无刷电机工作及控制原理(图解)(2020年整理).pdf
无刷直流电机工作原理

无刷直流电机工作原理
无刷直流电机的工作原理是基于电磁感应原理和功率电子器件的控制。
无刷直流电机的转子上有一个固定的磁铁,称为永磁体。
在电机的定子上有多个绕组,每个绕组之间的位置相隔一定的角度,形成若干个电磁极。
通过控制电极绕组的电流方向,可以产生一个旋转的磁场。
当定子电极绕组通电时,产生的磁场与永磁体的磁场相互作用,使得定子中的绕组受到电磁力的作用,导致电机转子开始转动。
为了控制电机的转速和方向,需要使用电子器件来控制定子电极绕组的电流。
这些电子器件通常是功率MOSFET(金属氧
化物半导体场效应晶体管)或IGBT(绝缘栅双极型晶体管),它们可以通过PWM(脉冲宽度调制)技术来控制电流的大小
和方向。
通过定子电极绕组的电流控制,可以使得电机旋转的速度和方向按需调整。
而且,由于无刷直流电机没有碳刷和换向器,所以具有更高的效率和寿命。
总结起来,无刷直流电机的工作原理是通过定子电极绕组的电流与永磁体之间的相互作用来产生电磁力,从而使得转子开始旋转。
通过控制电子器件来控制电流的大小和方向,可以调整电机的转速和方向。
无刷电机工作原理

无刷电机工作原理详解
CREATE TOGETHER
DOCS
01
无刷电机的基本概念与分类
无刷电机的定义与组成
无刷电机的定义
• 一种无需通过物理接触切换电机磁场方向的电机 • 由永磁转子、三相定子绕组和霍尔传感器组成
无刷电机的组成
• 转子:永磁材料制成的圆柱形或扁平形结构 • 定子:三相定子绕组,通常采用星形连接 • 霍尔传感器:用于检测转子磁场的位置,控制电机运行
• 家用电器:随着家电行业的升级,无刷电机在家电中的应用将不断扩大 • 工业自动化:工业自动化的发展将推动无刷电机在各类设备中的应用 • 新能源汽车:新能源汽车的普及将增加对无刷电机的需求
无刷电机的市场潜力
• 高效能:无刷电机的高效能将带来更多的市场机会 • 环保:无刷电机符合环保要求,有助于拓展市场 • 技术创新:技术创新将推动无刷电机在各领域的应用
无刷源电压和频率与电机匹配 • 控制器:选择合适的控制器,确保电机正常运行 • 传感器:确保传感器正常工作,实时检测转子磁场位置
无刷电机的维护注意事项
• 清洁:定期清洁电机和散热设备,保证良好散热 • 检查:定期检查电机运行状态,及时发现并解决问题 • 润滑:根据需要润滑电机轴承,延长使用寿命
无刷电机的分类与特点
无刷电机的分类
• 直流无刷电机:电流方向不变的电机 • 交流无刷电机:电流方向周期性变化的电机
无刷电机的特点
• 结构紧凑:体积小、重量轻,适用于各种紧凑设备 • 效率高:相比传统电机,能效更高 • 运行平稳:低噪音、低振动,运行稳定性好 • 维护简单:无需碳刷和换向器,使用寿命长
无刷电机与传统电机的对比
• 无刷电机与传统电机的对比 • 结构:无刷电机结构更紧凑,传统电机需要碳刷和换向器 • 效率:无刷电机效率更高,传统电机能效较低 • 运行稳定性:无刷电机运行更平稳,低噪音、低振动 • 维护:无刷电机维护简单,使用寿命长,传统电机需要定期更 换碳刷和换向器
无刷电机工作原理

无刷电机工作原理
无刷电机是一种采用无刷直流电机(BLDC)技术的电机,其工作原理基于电磁感应和控制器的调节。
它的主要构成部分包括电机转子、定子、感应器和控制器。
在无刷电机中,电机转子通常由一组永磁体组成,通过电流控制器中的电流来激励。
定子则由一组绕组组成,采用星形(Y 形)或三角形(Δ形)连接方式。
感应器则通过检测电机转子位置来提供闭环反馈控制信号。
工作时,电流控制器检测到感应器反馈的转子位置信息后,会根据预先设定的电流和速度控制算法控制电流的大小和方向。
在控制器的驱动下,电流会依次通过绕组,然后产生磁场。
根据电荷法则,电流通过绕组产生的磁场会与转子上的永磁体产生相互作用。
