2016-2017学年度二上数学期末测试卷
内江市2016-2017学年度第二学期八年级期末考试数学试题及答案

内江市2016-2017学年度第二学期八年级期末考试数 学本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)部分。
第I 卷1至2页,第Ⅱ卷3至6页。
全卷满分120分,考试时间120分钟。
注意事项:1.答第Ⅰ卷前,请考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在机读卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.考试结束后,监考人将第Ⅱ卷和机读卡一并收回。
第I 卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的.)1.下列式子是分式的是 A.2x B.11+x C.y x +2 D.πxy22.函数y =xx -1中自变量x 的取值范围是 A.x ≠0 B.x ≠1 C.x >1D.x <1且x ≠03.四边形ABCD 是平行四边形,则∠A:∠B:∠C:∠D 值可能是A.3:1:3:1B.3:3:1:1C.1:2:3:4D.1:3:3:14.点P (5,-4)关于y 轴的对称点是A.(5,4)B.(5,-4)C.(4,-5)D.(-5,-4)5.矩形两条对角线的夹角为60°,一条对角线与短边的和为15cm ,则矩形较短边长为A.4cmB.2cmC.3cmD.5cm6.一鞋店试销一种新款女鞋,试销期间卖出情况如下表:对这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是A.平均数B.众数C.中位数D.方差7.下列各点中,在函数y =x2图象上的点是 A.(2,4) B.(-1,2) C.(-2,-1) D.(-21,-1)8.菱形的两条对角线长分别是4和8,则与这个菱形面积相等的正方形的对角线长为 A.24 B.8 C.4 D.289.在同一坐标系中,函数y =xk 和y =kx +3(k ≠0)的图像可能是A B C D10.如图,用两条宽度都为3cm 的矩形纸条交叉重叠在一起,重叠部分构成一个四边形ABCD ,且∠BCD =60°,则四边形ABCD 的面积是C.2cm 2D.11.已知,A 、B 两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B ,乙骑摩托车以40千米/时的速度由起点B 前往终点A.两人同时出发,各自到达终点后停止设两人之间的距离为s (千米),甲行驶的时间为t (小时),则下图中正确反映s 与t 之间函数关系的是A B C D12.下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,…,则第⑥个图形中平行四边形的个数为A.29B.41C.55D.64第Ⅱ卷(非选择题共72分)注意事项:1.第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上。
2016-2017学年度第二学期九年级第三次大测数学试卷(含答案)

2016-2017学年度第三次水平测试九年级数学科试题(考试时间100分钟,满分120分)欢迎你参加这次测试,祝你成功!一、选择题(本大题满分42分,每小题3分) 1.-5的相反数是 A .15 B .5- C .15- D .52.下列运算中,结果正确的是A .2a+3b=5abB .a 2 ·a 3=a 6C .(a+b)2=a 2+b 2D . 2a –(a+b)=a –b 3.据报道,我省西环高铁预计2015年底建成通车,计划总投资27 100 000 000元. 数据27 100 000 000用科学记数法表示为A .271×108B .2.71×109C .2.71×1010D .2.71×10114.有意义,则x 的取值范围为A. x ≥12-B. x ≤12-C. x ≥12D. x ≤125.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为 A .2 B .4 C .12 D .166.如图1,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M .则∠3的度数为A .60B .65C .70D .1307.如图2,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为 A .32 B .21 C .31 D .41EB G CDM H F1 2 3 图1图28.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是A .10 cm 2B .5π cm 2C .10π cm 2D .20π cm 2 9.已知反比例函数y =xa 2-的图象在第二、四象限,则a 的取值范围是 A.a <2 B.a >2 C.a ≤2 D.a ≥210.