412=13.全部为元音字母的结果(蓝色)只有1种,即AEI,所以P(3个元音)=112.(2)全是辅音字母的结果共有2种,即BCH,BDH,所以P(3个辅音)=212=16.归纳总结画树状图求概率的基本步骤:(1)明确试验的几个步骤及顺序;(2)画树状图列举试验的所有等可能的结果;(3)计数得出m,n的值;(4)计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图法”方便?一般地,当一次试验要涉及两个因素(或两个步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、巩固练习袋子中装有红、绿、黄、白、蓝5个除颜色外均相同的小球.欢欢设计了四种摸球获奖的方案(每个方案都是前后共摸球两次,每次从袋子中摸出一个小球).(1)第一次摸球后放回袋子并混合均匀,先摸出红球,后摸出绿球;(2)第一次摸球后放回盒子并混合均匀,摸出红球和绿球(不分先后);(3)第一次摸球后不再放回袋子中,先摸出红球,后摸出绿球;第一次摸球后不再放回袋子中,摸出红球和绿球(不分先后).上述四种方案,摸球获奖的概率依次是,,, .如果让你从中选择一种方案,你会选择方案,原因如下:.答案:125225120110(4)方案(4)获奖的可能性大四、归纳小结1.为了正确地求出所要求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?※布置作业※从教材习题25.2中选取.※教学反思※本节课以学生的生活实际为背景提出问题,让学生在自主探究解决问题的过程中,自然地学习使用“树状图”这种新的列举法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版

第2课时用列表法和树状图法求概率※教学目标※【知识与技能】理解并掌握列表法和树状图法求随即事件的概率,并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历列表或画树状图法求概率的学习,让学生在具体情境中分析事件,计算其发生的概率.渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力. 【情感态度】通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.【教学重点】学习运用列表法或树形图法计算事件的概率,能正确区分什么时候用列表法,什么时候用树状图.【教学难点】1.能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.2.列表法和树状图的选取方法※教学过程※一、情境导入教师讲《田忌赛马》的故事,提出以下问题,引入新课:(1)你知道孙膑给的建议是什么吗?(2)在不知道齐王出马顺序的情况下,田忌能赢的概率是多少?二、掌握新知例1 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用这样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A)的结果有6种(表中的红色部分),即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)=636=16.(2)两枚骰子的点数和是9(记为事件B)的结果有4种(表中的绿色阴影部分),即(3,6),(4,5),(5,4),(6,3),所以P(B)=436=19.(3)至少有一枚骰子的点数为2(记为事件C)的结果有11种(表中的蓝色阴影部分),所以P(C)=11 36.归纳总结当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法. 运用列表法求概率的步骤如下:(1)列表;(2)通过表格确定公式中m,n的值;(3)利用P(A)=mn计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?讨论结果“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作改动对所得结果没有影响.例2 甲口袋中装有2和相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全部是辅音字母的概率是多少?分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机取出1个小球,共取出3个小球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?树状图的画法:(1)可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行;(2)可能产生的结果有C,D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C,D和E;(3)可能产生的结果有两个,H和I.两者出现的可能性相等且部分先后,从C,D和E 分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续)(4)把各种可能的结果对应竖写在下面,就得到了所有可能的结果总数,从中再找出符合要求的个数,就可以计算概率了.解:根据题意,可以画出如下的树状图:甲 A B乙 C D E C D E丙 H I H I H I H I H I H I由树状图可以看出吗,所有可能出现的结果共有12种,即A A A A A AB B B B B BC CD DE E C C D D E EH I H I H I H I H I H I这些结果出现的可能性相等.(1)只有1个元音字母的结果(红色)有5种,即ACH,ADH,BCI,BDI,BEH,所以P(1个元音)=512.有2个元音字母的结果(绿色)有4种,即ACI,ADI,AEH,BEI,所以P(2个元音)=412=13.全部为元音字母的结果(蓝色)只有1种,即AEI,所以P(3个元音)=112.(2)全是辅音字母的结果共有2种,即BCH,BDH,所以P(3个辅音)=212=16.归纳总结画树状图求概率的基本步骤:(1)明确试验的几个步骤及顺序;(2)画树状图列举试验的所有等可能的结果;(3)计数得出m,n的值;(4)计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图法”方便?一般地,当一次试验要涉及两个因素(或两个步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、巩固练习袋子中装有红、绿、黄、白、蓝5个除颜色外均相同的小球.欢欢设计了四种摸球获奖的方案(每个方案都是前后共摸球两次,每次从袋子中摸出一个小球).(1)第一次摸球后放回袋子并混合均匀,先摸出红球,后摸出绿球;(2)第一次摸球后放回盒子并混合均匀,摸出红球和绿球(不分先后);(3)第一次摸球后不再放回袋子中,先摸出红球,后摸出绿球;第一次摸球后不再放回袋子中,摸出红球和绿球(不分先后).上述四种方案,摸球获奖的概率依次是,,, .如果让你从中选择一种方案,你会选择方案,原因如下:.答案:125225120110(4)方案(4)获奖的可能性大四、归纳小结1.为了正确地求出所要求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?※布置作业※从教材习题25.2中选取.※教学反思※本节课以学生的生活实际为背景提出问题,让学生在自主探究解决问题的过程中,自然地学习使用“树状图”这种新的列举法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。