这种相互作用会导致转子受力并开始旋转。
通过不断改变电流的大小和方向,控制器可以精确地控制电机的运转速度和转矩。
无刷电机的工作原理和传统的直流电机相比具有许多优势,如高效率、高可靠性、高转速、较低噪声和长寿命。
因此,在许多应用领域中,无刷电机已取代了传统的直流电机成为首选驱动方案。
《无刷直流电机》课件

无刷直流电机结构简单,维护成本较低,而交流电机结构复杂,维护 成本较高。
与永磁同步电机的比较
磁场结构
无刷直流电机采用电子换向,没有永磁同步电机的永磁体,因此 磁场结构不同。
调速性能
永磁同步电机具有较高的效率和转矩密度,但调速范围较窄;而无 刷直流电机调速范围广,适用于多种应用场景。
成本与维护
可靠性
总结词
无刷直流电机具有较高的可靠性,能够保证长期稳定运行。
详细描述
无刷直流电机采用电子换向技术,减少了机械磨损和故障,因此具有较高的可靠 性。此外,无刷直流电机还具有较长的使用寿命和较低的维护成本,这使得它在 需要高可靠性的应用中成为理想选择,如医疗器械、军事装备等领域。
04
无刷直流电机的驱动控制
无刷直流电机的成本和维护相对较低,而永磁同步电机由于使用了 永磁材料,成本较高,但具有更高的效率和性能。
感谢您的观看
THANKS
05
无刷直流电机的发展趋势 与挑战
技术发展趋势
1 2 3
高效能化
随着技术的进步,无刷直流电机在效率、功率密 度和可靠性方面不断提升,以满足更广泛的应用 需求。
智能化控制
通过引入先进的控制算法和传感器技术,实现无 刷直流电机的智能化控制,提高其性能和稳定性 。
集成化设计
将无刷直流电机与其他部件(如驱动器、传感器 等)集成在一起,简化系统结构,降低成本。
详细描述
无刷直流电机采用先进的电子换向技术,避免了传统直流电 机机械换向器的损耗,因此具有更高的效率和功率密度。这 使得无刷直流电机在需要高效率和高功率密度的应用中表现 出色,如电动工具、电动车等领域。
调速性能
总结词
无刷直流电机具有优良的调速性能,可满足不同应用需求。
高效率BLDC无刷直流电机控制原理、控制设计计算方法及步骤(图文并茂详解)

高效率BLDC无刷直流电机控制原理、控制设计计算方法及步骤(图文并茂详解)一、空载时间插入与补充:1、大多数BLDC电机不需要互补的PWM、空载时间插入或空载时间补偿。
2、可能会要求这些特性的BLDC应用仅为高性能BLDC伺服电动机、正弦波激励式BLDC电机、无刷AC、或PC同步电机。
3、控制算法许多不同的控制算法都被用以提供对于BLDC电机的控制。
4、典型做法是,将功率晶体管用作线性稳压器来控制电机电压。
当驱动高功率电机时,这种方法并不实用。
5、高功率电机必须采用PWM控制,并要求一个微控制器来提供起动和控制功能。
二、BLDC无刷直流电机控制原理:1、无刷电机属于自换流型(自我方向转换),因此控制起来更加复杂。
2、BLDC电机控制要求了解电机进行整流转向的转子位置和机制。
3、对于闭环速度控制,有两个附加要求,即对于转子速度或电机电流以及PWM信号进行测量,以控制电机速度以及功率。
4、BLDC电机可以根据应用要求采用边排列或中心排列PWM信号。
5、大多数应用仅要求速度变化操作,将采用6个独立的边排列PWM信号。
这就提供了最高的分辨率。
6、如果应用要求服务器定位、能耗制动或动力倒转,推荐使用补充的中心排列PWM信号。
7、为了感应转子位置,BLDC电机采用XXX效应传感器来提供绝对定位感应。
这就导致了更多线的使用和更高的成本。
无传感器BLDC控制省去了对于传感器的需要,而是采用电机的反电动势(电动势)来预测转子位置。
8、无传感器控制对于像风扇和水泵这样的低成本变速应用至关重要。
9、在采用BLDC电机时,冰箱和空调压缩机也需要无传感器控制。