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是 A.230005000x = B.23000(1)5000x += C.23000(1)5000x +=%D.23000(1)3000(1)5000x x +++=11.二次函数2y ax bx c =++的图像如图3所示,反比例函数ay x=与正比例函数y bx =在同一坐标系内的大致图像是12.如图4,AB 是⊙O 直径,130AOC ∠=,则D ∠=A.15B.25C.35D.6513.如图5,反比例函数xk y 11=和正比例函数x k y 22=的图象交于A (-1,-3)、B (1,3)两点,若1y >2y ,则x 的取值范围是A. -1<x <0B. -1<x <1C. x <-1或0<x <1D. -1<x <0或x >1 14.如图6,在正方形ABCD 中,E 为AB 边的中点..,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为A .3B .4C .5D .6DBOAC图 4图6D图3ADC BFG E 图5图11图10球类 40% 跳绳 其它踢毽15%二、填空题(本大题满分16分,每小题4分) 15.已知反比例函数ky x=的图象经过点(1,-2).则k = . 16.一只小鸟自由自在地在空中飞行,然后随意落在如图7所示的某个方格中(每个小方格都是边长相等的正方形),那么小鸟停在黑色方格中的概率是 . 17.如图8,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,连结OC , 若OC =5,CD =8,则AE = .18.如图9,在已建立直角坐标系的4×4的正方形方格纸中,△ABC 是格点三角形(三角形的三个顶点都是小正方形的顶点), 若以格点P 、A 、B 为顶点的三角形与△ABC 相似(全等除外),则格点P 的坐标是 . 三、解答题(本大题满分62分) 19.(满分10分,每小题5分)(1)计算: 0123⎛⎫- ⎪⎝⎭(2)解方程:2311x x =-+ 20.(满分8分)某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收 集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生; (2)请将图10和图11两幅统计图补充完整; (3)图10中,“踢毽”部分所对应的圆心角为 度;(4)如果全校有2000名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人? 21.(满分8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)若商店计划销售完这批商品后能获利1100元, 问甲、乙两种商品应分别购进多少件?B图9图8图722.(满分9分)如图12,直线y =x ﹣1与反比例函数ky x=的图象交于A 、B 两点,与x 轴交于点C ,已知点A 的坐标为(﹣1,m ). (1)求反比例函数的解析式;(2)若点P (n ,﹣1)是反比例函数图象上一点,过点P 作PE ⊥x 轴于点E ,延长EP交直线AB 于点F ,求△CEF 的面积.23.(满分13分)如图13, □ABCD 中,:2:3AE EB =,DE 交AC 于F . (1)求证:AEF ∆∽CDF ∆; (2)求AEF ∆与CDF ∆周长之比;(3)如果CDF ∆的面积为220cm ,求AEF ∆的面积. 24.(满分14分) 如图14,直线221+-=x y 与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点()0,1-A ,抛物线的对称轴与x 轴交于点D.(1)求B 、C 两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.图13ABECD F 图14图12图11图10球类 40% 跳绳 其它踢毽15%2016-2017学年度第三次水平测试九年级数学科答题卷(考试时间:100分钟 满分:110分)欢迎你参加这次测试,祝你成功! 总分一、选择题(本大题满分42分,每小题3分)请把你认为正确的答案在机读卡中填涂好. 二、填空题(本大题满分16分,每小题4分)15. ; 16. ; 17. ; 18. .三、解答题(本大题满分62分)19.(10分)(1)计算:123⎛⎫- ⎪⎝⎭(2)解方程:2311x x =-+20.(8分)(1) ;(2)请将图10和图11两幅统计图补充完整;(3) ; (4)22.(9分)图12A BE CDF图1324.(14分)备用图2016-2017学年度第三次水平测试九年级数学科参考答案一、选择题(本大题满分42分,每小题3分) DDCAB BCCAB DBCA二、填空题(本大题满分16分,每小题4分) 15. -2 16.3117. 2 18. (1,4)或(3,4). 三、解答题(本大题满分62分)19.(1)3 (2)x=5 (注明:每题5分,看步骤合理给分,第二小题检验1分) 20.(1)200 (2)图略 (3)54 (4)800人 (各2分)21. 