九年级数学上册第二十五章概率初步25.2用列举法求概率

九年级数学上册第二十五章概率初步25.2用列举法求概率

B. 2个 D. 4个
课堂小测本
2. (10分)在平面直角坐标系中,点P(-2,3)与点 Q关于原点对称,则点Q的坐标为( D )
A. (-2,-3)
B. (3,-2)
C. (2,3)
D. (2,-3)
3. (10分)一枚质地均匀的正方体骰子,骰子的六个
面上分别刻有1到6的点数,将这枚骰子连续掷两次,
解:∵方程x2-2(m+1)x+m2+2=0有实数根, ∴Δ=[-2(m+1)]2-4(m2+2)=8m-4≥0. 解得m≥
课堂小测本
核心知识当堂测 1. (10分)在一个不透明的袋子里装有一个黑球和一 个白球,它们除颜色外其他都相同.从中随机摸出一个 球,记下颜色后放回袋子中,充分摇匀后,再随机摸出 一个球,两次都摸到黑球的概率是( A )
课堂小测本
2. (10分)甲盒装有3个乒乓球,分别标号为1,2,3; 乙盒装有2个乒乓球,分别标号为1,2. 现分别从每个 盒中随机地取出1个球,则取出的两球标号之和为4的 概率是________. 3. (10分)在完全相同的五张卡片上分别写上1,2,3, 4,5五个数字后,装入一个不透明的口袋内搅匀,从 口袋内任取一张卡片,卡片上数字是偶数的概率是 ________.
共有6种等可能的结果,其中2个球都是黄球的占1种, 所以取出的2个球都是黄球的概率为 (2)共有6种等可能的结果,其中1个白球、1个黄球 的占3种, 所以取出的2个球中1个白球、1个黄球的概率为
其点数之和为7的概率为____)如图K25-2-1,C是以AB为直径的 上一 点,已知AB=10,BC=6,则圆心O到弦BC的距离是 ____4____.
课堂小测本
5. (10分)已知关于x的一元二次方程x2-2(m+1) x+m2+2=0,若方程有实数根,求实数m的取值范围.

人教版九年级数学上册《25章 概率初步 25.2 用列举法求概率 画树状图求概率》优质课教案_1

人教版九年级数学上册《25章 概率初步  25.2 用列举法求概率  画树状图求概率》优质课教案_1

树状图求概率教学设计一.教学目标1.知识与技能能运用树状图计算简单事件发生的概率2.过程与方法在经历试验统计等活动中进一步发展学生合作交流的意识和能力,提升逻辑推理能力。

