2019年江苏省淮安市中考数学试卷解析版

合集下载

江苏省淮安市2019年初三数学九年级中考模拟数学试卷及答案解析

江苏省淮安市2019年初三数学九年级中考模拟数学试卷及答案解析

江苏省淮安市2019年九年级数学中考模拟试卷(含答案)一、选择题1、一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程有实数根的概率是( )A .B .C .D .2、用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为( )A .B .C .D .3、下列运算正确的是( ) A .2a +3b = 5ab B .·= C .=D .+=4、函数y=中自变量x 的取值范围是( ) A .B .C .D .5、﹣6的相反数是( )A .﹣6B .-C .D .66、如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .15°B .20°C .25°D .30° 7、如图,在平面直角坐标系中,点A 、B 均在函数(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,3)C .(3, 2)D .(4,)8、体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A .平均数B .众数C .方差D .中位数二、填空题9、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是________(结果保留π)。

(第9题图) (第10题图) (第11题图) 10、如图7,△ABC 是等腰直角三角形,AC=BC=,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,则 CD 的长为 。

11、如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=5,AC=2,则DF 的长为_________。

(完整版)江苏省淮安市2019年中考数学试卷.docx

(完整版)江苏省淮安市2019年中考数学试卷.docx

江苏省淮安市 2019 年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功! 请先阅读以下几点意事项:1. 试卷分为第Ⅰ卷和第Ⅱ两部分,共 6 页,全卷满分150 分,考试时间120 分钟 .2.第Ⅰ卷每小题选出答案后,用2B 笔把器题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试上无效.3.答第Ⅱ卷时,用 0. 5 毫来黑色墨水签字笔,将答写在答题卡上指定的位置,答案写在试卷上或答题卡上规定的区域以外无效.4.作图要用 2B 铅笔,加黑加粗,描写清楚 .5.考试结来,将本试卷和答题卡一并交回.第Ⅰ 卷( 选择题共 24 分 )一、选择题 ( 本大题共有8 小题,每小题 3 分,共 24 分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的宇母代号填涂在答题卡相应位置上)1.-3的绝对值是1B.-3C.1A . D .3332.计算 a·a2的结果是A . a3B . a2 C.3 a D .2 a23.同步卫星在赤道上空大约 360000 米处 . 将 36000000 用科学记数法表示应为A .36 × 106 B.0.36 × 108 C.3.6 × 106 D.3.6 × 1074.下图是由 4 个相同的小正方体搭成的几何体,则该几何体的主视图是A B C D5.下列长度的 3 根小木棒不能搭成三角形的是..A .2 cm, 3cm, 4cmB .1 cm, 2cm, 3cm C.3 cm, 4cm, 5cm D.4 cm,5cm,6cm6.2019年准安市“周恩来读书节”活动主题是“阅读,遇见更美好的自己”为了解同学们课外阅读情况,王老师对某学习小组10 名同学 5 月份的读书量进行了统计,结果如下( 单位:本 ):5 ,5,3,6,3,6,6,5, 4, 5,则这组数据的众数是A .3B .4 C.5 D.67.若关于 x 的一元二次方程 x+2x- k= D 有两个不相等的实数根,则的取值范围是A . k<- 1 B. k>- 1 C. k< 1 D . k> 18. 当矩形面积一定时,下列图像中能表示它的长y 和宽 x 之间函数关系的是A B C D第Ⅱ 卷 ( 非选择题共 126分)二、填空题 ( 本大题共有8 小题,每小题 3 分,共 24 分 . 不需写出解答过程,请把答案直接写在答题卡相应位置上 )9. 分解因式 :1 - x2=▲ .10.现有一组数据2, 7, 6,9, 8,则这组数据的中位数是▲ .11.方程11的解是▲ . x 212.若一个多边形的内角和是 540°,则该多边形的边数是▲ .x>213.不等式组的解集是▲ .x> 114.若圆锥的侧面积是15π,母线长是 5,则该圆锥底面圆的半径是▲ .15.如图, l1∥ l2∥ l 3,直线 a、b 与 l1、 l 2、l 3分别相交于点 A、 B、 C 和点 D、 E、F . 若 AB= 3,DE = 2,BC= 6,则 EF=▲ .16.