解:设甲种商品应购进x 件,乙种商品应购进y 件. …………1分根据题意,得 1605101100.x y x y +=⎧⎨+=⎩ 解得:10060.x y =⎧⎨=⎩ …………7分答:甲种商品购进100件,乙种商品购进60件. …………8分22. 解:(1)将点A 的坐标代入y =x ﹣1,可得:m =﹣1﹣1=﹣2,…………2分 将点A (﹣1,﹣2)代入反比例函数ky x=,可得:k =﹣1×(﹣2)=2, 故反比例函数解析式为:y =.…………………………………………4分 (2)将点P 的纵坐标y =﹣1,代入反比例函数关系式可得:x =﹣2,……5分 将点F 的横坐标x =﹣2代入直线解析式可得:y =﹣3,……………………6分 故可得EF =3,CE =OE +OC =2+1=3,…………………………………………7分 故可得S △CEF=CE ×EF =.…………………………………………………………… 9分 23. 解:(1)∵四边形ABCD 是平行四边形 ……………………………1分 ∴,AB CD AB =∥CD ………………………………3分 ∴,EAF DCF AEF CDF ∠=∠∠=∠………………………………………5分 ∴AEF ∆∽CDF ∆……………………………………… …6分 (2)由(1)得AEF ∆∽CDF ∆∴52322=+=+===∆∆EB AE AE AB AE CD AE C C CDF AEF ………9分(3)由(1)和(2)得: ∴224()525AEFCDF S S ∆∆==……………………………………………… ………11分 ∵20CDF S ∆= ∴165CDF S ∆=……………………………………………13分24.解:(1)对于直线221+-=x y ,当0=x 时2=y ,当0=y 时4=x ∴ B (4,0),C(0,2).…………………………………………2分 (2)∵二次函数的图象过点()2,0C , ∴可设二次函数的关系式为22++=bx ax y 又∵该函数图象过点()0,1-A 、()0,4B∴⎩⎨⎧++=+-=.24160,20b a b a ┄4分解之,得21-=a ,23=b ∴ 抛物线的表达式213222y x x =-++. …………………………………………6分 (3)在抛物线的对称轴上存在点P ,使△PCD 是以CD 为腰的等腰三角形.……7分∴ P 1 (32,4) .P 2 (32,52) . ……………………9分 P 3(32,52-) . …………………………10分 (4)过点C 作CM ⊥EF 垂足为M ,设E (a ,122a -+),则F (a ,213222a a -++)∴ EF=213222a a -++)221(+--a =2122a a -+.(0≤a ≤4) ……………11分∴ 111222四边形CDBF BCD CEF BEF S S S S OC BD EF CM EF BN ∆∆∆=++=⨯+⨯+⨯=15222⨯⨯+[]211(2)(4)22a a a a -++-=52+211(2)422a a -+⨯ =2542a a -++.(0≤a ≤4) …………………………………12分当2a =时,CDBF S 四边形的最大值为132. ……………………………………13分此时E (2,1). ……………………………………14分数学科试题第11页(共4页)。
20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
人教版2016 2017学年小学二年级数学上册 第八单元 测试试卷及答案2886

人教版2016-2017学年小学二年级数学上册《第八单元》测试卷一、填一填。
1.用5、7、9三张数字卡片,能摆成()个不同的两位数,它们分别是()。
如果用0代替9,能摆成()个不同的两位数。
2.用3、4、5、6这四个数字,能组成()个不同的两位数,分别是()。
3.3个小朋友互通一次电话,一共要通()次电话;4个小朋友,每两人互通一次电话,一共要通()次电话。
二、算一算。
8×9=6×7=5×4=9×7=5×7+20=5×6=4×9=7×8=6×9=7×9-9=三、在○里填上“>”“<”或“=”。
4×6○2425+8○35 2×6○12 19+8○3×830+6○24 34-2015 5×7○32 42+10○6×9四、按要求做题。
有3个数6、7、8,任意选取其中2个求和。
五、解决问题。
1.六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2.任选两个球,一共有多少种不同的选法?3.有4件上衣,2条裤子,有几种不同的搭配方法?4.虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。
5.用5、8、0这三张数字卡片能组成多少个不同的两位数?其中最大的数比最小的数大多少?人教版2016-2017学年小学二年级数学上册第八单元测试卷参考答案一、1.657、59、75、79、97、95 42.1234、35、36、43、45、46、53、54、56、63、64、653.3 6二、72422063553036565454三、=<=>><><四、略五、1.6种2.6种3.8种4.6种①②③、①③②、②③①、②①③、③①②、③②①5.4个85-50=35。