3.情感态度和价值观通过引导自主探究、合作交流激发学生的学习兴趣,感受数学的简捷没,及数学应用的广泛性,体会数学的严谨性。

二.教学重难点1.教学重点:运用树状图计算设计两步试验及以上的随机事件发生的概率2.教学难点:如何正确的画树状图准确的计算事件概率三.教学过程设计1.温故知新回顾概率定义、相关概念,等可能性试验,怎么求某事件发生的概率,通过例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2回顾列举法求概率的基本步骤,表格法。

2.探究新知例1.木盒里有1个红球和一个黄球,这两个球除颜色外其他相同,从盒子里先摸出一个球,放回去摇匀后,在摸出一个球,两次都摸到红球的概率的是多少?摸到1个红球1个黄球就得概率又是多少?学生可能会用到一一列举的方法、表格法,个别学生在预习的情况下可能运用画树状图。

近而介绍树状图。

引出新知。

例2:甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。

从3个口袋中各随机地取出1个小球。

(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?小组谈论交流选出代表交流思路板书树状图求出概率。

进行评价。

由此画树状图求概率的基本步骤及格式。

想一想什么时候使用“列表法”方便,什么时候使用“树形图法”?2.练习反馈为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4种不同的操作试验题目,物理用番号1、2、3、4代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目。

九年级数学上册第25章概率初步25.2用列举法求概率第2课时用画树状图法求概率课件新版新人教版

九年级数学上册第25章概率初步25.2用列举法求概率第2课时用画树状图法求概率课件新版新人教版

1.[2016·台州]质地均匀的骰子的六个面上分别刻有 1 到 6 的点数,扔两次
骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( C )
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于 13
D.点数的和小于 2
【解析】 画树状图为:
第 1 题答图 共有 36 种等可能的结果数,其中点数都是偶数的结果数为 9,点数的和为 奇数的结果数为 18,点数和小于 13 的结果数为 36,点数和小于 2 的结果数为 0,
1
1
A.2
B.3
1
1
C.4
D.6
【解析】 画树状图得:
第 2 题答图 ∴一共有 12 种等可能的结果,甲、乙同学获得前两名的有 2 种情况, ∴甲、乙同学获得前两名的概率是122=16.
3.如图 25-2-7 所示,有四张卡片(形状、大小和质地都相同),正面分别写
有字母 A,B,C,D 和一个不同的算式.将这四张卡片背面向上洗匀,从中随
2 或 4 或 6 的概率?
知识管理
用画树状图法求概率 树状图:当事件要经过多个步骤(三步 或三步 以上)完成时,用画树状图法 求事件的概率很有效.
归类探究
类型之一 用画树状图法求概率 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右
转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口. (1)试用树状图列举出这两辆汽车行驶方向所有可能的结果; (2)求至少有一辆汽车向左转的概率.
所以点数都是偶数的概率=396=14,点数的和为奇数的概率=1386=21,点数 和小于 13 的概率=1,点数和小于 2 的概率=0,所以发生可能性最大的是点 数的和小于 13.

九年级数学上册第二十五章概率初步25.2用列举法求概率第1课时用列表法求概率作业课件新版新人教版

九年级数学上册第二十五章概率初步25.2用列举法求概率第1课时用列表法求概率作业课件新版新人教版
第二十五章 概率初步
25.2 用列举法求概率
第1课时 用列表法求概率
通过列举试验结果求概率
1.(4 分)向上掷两枚质地均匀、同样大的硬币,
两个都是正面朝上的概率是( C )
A.12
B.13
C.14
D.34
2.(4 分)从长度分别为 1,3,5,7 的四条线段
中任选三条作边,能构成三角形的概率为( C )
(1)小明从中随机抽取一张卡片是足球社团B的概率是 _1_____________ 4
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再 从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表 法求出小明两次抽取的卡片中有一张是科技社团D的概率.
解:(1)小明从中随机抽取一张卡片是足球社团 B 的概率为14
8.(河南中考)现有 4 张卡片,其中 3 张卡片正面
上的图案是“ ”,1 张卡片正面上的图案是“ ”, 它们除此之外完全相同.把这 4 张卡片背面朝上
洗匀,从中随机抽取两张,则这两张卡片正面图
案相同的概率是( D )
A.196
B.34
C.38
D.12
9.(易错题)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋 转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那 么可配成紫色的概率是(D )
A.14
B.34
C.13
D.12
二、填空题(每小题5分,共10分) 10.关于四边形ABCD有以下6个条件:①两组对边分别平行;②两组 对边分别相等;③一组对边平行且相等;④两条对角线互相平分;⑤有
一个角是直角;⑥两条对角线相等.从中任取2个条件,能得到四边形 ABCD是矩形的概率是 __8____________________