如图,在矩形 ABCD 中, AB= 3, BC= 2, H 是 AB 的中点,将△ CBH 沿 CH 折叠,点 B 落在矩形内点P 处,连接 AP,则 tan∠ HAP=▲ .(第 15 题)(第16题)三、解答题( 本大题共有 11 小题,共 102 分,请在答题卡指定区城内作答 ,解答时应写出必要的文字说.......... 明、证明过程或演算步骤) 17.( 本小题满分 10 分 ) 计算:( 1) 4 tan45 (12 ) 0( )22 ab(3a 2b) 2ab .218.( 本小题满分 8 分) 先化简,再求值a4(12) ,其中 a = 5.a a19.( 本小题满分 8 分) 某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量( 节 ) 所用汽车数量 ( 辆 )运输物资总量( 吨)第一批2 5 130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?20.( 本小题满分 8 分) 已知 : 如图,在 □ABCD 中,点 E 、 F 分别是边AD 、 BC 的中点 .求证 : BE =DF(第 20 题)21.( 本小题满分8 分) 某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100 分,测试成绩按 A 、B 、C、D 四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图 . ( 说明 : 测试成绩取整数, A 级 :90 分~ 100 分; B 级:75 分 -89 分; C 级 :60 分~ 74 分; D级 :60 分以下 )请解答下列问题(1)该企业员工中参加本次安全生产知识测试共有▲人;(2)补全条形统计图;(3)若该企业共有员工800 人,试估计该企业员工中对安全生产知识的掌握能达到 A 级的人数 .22.( 本小题满分8 分) 在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字.(1)用树状图或列表等方法列出所有可能结果;(2)求两次摸到不同数字的概率 .23.( 本小题满分8 分) 如图,方格纸上毎个小正方形的边长均为 1 个单位长度,点A、B 都在格点上 ( 两条网格线的交点叫格点)(1)将线段 AB 向上平移两个单位长度,点A 的对应点为点 A1,点 B 的对应点为点 B1,请画出平移后的线段A1B1;(2)将线段 A1B1绕点 A1按逆时针方向旋转 90°,点 B1的对应点为点 B2,请画出旋转后的线段 A1B2(3)连接 AB2、 BB2,求△ ABB2的面积(第 23 题 )24.( 本小题满分10 分 ) 如图, AB 是⊙ O 的直径, AC 与⊙ O 交于点 F ,弦 AD 平分∠ BAC ,DE⊥ AC,垂足为E.(1)试判断直线 DE 与⊙ O 的位置关系,并说明理由;(2) 若⊙ O 的半径为2,∠ BAC= 60°,求线段EF 的长 .(第 24 题 )25.( 本小题满分10 分 ) 快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息 1.5 小时,慢车没有休息. 设慢车行驶的时间为x 小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米 . 下图中折线OAEC 表示 y1与 x 之间的函数关系,线段OD 表示 y2与 x 之间的函数关系 .请解答下列间题:(1)求快车和慢车的速度;(2)求图中线段 EC 所表示的 y1与 x 之间的函数表达式;(3) 线段 OD 与线段 EC 相交于点F,直接写出点 F 的坐标,并解释点 F 的实际意义 .( 第 25 题 )26.( 本小题满分 12 分 ) 如图,已知二次函数的图像与 x 轴交于 A 、 B 两点, D 为顶点,其中点 B的坐标为 (5 , 0) ,点 D 的坐标为 (1 , 3). (1) 求该二次函数的表达式;(2) 点 E 是线段 BD 上的一点,过点E 作 x 轴的垂线,垂足为F ,且 ED = EF ,求点 E 的坐标;(3) 试问在该二次函数图像上是否存在点G ,使得△ ADG 的面积是△ BDG 的面积的 3?5若存在,求出点 G 的坐标 : 若不存在,请说明理由.( 第 26 题 ) ( 备用图 )27.( 本小题满分 12 分 ) 如图①,在△ ABC 中, AB = AC = 3,∠ BAC = 100°, D 是 BC 的中点 . 小明对图① 进行了如下探究 : 在线段 AD 上任取一点 P ,连接 PB. 将线段 PB 绕点 P 按逆时针方向旋转 80°,点 B 的对应点是点 E ,连接 BE ,得到△ BPE . 小明发现, 随着点 P 在线段 AD 上位置的变化, 点 E 的位置也在变化,点E 可能在直线 AD 的左侧,也可能在直线 AD 上,还可能在直线 AD 的右侧 . 请你帮助小明继续探究,并解答下列问题 :(1) 当点 E 在直线 AD 上时,如图②所示①∠ BEP =▲°;②连接 CE ,直线 CE 与直线 AB 的位置关系是▲;(2) 请在图③中画出△ BPE ,使点 E 在直线 AD 的右侧,连接 CE. 试判断直线 CE 与直线 AB 的位置关系,并说明理由;(3) 当点 P 在线段 AD 上运动时,求 AE 的最小值 .图① 图② 图③祝贺你顺利完成答题,可别忘了认真检查哦!(录入:淮安市文通中学夏成超)。