数学2016-2017学年度第一学期期末考试试题

2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
2016-2017人教版八年级上册数学期末试题及答案
2016—2017学年度八年级上数学期末试卷一、精心选一选(本大题共8小题。
每小题5分,共40分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 9 5.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACF B. 点D 在∠BAC 的平分线上 C. △BDF ≌△CDE D. 点D 是BE 的中点6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).A. B. C. D.二、细心填一填(本大题共6小题,每小题4分,共24分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 .11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线FED CBAA.B.C.D.学校 姓名 班级上. 第11题图BOA第12题图13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × . 14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是.第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题9分。
2016-2017学年初二人教版数学上册期末考试试题及答案word版
D CAB2016-2017学年初二人教版数学上册期末考试试题总分:150 时间:120分钟一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 2、不等式组x>3x<4⎧⎨⎩的解集是( ) A 、3<x<4 B 、x<4 C 、x>3 D 、无解 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS5、将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°, 则∠CFD ′等于( )A .31°B .28°C .24°D .22° 6、下列说法错误的是( )A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形;7、下列各组中的两个根式是同类二次根式的是( )A.和B.和C.和D.和8、如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是 ( ).A . m >5B . m ≥5C . m<5D . m ≤8C9、的整数部分为,的整数部分为,则的值是( )A. 1B. 2C. 4D. 91abABDFABO CD 10、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x二、填空题(每小题4分,共32分)11、不等式2x-1>3的解集是__________________; 12、已知,则.13、在实数范围内因式分解 . 14、计算22142a a a -=-- .15、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是__________; 16、如图,AD 和BC 相交于点O ,OA=OD ,OB=OC ,若∠B=40°,∠AOB=110°,则∠D=________度;17、若不等式组121x m x m <+⎧⎨>-⎩无解,则m 的取值范围是_______.第15题图 第16题图18、如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示).三、解答题(共78分)19、(8分)解不等式x+1(x 1)12--≤,并把解集在数轴上表示出来。
珠海市2016-2017学年度第二学期期末八年级数学试题
CB题6图珠海市2016-2017学年度第二学期期末八年级数学试题一、选择题(本大题10小题,每小题3分,共30分)1.下列各式中,最简二次根式是( )A . 4B .9C .8D . 72.下列式子中,表示y 是x 的正比例函数的是( )A .x y 2=B .2+=x yC .xy 2= D .2x y = 3.数据34,35,37,36,36,38,37,39,37,39的众数是( )A .36B .37C .38D .394.下列各点中,在一次函数23-=x y 图象上的是 ( )A. )2,1(B. )1,5(--C. )10,4(D. )1,1(-5.如图,在ABC Rt ∆中,︒=∠90C ,︒=∠30B ,2=AB ,则AC 的长为( )A .1B .2C .3D .46.