25概率初步教案含教学反思设计新版新人教版九年级数学上册

第二十五章概率初步25.1随机事件与概率25.随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是( A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是( C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球; (8)物体在重力的作用下自由下落; (9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点. 2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.1 2 3 1 1 2 3 224613×2=1×23.∴这个游戏对双方公平. 学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果.2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是____.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400其中数据不在分点上.组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 8066 ~ 70 3071~ 75 10从中任选一头猪,质量在65 以上的概率是__ .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率错误!(2)请估计,当次数很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。

初中九年级上册数学:第25章-概率初步 25.2 第1课时 运用直接列举或列表法求概率

25.2 用列举法求概率第1课时 运用直接列举或列表法求概率1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率 【类型一】摸球问题)一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A.14 B.13 C.12 D.34解析:先列表列举出所有可能的结果,共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P =34,故选D.【类型二】学科内综合题从0,1,2这三个数中任取一个数作为点P 的横坐标,再从剩下的两个数中任取一个数作为点P 的纵坐标,则点P 落在抛物线y =-x 2+x +2上的概率为________. 解析:用列表法列举点P 坐标可能出现的所有结果数和点P 落在抛物线上的结果数,然后代入概率计算公式计算.用列表法共有6种等可能结果,其中点落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P 落在抛物线上的概率是36=12,故答案为12. 方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.【类型三】学科间综合题(2014·广西柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A .0.25B .0.5C .0.75D .0.95 解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P(至少有一个灯泡发光)=34,故选择C.方法总结:求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.解:(1)P(标号是1)=13.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之和)列表如下:∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.。

人教版九年级数学上册第二十五单元概率初步25.2用列举法求概率(中考复习)PPT课件(1)


(3)如果有50个人每人各玩一局,摊主会从这些人身上骗走多
少钱?请【解析】(1)
∴共有36种情况.
9 1 = . (2)P(中奖)= 36 4 1 (3)50×3-50× ×10=25(元). 4
告诫答案不唯一,如:天上不会掉馅饼.
∴摊主会从这些人身上骗走25元钱.
用列举法求概率
变式 2 B
3.在街头巷尾会遇到一类“摸球游戏”,摊主的游戏道具是把分别标有
数字1,2,3的3个白球和标有数字4,5,6的3个黑球(球除颜色外,其
他均相同)放在口袋里,让你摸球.规定:每付3元钱就玩一局,每局连 续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸 一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品. (1)用列表法列举出摸出的两球可能出现的结果; (2)求出获奖的概率;
法国馆、俄罗斯馆中随机选择一个馆游玩.则小明恰好上午选中台湾馆,
下午选中法国馆这两个场馆的概率是( )
2 2 1 1 (A) (B) (C) (D) 9 3 9 3 .【解析】选A.∵上下午各选一个馆共9种选法,∴小明恰好上午选中台湾馆.下
午选中法国馆这两个场馆的概率是
1 9
2.如图,小明随意向水平放置的大正方形内部区域抛一个小
规律:1,用列举法求概率,无论是简单事件还是复杂事件,都先列举所有 可能出现的结果。 2,在用用列举法解题目时,一定要注意各种情况出现的可能情务必相同, 不要有重复,遗漏等现象。
E A O B
D
F
C
1.(2010·义乌中考)小明打算暑假里的某天到上海世博会一日游,上午可以 先从台湾馆、香港馆、韩国馆中随机选择一个馆, 下午再从加拿大馆、
球,则小球停在小正方形内部(阴影)区域的概率是(

内蒙古地区九年级数学上册第25章概率初步25.2用列举法求概率2学案无解答新人教版

25.2用列举法求概率(2) 一、温故知新 (1) 一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路都随机选择一条路径,它获得食物的概率是 。

(2)掷一枚硬币,正面向上的概率是_______; (3)掷两枚硬币,正面都向上的概率是_______; 二、学习新知 问题1: 从“掷两枚硬币”改为“掷三枚硬币”,求三枚硬币都正面向上的概率?