2019年江苏省淮安市淮安区中考数学一模试卷 精编含解析

2019年江苏省淮安市淮安区中考数学一模试卷  精编含解析

2019年江苏省淮安市淮安区中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是( )A.B.C.﹣D.2.(3分)大型纪录片《厉害了,我的国》上映25天,累计票房约为4 0270 0000,成为中国纪录电影票房冠军.则4 0270 0000科学记数法表示( )A.0.4027×109B.4.027×108C.40.27×107D.402.7×1063.(3分)下列根式是最简二次根式的是( )A.B.C.D.4.(3分)下列各式中,运算正确的是( )A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a45.(3分)如图,由4个大小相同的正方体组合而成的几何体,其俯视图是( )A.B.C.D.6.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A.10和7B.5和7C.6和7D.5和67.(3分)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于D,连结AD.若AD=AC,∠B=25°,则∠C=( )A.70°B.60°C.50°D.40°8.(3分)如图,O为圆心,AB是直径,C是半圆上的点,D是上的点.若∠BOC=40°,则∠D的大小为( )A.1l0°B.120°C.130°D.140°二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在答题卡相应位置上)9.(3分)分解因式:a2﹣9= .10.(3分)若分式在实数范围内有意义,则x的取值范围是 .11.(3分)已知x2+2x﹣1=0,则3x2+6x﹣2= .12.(3分)若反比例函数y=的图象经过点(m,2),则m的值是 .13.(3分)在一个不透明的袋子里装有2个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是白球的概率为,则袋子内黄色乒乓球的个数为 .14.(3分)圆心角为120°,半径为6cm的扇形的弧长是 cm.15.(3分)关于x的一元二次方程x2﹣kx+1=0有两个相等的实数根,则k= .16.(3分)如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2019的坐标为 .三、解答题(本大题共11小题,共102分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(1)计算:3tan30°﹣(π﹣3.14)0+()﹣2(2)解不等式组,并将解集在数轴上表示出来.18.(8分)先化简,再求值:()÷,其中x=.19.(8分)网购成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,现在平均每人每天分拣多少件包裹?20.(8分)如图,已知四边形ABCD是平行四边形,点E,F分别是BC,CD上的点,∠AEB=∠AFD,BE=DF.求证:四边形ABCD是菱形.21.(8分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动,接受安全提醒的一种应用软件,某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与B.家长和学生一起参与C.仅家长自己参与D.家长和学生都未参与请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了 名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数为 ;(3)根据抽样调查结果,估计该校3200名学生中“家长和学生都未参与”的人数.22.(8分)在一个不透明的布袋中装有5个完全相同的小球,分别标有数字0,l,2,﹣1,﹣2.(1)如果从布袋中随机抽取一个小球,小球上的数字是正数的概率为 ;(2)如果从布袋中随机抽取一个小球,记录标有的数字为x(不放回),再从袋中随机抽取一个小球,记录标有的数字为y,记点M的坐标为(x,y),用画树状图或列表的方法求出点M恰好落在第二象限的概率.23.(8分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)24.(10分)如图,在△ABC中,AC=BC,以AB为直径的⊙0交AC边于点D,点E在BC上,连结BD,DE,∠CDE=∠ABD(1)证明:DE是⊙O的切线;(2)若BD=24,sin∠CDE=,求圆O的半径和AC的长.25.(10分)2019年春节期问某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于68元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)505560销售量y(千克)1009080(1)则y与x之间的函数表达式 .(2)设这种商品每天的利润为W(元),求W与x之间的函数表达式,并求出当售价为多少元时获得最大利润,最大利润是多少?(利润=收入﹣成本)26.(11分)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是 三角形;∠ADB的度数为 .【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为 .27.(13分)如图,一次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,点D在函数图象上,CD∥x轴,直线1是抛物线的对称轴,E是抛物线的顶点.(1)A点的坐标 、B点的坐标 、E点的坐标 、D点的坐标 ;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE上,求点F的坐标;(3)如图2,抛物线的对称轴上是否存在点T,使得线段TA绕点T顺时针旋转90°后点A的对应点A’恰好也落在此抛物线上?若存在,求出点T的坐标;若不存在,说明理由.(4)如图3,动点P在线段0B上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.Q 是抛物线上的动点,要使△PQN与△APM的面积相等,且线段NQ的长度最小,直接写出Q的坐标 .2019年江苏省淮安市淮安区中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是( )A.B.C.﹣D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)大型纪录片《厉害了,我的国》上映25天,累计票房约为4 0270 0000,成为中国纪录电影票房冠军.则4 0270 0000科学记数法表示( )A.0.4027×109B.4.027×108C.40.27×107D.402.7×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:4 0270 0000=4.027×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.3.(3分)下列根式是最简二次根式的是( )A.B.C.D.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式.4.(3分)下列各式中,运算正确的是( )A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.