三、BLDC高效率无刷直流电机控制算法方法及步骤:1、提供的三项功能:⑴、用于控制电机速度的PWM电压;⑵、用于对电机进整流换向的机制;⑶、利用反电动势或传感器来预测转子位置的方法;2、脉冲宽度调制仅用于将可变电压应用到电机绕组。
有效电压与PWM占空比成正比。
3、当得到适当的整流换向时,BLDC的扭矩速度特性与以下直流电机相同。
无刷直流电机的原理和控制——介绍演示幻灯片共28页文档

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
无刷直流电机的原理和控制——介绍 演示幻灯片
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
பைடு நூலகம்
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
45、自己的饭量自己知道。——苏联
无刷电机的原理
无刷电机的原理无刷电机,又称为电子调速电机,是一种通过电子元件控制转子电流相位来实现转子转动的电机。
相比传统的有刷电机,无刷电机具有结构简单、功率密度高、效率高、噪音低等优点,因此在许多领域得到广泛应用。
无刷电机的工作原理可以简单概括为电磁感应和电子调速两个方面。
首先,无刷电机的转子由多个永磁体组成,当转子旋转时,产生旋转磁场。
同时,定子上的线圈通过电流激励,产生定子磁场。
根据电磁感应原理,当定子磁场与转子磁场相互作用时,就会产生力矩,推动转子旋转。
在电子调速方面,无刷电机采用了电子元件来控制转子电流相位。
具体来说,无刷电机上有多个定子线圈,每个线圈称为一个相。
电子调速通过控制不同相的电流,使得转子始终受到一个旋转力矩的作用,从而保持转动。
无刷电机的控制由电机控制器完成。
电机控制器的核心是电调,它负责检测转子位置和转速,并根据需要调整电流相位。
电调通常使用传感器或者传感器磁编码器来获取转子位置和转速信息。
根据这些信息,电调可以精确地控制电机转子的运动,使得电机在不同负载下都能稳定运行。
无刷电机的工作过程可以分为三个阶段:励磁、转子加速和转子减速。
励磁阶段是启动电机的过程,电机控制器会给定子线圈通电,产生定子磁场。
转子加速阶段是电机在负载下达到设定转速的过程,电机控制器根据转速反馈信号调整电流相位,使得转子得到恰当的推动力矩。
转子减速阶段是电机在减速或停止的过程,电机控制器会逐渐减小电流相位,使得转子停止转动。
无刷电机的优点主要体现在以下几个方面。
首先,无刷电机没有电刷和电刷摩擦产生的磨损,因此寿命更长,维护成本更低。
其次,无刷电机的功率密度更高,可以在更小的体积内输出更大的功率。
此外,由于无刷电机采用了电子调速,可以根据实际需要灵活地调整转速和扭矩,提高了电机的控制性能。
无刷电机是一种通过电子调速实现转子转动的电机。
它具有结构简单、功率密度高、效率高、噪音低等优点,并且可以根据需要灵活地调整转速和扭矩。
直流无刷电机控制原理
二直流无刷电机工作原理及换向初始化直流无刷电机在结构上与三相永磁同步电动机相同,但控制原理却与直流有刷电动机相同。
直流有刷电机通过有刷换向使每个磁极下电枢导体的电流方向保持不变,从而产生能使电机连续旋转的转矩;直流无刷电机是通过电子换向使转子每个磁极下定子绕组导体电流的方向保持不变而产生能使电机连续旋转的转矩。
由于采用电子无刷换向代替直流有刷电机的有刷换向,所以交流永磁同步伺服电机又称直流无刷伺服电机。
直流有刷电动机必须正确调整换向电刷的机械位置才能使电机工作正常。
同样,直流无刷电机加电时必须建立正确的初始换向角,才能使直流无刷电机正常工作。
确定初始换向角的过程称为无刷换向的初始化过程。
为了了解换向初始化过程,必须先了解直流无刷电机的控制原理。
1. 直流无刷电机的控制原理1.1 直流有刷电机的工作原理直流有刷电机由定子(产生主磁场)、转子(电枢)和换向装置(换向片和电刷)组成。