如图,边长为10的等边ABC ∆,AD 为BC 边上的高,以BC 为斜边作BCE Rt ∆,连DE ,则DE 的长为( )A .25B .5C .235D .35 7. 下表是对某小组10位同学一次数学测验中某道题的得分情况.这道题的小组平均得分是( )A .1.5分B .5分C .2.5分D .5.2分8.一次函数22+-=x y 的图象不经过...的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9. 如图,已知四边形ABCD 各边中点分别是E 、F 、G 、H ,则四边形EFGH 的形状一定是( )A .平行四边形B .矩形C .菱形D .正方形10. 正比例函数x y 3=的图象向下平移3个单位长度得到的函数图象的解析式为( )A .33+=x yB .93+=x yC .33-=x yD . 93-=x y二、填空题(本大题6小题,每小题4分,共24分)11.化简=18__________.12.当x __________ 时,3-x 在实数范围内有意义.13.若平行四边形中相邻两个内角的度数比为4:1,则其中较小的内角是___________度.14.已知02=++-b a a ,则=ab ________.15. 菱形的面积为48,其中一条对角线长是8,则另一条对角线的长为___________.16.已知101=+aa ,则=-a a 1 . 三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:2)6332(⨯⨯-.18.如图,在平行四边形ABCD 中,CF AE =,求证:CE AF =.19.求值:22y x -,其中13,13-=+=y x .四、解答题(二)(本大题3小题,每小题7分,共21分)20.甲、乙两台机床同时生产一种零件.在5天中,两台机床每天出次品的数量如下表:(1)甲机床出次品的平均数为 ,乙机床出次品的平均数为 ;(2)甲机床出次品的方差为 ,乙机床出次品的方差为 ,从计算的结果看,在5天中, (填“甲”或“乙”)机床出次品的波动较小.题18图21.如图,已知直线l 过点)0,2(A ,)4,0(B .(1)求直线l 的解析式;(2)若点P 在直线l 上,且OAB OAP S S ∆∆=21,求点P 的坐标.22.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,过A 点作AE //BD ,交CB 的延长线于E 点.(1)求证:BC BE =;(2)若︒=∠60AOB ,6=BE ,求矩形ABCD 的周长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.为增强居民的节水意识,珠海市自来水公司对居民用水采用分段计费办法如下:用水在20(含20)吨以内,按每吨a 元计费;用水在20至30(含30)吨时,超出20吨部分按每吨b (a b >)元计费;用水在超过30吨时,超出30吨部分按每吨3.48元计费.记某户某月用水x 吨、应交水费y 元,y 与x 之间的函数关系如图所示.(1)求a 、b 的值,若某户居民上月用水35吨,应交水费 元;(2)当3020≤<x 时,求y 与x 之间的函数解析式.题23图题24图24.如图,已知正方形ABCD 的对角线AC 、BD 相交于点O ,点E 是OC 延长线上一点,连接EB ,过点A 作BE AG ⊥,垂足为G ,交DB 的延长线于点F .(1)求证:ABF ∆≌BCE ∆;BF 的长.25. 如图,在平面直角坐标系中,()2,2A ,点C 为x 轴正半轴上一动点,m OC =)40(<<m ,点B 在y 轴上,m OB -=4,作直线AB 、AC .(1)当2=m 时,求证:AC AB ⊥;(2)当2≠m 时,AC AB 与垂直是否仍然成立?若成立,给予证明;若不成立,请说明理由.题25图。
四川省南充市20162017学年高二数学下学期期末考试试题理.doc
2016-2017 学年度第二学期期末考试高二数学( 理科)试题第Ⅰ卷(共60 分)一、选择题:本大题共12 个小题,每小题5分, 共60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在复平面内复数z = 1+3i1+i对应的点在( )A.第一象限 B .第二象限 C .第三象限 D .第四象限2.对具有线性相关关系的两个变量x 和y ,测得一组数据如下表所示:x 2 4 5 6 8 y 20 40 60 70 m 根据表格,利用最小二乘法得到他们的回归直线方程为y = 10.5x + 1.5 ,则m = ( )A.85.5 B .80 C .85 D .903. 数学归纳法证明不等式1 1 1⋯时,由n = k(k ? 2) 不等式成立,推证n = k +1时,左边( )*1 + + + + n < n n纬N,n 22 3 2 - 1应增加的项数为()A.k- B .2k - 1 C .21 k D .2k 12 +1 24.设()m 3 x sin x dx= ò+ ,则多项式-1 骣1琪x +琪m x桫6的常数项是( )A. 5- B .4 54C. 203D.15165. 