【点评】本题考查同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)如图,由4个大小相同的正方体组合而成的几何体,其俯视图是( )A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是横着的“目”字.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A.10和7B.5和7C.6和7D.5和6【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【解答】解:将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.7.(3分)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于D,连结AD.若AD=AC,∠B=25°,则∠C=( )A.70°B.60°C.50°D.40°【分析】利用基本作图得到MN垂直平分AB,则DA=DB,再根据等腰三角形的性质和三角形外角性质求出∠CDA的度数,然后利用AD=AC得到∠C的度数.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=25°,∴∠CDA=∠DAB+∠B=50°,∵AD=AC,∴∠C=∠CDA=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.(3分)如图,O为圆心,AB是直径,C是半圆上的点,D是上的点.若∠BOC=40°,则∠D的大小为( )A.1l0°B.120°C.130°D.140°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D==110°,故选:A.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在答题卡相应位置上)9.(3分)分解因式:a2﹣9= (a+3)(a﹣3) .【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.10.(3分)若分式在实数范围内有意义,则x的取值范围是 x≠2 .【分析】直接利用分式有意义的条件为分母不为零,进而得出答案.【解答】解:∵分式在实数范围内有意义,∴x的取值范围是:x≠2.故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.11.(3分)已知x2+2x﹣1=0,则3x2+6x﹣2= 1 .【分析】直接利用已知得出x2+2x=1,再代入原式求出答案.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,∴3x2+6x﹣2=3(x2+2x)﹣2=3×1﹣2=1.故答案为:1.【点评】此题主要考查了代数式求值,利用整体思想代入是解题关键.12.(3分)若反比例函数y=的图象经过点(m,2),则m的值是 ﹣3 .【分析】根据反比例函数图象上点的坐标特点可得2m=﹣6,再解方程即可.【解答】解:∵反比例函数y=﹣的图象经过点(m,2),∴2m=﹣6,解得:m=﹣3,故答案为:﹣3.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.(3分)在一个不透明的袋子里装有2个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是白球的概率为,则袋子内黄色乒乓球的个数为 3 .【分析】设袋子内黄色乒乓球的个数为x,利用概率公式可得=,解出x的值,可得黄球数量即可.【解答】解:设袋子内黄色乒乓球的个数为x,由题意得:=,解得:x=3,经检验,x=3是原方程的解.故答案为:3.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.14.(3分)圆心角为120°,半径为6cm的扇形的弧长是 4π cm.【分析】弧长的计算公式为l=,将n=120°,R=6cm代入即可得出答案.【解答】解:由题意得,n=120°,R=6cm,故可得:l==4πcm.故答案为:4π.【点评】此题考查了弧长的计算公式,属于基础题,解答本题的关键是掌握弧长的计算公式及公式字母所代表的含义.15.(3分)关于x的一元二次方程x2﹣kx+1=0有两个相等的实数根,则k= ±2 .【分析】根据题意可得△=0,进而可得k2﹣4=0,再解即可.【解答】解:由题意得:△=k2﹣4=0,解得:k=±2,故答案为:±2.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.16.(3分)如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2019的坐标为 (4037,1) .【分析】根据题意可以求得P2的纵坐标为﹣1,P3的纵坐标为1,P4的纵坐标为﹣1,P5的纵坐标为1,…,从而发现其中的变化的规律,从而可以求得P2019的坐标.【解答】解:作P1⊥x轴于H,∵A(0,0),B(2,0),∴AB=2,∵△AP1B是等腰直角三角形,∴P1H=AB=1,AH=BH=1,∴P1的纵坐标为1,∵△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,∴P2的纵坐标为﹣1,P3的纵坐标为1,P4的纵坐标为﹣1,P5的纵坐标为1,…,∴P2019的纵坐标为1,横坐标为2019×2﹣1=4037,即P2019(4037,1).故答案为:(4037,1).【点评】本题考查坐标与图形变化﹣旋转,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.三、解答题(本大题共11小题,共102分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(1)计算:3tan30°﹣(π﹣3.14)0+()﹣2(2)解不等式组,并将解集在数轴上表示出来.【分析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(1)原式=3×﹣1+4=3+;(2),解不等式①,得x>﹣1,解不等式②,得x≤5,在数轴上表示如下:.故不等式的解集为﹣1<x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)先化简,再求值:()÷,其中x=.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:()÷===x+1,当x=时,原式=+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)网购成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,现在平均每人每天分拣多少件包裹?【分析】设现在平均第人每天分拣包裹x件,根据题意可得,更新了包裹分拣设备后,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,据此列方程求解.【解答】解:设现在平均第人每天分拣包裹x件,由题意得,=,解得,x=200,经检验:x=200是原分式方程的解,且符合题意.答:现在平均每人每天分拣包裹200件.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.20.(8分)如图,已知四边形ABCD是平行四边形,点E,F分别是BC,CD上的点,∠AEB=∠AFD,BE=DF.求证:四边形ABCD是菱形.