直流有刷电机通过有刷换向使主磁极下的电枢导体的电流方向保持不变,从而使产生转矩的方向不变,使电动机的转子能连续旋转。
为了使直流有刷电动机在电枢绕组流过电流时能产生最大转矩,必须正确调整有刷换向装置中电刷的位置。
下面进行较为详细的讨论。
(1)有刷换向装置的作用有刷换向装置由电刷和换向片组成。
直流有刷电机的电枢绕组为环形绕组,主磁极下的每个电枢导体连接到换向片上。
换向片为彼此绝缘,均匀分布在换向器圆周上的金属片组成。
电刷与换向片滑动接触。
电枢电流通过电刷和连接电枢导体的换向片引入电枢绕组。
电枢旋转时,电刷和换向片就象一个活动接头一样始终与主磁极下的导体连接,使主磁极下电枢导体的电流方向不变,产生使电枢连续旋转的转矩。
(2)产生最大转矩的条件产生最大转矩的条件是:一个磁极下的所有电枢导体的电流方向一致。
或者说,电枢导体产生的合成磁场与主磁场垂直。
(3)直流有刷电机的运行直流有刷电机的运行可用四个基本方程式来描述:①转矩平衡方程式:电流I M流过电枢绕组,载流导体在磁场中受力(受力方向用左手法则判断),产生能使电枢连续旋转的转矩T M。
「图解」电动车无刷电机控制器驱动电路图
「图解」电动车无刷电机控制器驱动电路图“旺材电机与电控”提醒您不要走开,文末有福利!·无刷直流电动机的组成与工作原理(1)无刷电动机的组成无刷直流电动机由转子和定子两大部分组成,如图3所示。
(2)无刷直流电动机的工作原理无刷直流电动机采用方波自控式永磁同步电动机,以霍尔传感器取代电刷换向器,霍尔传感器的信号线传递电动机里面磁钢相对于绕组线圈的位根据3个霍尔传感器的信号能知道此时应该怎样给电动机的线圈供电(不同的霍尔信应该给电动机绕组提供相对应方向的电流),也就是说霍尔传感器状态不一样,线圈的置号电流方向不一样。
霍尔信号传递给控制器,控制器通过粗线(不是霍尔线)给电动机绕组供电,电动机旋转,磁钢与绕组(准确地说是缠在定子上的线圈,其实霍尔一般安装在定子上)发生转动,霍尔传感器感应出新的位置信号,控制器粗线又给重新改变电流方向的电动机绕组供电,电动机继续旋转(当绕组和磁钢的位置发生变化时,绕组必须对应地改变电流方向,这样电动机才能继续向一个方向运动,否则电动机就会在某一个位置左右摆动,而不是连续旋转),这个过程就是电子换向。
无刷直流电动机由直流电源供电,借助位置传感器来检测转子的位置,所检测出的信号触发相应的电子换相线路,以实现无接触式换相。
无刷直流电动机用电子开关和位置传感器代替电刷及换向器,将直流电转换成模拟三相交流电,通过调制脉宽,改变其电流大小来改变转速。
直流无刷电机的控制结构直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响:N=120.F/P。
在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。
直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。
也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
无刷电机控制器工作原理
无刷电机控制器工作原理无刷电机控制器是一种用于控制无刷直流电机的电子器件,它通过控制电机内部的转子定位和电流通断,实现对电机的转速和转向的精准控制。
无刷电机控制器在现代工业和消费电子产品中广泛应用,其工作原理涉及到电机的结构特点、控制电路的设计以及信号处理算法等方面。
本文将详细介绍无刷电机控制器的工作原理,包括无刷电机的基本结构、控制器的工作过程及控制算法等内容。
一、无刷电机的基本结构无刷电机又称永磁同步电机,与传统的直流电机相比,它不需要用碳刷和换向器来实现转子的定位和电流的通断,因此具有结构简洁、寿命长、功率密度高等优点。