将4 本完全相同的小说, 1 本诗集全部分给4名同学,每名同学至少 1 本书,则不同分法有( )A.24 种 B .28 种 C.32 种 D .16 种6.2017 年5 月30 日是我们的传统节日“端午节”,这天小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B = “取到的两个都是豆沙馅”,则P(B A =)( )A.14B .34C.110D .3107.函数 f (x)= x + s in x 在x p =处的切线与两坐标轴围成的三角形的面积为( )2A.12 B .2p C.42p D .22p4+18. 某一中不生心理咨询中心服务电话接通率为 34 ,某班 3 名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,则 3 个人中有 2 个人成功咨询的概率是( )A. 164 B. 364C. 2764D.9649. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为8 步和15 步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A.3p B .3p C. 1 3p- D .10 20 10 1 -3p2010. 设函数 f (x) = ax2 +bx +c(a, b,c? R) ,若函数( )xy = f x e ( e为自然对数的底数) 在x = - 1处取得极值,则下列图象不可能为y = f (x)的图象是( )A. B . C.D.11. 不等式 2x +3 - x - 1 ? a 3a 对任意实数x恒成立,则实数 a 的取值范围为( )A.(- ? , 1] [4, +? ) B .(- ? , 2] [5, +? ) C. [1,2]D.(- ? ,1] [2, ? )12. 设函数 f (x) 是定义在(- ? ,0)上的可导函数,其导函数为 f '(x),且有( ) ( )22 f x + xf ' x > x ,2则不等式( ) ( ) ( )x + 2017 f x+2017 - 9 f - 3 > 0 的解集为( )A.(- ? , 2020) B .(- ? , 2014) C. (- 2014,0) D .(- 2020,0)第Ⅱ卷(共90 分)二、填空题(每题 5 分,满分20 分,将答案填在答题纸上)- 2 -13.36 的所有约数之和可以按以下方法得到:因为 2 236 = 2 ? 3 ,所以36 的所有正约数之和为( 2) ( 2 ) ( 2 2 2 2 ) ( 2 )( 2 )1+3+3+ 2 + 2?3 2?3 2 +2 ?3 2 ?3 1 +2 +2 1 +3 +3 =91,参照上述方法,可求得200 的所有正约数之和为.14. 四根绳子上共挂有10 只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是.15. 若b >a>1且3log a b + 6log b a = 11,则 3 2a +b - 1的最小值为.1 - x16. 已知函数( )= + ,则f (x) 在f x ln xx 轾1犏犏2臌,2 上的最大值等于.三、解答题(本大题共 6 小题,共70 分. 解答应写出文字说明、证明过程或演算步骤. )17. 已知函数( ) 3 2( 0)f x = ax - bx + a > .(1) 在x =1时有极值0,试求函数 f (x) 解析式;(2)求f(x) 在x = 2处的切线方程.18. 某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验,甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内( 满分100 分) ,并绘制频率分布直方图如图所示,两个班人数均为60 人,成绩80 分及以上为优良.(1) 根据以上信息填好2′2联表,并判断出有多大的把握认为学生成绩优良与班级有关?(2) 以班级分层抽样,抽取成绩优良的 5 人参加座谈,现从 5 人中随机选 3 人来作书面发言,- 3 -求发言人至少有 2 人来自甲班的概率.( 以下临界值及公式仅供参考)P k 3 k 0.15 0.10 0.05 0.025 0.010 0.005 0.001 ( )2k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 0K2( )2 n ad - bc=( )( )( )( )a +bc +d a +c b +d,n = a +b+c +d .19. 已知函数 f (x)= 2x +1 - x - 2 ,不等式 f (x) £2 的解集为M .(1) 求M ;(2) 记集合M 的最大元素为m ,若正数a,b,c 满足 2 3 2 2 2a +b +c = m ,求ab+ 2bc 的最大值.20. 在平面直角坐标系xOy 中,曲线c1 的参数方程是é= +x 1 3 cosaêê=y 3sin a?