【分析】由全等三角形的判定方法AAS证明△ABE≌△ADF,得出AB=AD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AB=AD,∴四边形ABCD是菱形.【点评】本题考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.21.(8分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动,接受安全提醒的一种应用软件,某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与B.家长和学生一起参与C.仅家长自己参与D.家长和学生都未参与请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了 400 名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数为 54° ;(3)根据抽样调查结果,估计该校3200名学生中“家长和学生都未参与”的人数.【分析】(1)根据A类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3200名学生中“家长和学生都未参与”的人数.【解答】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B种情况下的人数为:400﹣80﹣60﹣20=240(人),补全的条形统计图如右图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:360°×=54°,故答案为:54°;(3)3200×=160(人),即该校3200名学生中“家长和学生都未参与”的有160人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)在一个不透明的布袋中装有5个完全相同的小球,分别标有数字0,l,2,﹣1,﹣2.(1)如果从布袋中随机抽取一个小球,小球上的数字是正数的概率为 ;(2)如果从布袋中随机抽取一个小球,记录标有的数字为x(不放回),再从袋中随机抽取一个小球,记录标有的数字为y,记点M的坐标为(x,y),用画树状图或列表的方法求出点M恰好落在第二象限的概率.【分析】(1)利用概率公式求解;(2)画树状图展示所有20种等可能的结果数,找出点M恰好落在第二象限的结果数,然后根据概率公式求解.【解答】解:(1)如果从布袋中随机抽取一个小球,小球上的数字是正数的概率=;故答案为;(2)画树状图为:共有20种等可能的结果数,其中点M恰好落在第二象限的结果数为4,所以点M恰好落在第二象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.23.(8分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线而构造直角三角形解决问题.24.(10分)如图,在△ABC中,AC=BC,以AB为直径的⊙0交AC边于点D,点E在BC上,连结BD,DE,∠CDE=∠ABD(1)证明:DE是⊙O的切线;(2)若BD=24,sin∠CDE=,求圆O的半径和AC的长.【分析】(1)连结OD,如图,根据圆周角定理,由AB为⊙O的直径得∠ADO+∠ODB=90°,再由OB=OD得∠OBD=∠ODB,则∠ADO+∠ABD=90°,由于∠CDE=∠ABD,所以∠ADO+∠CDE=90°,然后根据平角的定义得∠ODE=90°,于是可根据切线的判定定理得到DE是⊙O的切线;(2)设AD=5x,则AB=13x,根据勾股定理得到BD==12x,求得圆O的半径为13;连结OC,如图,根据等腰三角形的性质得到CO⊥AB,根据三角函数的定义即可得到结论.【解答】(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ADB=90°,即∠ADO+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠ADO+∠ABD=90°,∵∠CDE=∠ABD,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵∠CDE=∠ABD,∴sin∠CDE=sin∠ABD=,在Rt△ABD中,sin∠ABD==,设AD=5x,则AB=13x,∴BD==12x,∴12x=24,解得x=2,∴AB=26,∴圆O的半径为13;连结OC,如图,∵CA=CB,OA=OB,∴CO⊥AB,∴∠ACO=∠ABD,在Rt△ACO中,∵sin∠ACO==,∴AC=×13=.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了解直角三角形.25.(10分)2019年春节期问某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于68元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)505560销售量y(千克)1009080(1)则y与x之间的函数表达式 y=﹣2x+200 .(2)设这种商品每天的利润为W(元),求W与x之间的函数表达式,并求出当售价为多少元时获得最大利润,最大利润是多少?(利润=收入﹣成本)【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.【解答】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵40≤x≤68∴当x=68时,W取得最大值为1792,答:售价为68元时获得最大利润,最大利润是1792元.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.26.(11分)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是 等边 三角形;∠ADB的度数为 30° .【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为 7+或7﹣ .【分析】【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.【问题解决】当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).【拓展应用】第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【解答】解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.【点评】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.27.(13分)如图,一次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,点D在函数图象上,CD∥x轴,直线1是抛物线的对称轴,E是抛物线的顶点.(1)A点的坐标 (﹣1,0) 、B点的坐标 (3,0) 、E点的坐标 (1,4) 、D点的坐标 (2,3) ;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE上,求点F的坐标;(3)如图2,抛物线的对称轴上是否存在点T,使得线段TA绕点T顺时针旋转90°后点A的对应点A’恰好也落在此抛物线上?若存在,求出点T的坐标;若不存在,说明理由.(4)如图3,动点P在线段0B上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.Q 是抛物线上的动点,要使△PQN与△APM的面积相等,且线段NQ的长度最小,直接写出Q的坐标 (,)或(,) .。