无刷电机通常由定子和转子两部分组成,定子上布置有若干对互相交错的绕组,称为相,而转子则装有永磁体或者感应绕组。
在转子和定子之间的磁场作用下,当给定子绕组通以电流时,会产生旋转磁场,从而驱动转子旋转。
二、无刷电机控制器的工作过程无刷电机控制器的工作过程可以分为电流控制和位置控制两部分。
1. 电流控制在电流控制阶段,控制器主要监测和控制电机的相电流,通过控制电流的大小和方向来调节电机的转矩和速度。
通常采用PWM(脉宽调制)技术来调节电流大小,通过不同占空比的脉冲信号控制器电机相电流的大小。
2. 位置控制在位置控制阶段,控制器需要定位电机的转子位置,以便精确控制电机的旋转角度和速度。
通常采用霍尔传感器或者编码器来检测转子位置,控制器根据检测到的位置信号来调整相电流的通断时机,以控制电机的转子转动到目标位置。
三、无刷电机控制器的控制算法无刷电机控制器通常采用三种基本的控制算法:换相控制、坐标变换控制和矢量控制。
1. 换相控制:这是最基础的控制算法,通过检测转子位置信号,控制器根据转子位置适时切换相电流的通断顺序,从而实现对电机的转动。
这种方法结构简单,成本低廉,但控制精度较低。
2. 坐标变换控制:这种控制算法通过对电压和电流进行坐标变换,将αβ坐标下的电压和电流转换为dq坐标下的电压电流,实现对电机的精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无刷电机工作及控制原理(图解)
左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。
让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。
让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。
为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。
不信可以试试。
三相线分开,电机可以轻松转动
三相线合并,电机转动阻力非常大
右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。
状态1
当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。
当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。
注意这里说的是“力矩”最大,而不是“力”最大。
诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。
补充一句,力矩是力与力臂的乘积。
其中一个为零,乘积就为零了。
当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,
状态2
如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。
改变电流方向的这一动作,就叫做换相。
补充一句:何时换相只与转子的位置有关,而与其他任何量无直接关系。
第二部分:三相二极内转子电机
一般来说,定子的三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最为常用,这里就用该模型来做个简单分析。
上图显示了定子绕组的联结方式(转子未画出假想是个二极磁铁),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。
整个电机就引出三根线A, B, C。
当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB注意这是有顺序的。
下面我看第一阶段:AB相通电