问题2 :画树状求概率 例3: 甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。从三个口袋中各随机地取出1个球。

(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少? (2)取出的三个球上全是辅音字母的概率是多少?

思考:与前面两例题比较,有何不同?怎么解决?

归纳: 当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。运用树形图法求概率的步骤一般如下: ①画树形图 ;

②列出结果,确定公式P(A)=nm中m和n的值;

③利用公式P(A)=nm计算事件概率。 三、巩固训练 题组一: 1、经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部继续前行; (2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转。

题组二: 1、假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是多少?

2.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?

3.如图所示的两张图片形状完全相同,把两张图片全部从中间剪断,再把四张形状相同的小图片混合在一起。从四张图片中随机摸取一张,接着再随机摸取一张,则这两张小图片恰好和成一张完整图片的概率是多少?

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.2用列举法求概率(1)
一、温故知新
(1)掷一枚硬币,正面向上的概率是
_______;
(2)袋子中装有 5 个红球,3 个绿球,
这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红色的概率为________; (3)掷一个质地均匀的骰子,观察向上的一面的点数,则点数小于7的概率是( ) A、0 B、 C、 D、1 二、学习新知 问题1:列举法求概率 例1.同时掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上; (3)一枚硬币正面向上,一枚硬币全部反面向上。 思考1: “同时掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”这两种试验的所有可能结果一样吗? 思考2:能否设计一种方式,将“分步”分析的所有结果更清晰地列举出来? 两枚硬币分别记为第 1 枚和第 2 枚,可以用下表列举出所有可能出现的结果.
第二枚
第一枚
正 反



问题2:列表法求概率:
例2 同时掷两枚质地均匀的骰子,计
算下列事件的概率:
(1)两枚骰子的点数相同;
(2)两枚骰子点数的和是 9;
(3)至少有一枚骰子的点数为 2.

2
1
3

1
思考: “同时掷两枚质地均匀的骰子”
改为“把一枚质地均匀的骰子掷两次”,
得到的结果有变化吗?为什么?

归纳:列表法求概率的步骤一般如下:
①列表 ;

②列出结果,确定公式P(A)=nm中m
和n的值;

③利用公式P(A)=nm计算事件概率
三、巩固训练
题组一:
课本138页练习1,2
题组二:

1.课本140页第3题.
变式:
(1)如果把3题中的“放回”改为“不
放回”,结果还一样吗?

2、某校从三名男生和两名女生中选举出
两名同学作为文化节的志愿者,则选出
一男一女的概率为 。

3、有两个构造完全相同(除所标数字
外)的转盘A、B,游戏规定,转动两个

转盘各一次,指向大的数字获胜.现由
你和小明各选择一个转盘游戏,你认为
这个游戏公平吗,为什么?

四、拓展延伸
田忌赛马的故事为我们所熟知.小
亮与小齐学习概率初步知识后设计了如
下游戏:小亮手中有方块l0、8、6三张
扑克牌,小齐手中有方块9、7、5三张
扑克牌.每人从各自手中取一张牌进行
比较,数字大的为本“局”获胜,每次
取的牌不能放回.
(1)若每人随机取手中的一张牌进行比
赛,求小齐本“局”获胜的概率;
(2)若比赛采用三局两胜制,即胜2局或
3局者为本次比赛获胜者.当小亮的三
张牌出牌顺序为先出6,再出8,最后出
l0时,小齐随机出牌应对,求小齐本次
比赛获胜的概率.

相关文档
最新文档