( a 为参数) ,以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,曲线c的极坐标方程为r =1.2(1) 分别写出c的极坐标方程和c2 的直角坐标方程;1p(2) 若射线l 的极坐标方程q = (r ? 0),且l 分别交曲线c1 、c2 于A 、B 两点,求AB .321. 为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10 分,否则记负10 分,根据以往统计,某参赛选手能答对每一个问题的概率为 23 ;现记“该选手在回答完n 个问题后的总得分为S ”.n(1) 求S =且S ? 0(i 1,2,3)的概率;6 20ii(2) 记X = S5 ,求X 的分布列,并计算数学期望E(X ).22. 已知函数( ) ( )2f x = a ln x - a +2x+x.(1) 求函数 f (x) 的单调区间;x x ? ,恒有( ) ( )1, 21,2 f x - f xl 12(2) 若对于任意 a ? [4,10],[ ]£x - xx x121 2成立, 试求 l 的取值范围 .- 4 -南充高中2016-2017 学年度第二学期期末考试高二数学( 理科)试题参考答案一、选择题1-5:ABCDD 6-10:BACDC 11 、12:AA二、填空题13.465 14.12600 15. 2 2 +1 16. 1- ln2三、解答题17. 解:(1) ( ) 2f ' x = 3ax - b ,因为在x =1时有极值0,所以ì- + =a b 2 0?,解得í?3a - b = 0?ì=a 1?í?b =3?.所以( )f x = x - x + .3 3 2(2) ( )f ' x = 3x - 3 ,2在x = 2处切线的斜率:k = f '(2) = 9,( )3f 2 = 2 - 3? 2 2 = 4 .切线的方程:y - 4 = 9(x - 2)即y =9x- 14 .18.(1)是否优优良( 人数) 非优良( 人数) 合计良班级甲30 30 60 乙20 40 60合计50 70 120K22 120 30 40 30 20 24创( - ? )= = 3.43 > 2.706≈,60创60 50? 70 7则有90% 的把握认为学生成绩优良与班级有关.- 5 -(2) P3 2 1C +C C 73 3 2= = .3C 10519.解:(1)由f(x)= 2x +1 - x - 2 ? 2 ,当1x < - 时,得21- 5 < x < - ,2当 1 2- #x 时得21- #x 1 ,2当x >2时不等式无解,故- 5 #x 1,所以集合M = {x - 5 #x 1} .(2) 集合M 中最大元素为m =1,所以 2 3 2 2 2 1a +b +c = . ab + 2bc = ab + 2b ?2c ,而2 2 2 2 2 2 2a +b2b + 2c a +3b + 2c 1ab + 2b祝2c + = = .2 2 2 2所以ab +2bc的最大值为1 2 .20. 解:(1) 将 2 2c 的参数方程化为普通方程为(x - 1) + y = 3 ,即12 2 2 2 0 x + y - x-= ,所以c1 的极坐标方程为 2 2 cos 2 0r - r q - = ,将c的极坐标方程化为直角坐标方程为22 2 1 x + y = .(2) 将pq = 代入32c1 : r - 2r cosq - 2 = 0 整理得 22 0r - r - = ,解得r 1 = 2 ,即OA = r 1 = 2 .因为曲线c是圆心在原点,半径为 1 的圆,2p所以射线q = (r ? 0)与c2 相交,即r 2 =1 ,即OB = r 2 =1.3故A B = r 1 - r 2 = 2 - 1 =1.21. 解:(1) 当S = 时,即回答 6 个问题后,正确 4 个,错误 2 个,又( 1,2,3)6 20 S ? i 前三i个问题回答正确,则其余三个问题可任意回答正确 1 个.故所求概率为:22 2 2 2 骣1 161P = 创创C ? 琪琪.33 3 3 3 3 81桫- 6 -(2) 由 X = S 可知 X 的取值为 10,30,50,52332骣2 骣1 骣2 骣1 40 ()=10 =琪 琪 +琪 琪=23P XCC琪 琪 琪 琪 553 33 3 81 桫 桫桫 桫,4 114骣2 骣1骣2 骣1 3041P (X30) CC= =琪 琪 + 琪 琪 =琪 琪 琪 琪55桫 桫 桫 桫 3 3 3 3 81 ,55骣 骣 21 115P (X = 50)= C 琪+ C 琪 = 琪 琪 55桫 桫 3381. 故 X 的分布列为:X10 30 50 P 4081 30 8111 8140 30 11 1850E X = 10?30? 50? . ( )8080808122.解:(1)函数的定义域为(0, +? ),2( ) ( ) ( ) ( )()a2x - a +2 x + a2x - a x - 1f ' x = - a +2 + 2x == ,x xx当 a £0时,函数在(0,1) 上单调递减,在 (1,+? )上单调递增,骣 当 0 <a <2 时,函数在 0,琪 琪桫a 2骣 a ,(1, +? )上单调递增,在 ,1琪 琪 2 桫上单调递减,当 a =2 时,函数在 (0, +? )上单调递增,骣a当 a > 2时,函数在(0,1),,琪 +?