当AB相通电,则A极线圈产生的磁感线方向如红色箭头所示,B极产生的磁感线方向如图蓝色箭头所示,那么产生的合力方向即为绿色箭头所示,那么假设其中有一个二极磁铁,则根据“中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致”则N极方向会与绿色箭头所示方向重合。
至于C,暂时没他什么事。
第二阶段:AC相通电
第三阶段:BC相通电
第三阶段:BA相通电
为了节省篇幅,我们就不一一描述CACB的模型,大家可以自己类推一下。
以下为中间磁铁(转子)的状态图:
每个过程转子旋转60度
六个过程即完成了完整的转动,其中6次换相
我们再来看一个复杂点的,图(a)是一个三相九绕组六极(三对极)内转子电机,它的绕组连线方式见图(b)。
从图(b)可见,其三相绕组也是在中间点连接在一起的,也属于星形联结方式。
一般而言,电机的绕组数量都和永磁极的数量是不一致的(比如用9绕组6极,而不是6绕组6极),这样是为了防止定子的齿与转子的磁钢相吸对齐。
其运动的原则是:转子的N极与通电绕组的S极有对齐的运动趋势,而转子的S极与通电绕组的N极有对齐的运动趋势。
即为S与N相互吸引,注意跟之前的分析方法有一定的区别。
第一阶段:AB相通电
第二阶段:AC相通电
第三阶段:BC相通电
第四阶段:BA通电
第五阶段:CA通电
第六阶段:CB通电
以上为六个不同的通电状态,其中经历了五个转动过程。
每个过程为20度。
看完了内转子无刷直流电机的结构,我们来看外转子的。
其区别就在于,外转子电机将原来处于中心位置的磁钢做成一片片,贴到了外壳上,电机运行时,
是整个外壳在转,而中间的线圈定子不动。
外转子无刷直流电机较内转子来说,转子的转动惯量要大很多(因为转子的主要质量都集中在外壳上),所以转速较内转子电机要慢,通常KV值在几百到几千之间。
也是航模主要运用的无刷电机
顺便啰嗦一下吧。
无刷电机KV值定义为:转速/V,意思为输入电压每增加1伏特,无刷电机空转转速增加的转速值。
比如说,标称值为1000KV的外转子无刷电机,在11伏的电压条件下,最大空载转速即为:11000rpm(rpm的含义是:转/分钟)。
同系列同外形尺寸的无刷电机,根据绕线匝数的多少,会表现出不同的KV特性。
绕线匝数多的,KV值低,最高输出电流小,扭力大;绕线匝数少的,KV值高,最高输出电流大,扭力小。
我先前测试过穿越机2204电机的极限电流,单电机能彪上25A,而2212系列电机15A都上不了。
分析方法也和内转子电机类似,大家可以自己分析一下,根据右手螺旋定理判断线圈的N/S极,转子永磁体的N极与定子绕组的S极有对齐(吸引)的趋势,转子永磁体的S极与定子绕组的N极有对齐(吸引)的趋势,从而驱动电机转动。
经典无刷电机2212 1000kv电机结构分析。
图为DJI 2312S电机和XXD 2212电机的(解剖图)
图为xxd2212线圈拆解图
图为12绕组14极(即7对极),电机绕组绕发图
后面画出了6种两相通电的情形,可以看出,尽管绕组和磁极的数量可以有许多种变化,但从电调控制的角度看,其通电次序其实是相同的,也就是说,不管外转子还是内转子电机,都遵循AB->AC->BC->BA->CA->CB的顺序进行通电换相。
当然,如果你想让电机反转的话,电子方法是按倒过来的次序通电;物理方法直接对调任意两根线,假设A和B对调,那么顺序就是
BA->BC->AC->AB->CB->CA,大家有没有发现这里顺序就完全倒过来了。
AB相通电
AC相通电
BC相通电
BA相通电
CA相通电
CB相通电
要说明一下的是,由于每根引出线同时接入两个绕组,所以电流是分两路走的。
这里为使问题尽量简单化,下面几个图中只画出了主要一路的电流方向,还有一路电流未画出,另一路电流的具体情况放在后面进行分析,涉及到电路检测换相位置。
END
本文来源网络。
我们注重分享,版权归原作者。