琪 2 桫骣 上单调递增,在 琪1, 琪 桫a 2 上单调递减 .(2)( ) ( )f x - f x12l£ x - xx x12 1 21 1恒成立,即( ) ( )f x - f x? l恒成立,12xx12不妨设 x 2 > x 1,因为当 a ? [4,10]时, f (x ) 在 [1,2]上单调递减,骣11则( ) ( )琪f xf x-? l 琪12x x桫12l l,可得( )( )f x -? f x , 12xx12ll2g x = f x -= a ln x - a + 2 x + x - ,设( ) ( )( ) xx所以对于任意的 a ? [4,10], x x ? [ ] , x2> x 1,( ) ( )1,21,2g x £g x 恒成立,12l所以 g(x )= f (x )-在[1,2]上单调递增,x- 7 -3 2( ) ( )( ) l ( ) l2x -a x - 1 2x - a +2x +ax +g ' x 0= + = ? 在x? [1,2] 上恒成立,2 2x x x3 2所以2x -(a + 2)x +ax +l? 0 在x?[1,2] 上恒成立,a - x + x + x - x +l ? 在x?[1,2] 上恒成立,即( )2 23 2 2 0因为当x?[1,2] 时, 2 0- x + x ? ,所以只需( )10 - x +x+ 2x - 2x +l ? 0在x?[1,2]上恒成立,2 3 2即 3 22x - 12x +10x + l ? 0 在x?[1,2] 上恒成立,设h (x) = 2x - 12x +10 x + l ,则h(2) = - 12 +l? 0 ,3 2所以l 3 12,故实数l 的取值范围为[12, +? ).- 8 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016---2017学年度二上数学期末测试卷
一、我会算。
1.口算
60-8= 5×9= 36-9= 57+9= 30+70=
76-40= 8×4= 7×5= 70-7= 35+8=
9+44= 5×4= 9×6= 24-7= 3×8=
5×8-20= 4×9+4= 32-20+50= 7+20-3=
2.用竖式计算。
90-54= 38+44= 38+59=
60-27-9= 100-(42+19)= 86-(52-28)=
二、我会填。
1.) 在括号里填上适当的单位名称。
①一块橡皮长约6( ) ②长颈鹿高约3( )
③一本语文课本厚约2( ) ④一座楼房高12( )
2.)小丽的身高是83厘米,小兵身高1米,小丽比小兵矮( )厘米。
3.)6+6+6+6=( )写成乘法算式是( )读作( );
4.)两个乘数都是8,积是( )。
5.) 你能用 0 、 3 、 5 这三张数字卡片组成( )个不同的两位数,其中最大的数
是( ),最小的数是( ),它们相差( )。
6.) 2和7的和是( )2个7的和是( ),2个7的积是( )
7.)
8.) 在○里填上 “﹥”、“﹤”或“=”。
26○17+18 31﹣8○3×7 100厘米○98米
9.) 括号里最大能填几?
8×( )< 60 42>( )×6 27>4×( )
( )×5<36 70> 9×( ) ( )×3<22
三、我会选(将正确答案的序号填在括号里 )
1.) 4个3列成加法算式是( )。
① 3+3+3+3 ② 4+4+4 ③ 4×3
2.) 明明有3件不同的衬衣,2条颜色不一样的裙子,一共有( )种穿法。
①5 ②6 ③3
3.)下列图形中,有二个直角的是( )。
① ② ③ ④
4.)下列线中,线段是( )。
① ② ③ ④
5.)可以测量物体长度的单位是( )。
①时 ②角 ③分 ④米
四、火眼金睛。
1、每个三角形中至少有两个角是锐角。 ( )
2、笔算两位数加减法时,相同数位要对齐,先从十位开始算。 ( )
3、5×9表示5个9相乘的积是多少。 ( )
4、4个小朋友每人握手一次,一共要握3次手。 ( )
5、角的边越长,角就越大。 ( )
学
校
:
班
级
:
姓
名
:
六、我会画。
1.) 画一条比5厘长的线段。 2.) 分别画一个锐角,一个钝角和一个直角。
七、我会动脑。
1.)观察物体(将正确答案的序号填在括号里 )
小狗看到的是图( );小猴看到的是图( );小羊看到的是图( )。
2.)用两种方法表示下面的时刻
( ) ( ) ( )
( ) ( ) ( )
八、解决问题。
1、看图列式计算。
① ②
一共有多少人? 一共有几只兔?
2、一个餐厅有3张8人坐的桌子和1张6人坐的桌子。这个餐厅共要配几把椅子?
3、买东西
25元 22元 38元
①电吹风比手表贵多少钱?
②小刚的妈妈带了50元钱,买一个电吹风和一个台灯,钱够吗?还差多少元?
③买一块手表、一个台灯和一个电吹风共需要花多少钱?
④你能提出什么数学问题并解决?
4、学校有排球26个,足球比排球多15个,学校共有排球和足球多少个?