江苏省淮安市2019年九年级中考模拟数学试卷(含答案)【含答案及解析】

江苏省淮安市2019年九年级中考模拟数学试卷(含答案)【含答案及解析】

江苏省淮安市2019年九年级中考模拟数学试卷(含答案)【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. ﹣6的相反数是()A. ﹣6B. -C.D. 62. 函数y=中自变量x的取值范围是( )A. B. C. D.3. 下列运算正确的是()A. 2a +3b = 5abB. ·=C. =D. +=4. 用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为()A. B. C. D.5. 一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是( )A. B. C. D.6. 体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A. 平均数B. 众数C. 方差D. 中位数7. 如图,把一块含有45°角的直角三角板两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是( )A. 15°B. 20°C. 25°D. 30°二、选择题8. 如图,在平面直角坐标系中,点A、B均在函数(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2) B.(2,3) C.(3, 2) D.(4,)三、填空题9. 据有关资料显示,长江三峡工程电站的总装机容量是18200000千瓦,请你用科学记数法表示电站的总装机容量,应记为_____千瓦.10. 因式分【解析】_____.11. 关于x的方程的两实数根为x1,x2,且x12+x22=3,则m=_________.12. 已知实数m,n满足,则代数式的最小值等于_________.13. 一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为_____.14. 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内圆弧OB上一点,∠BM0=120o,则⊙C的半径长为_____°.15. 已知二次函数中,函数y与x的部分对应值如下:16./res/CZSX/web/STSource/2018052407044723517423/SYS201805240704562123 173086_ST/SYS201805240704562123173086_ST.002.png" width="3" height="3" alt="" />...-101 23...... 105212...td17. 如图,三个小正方形的边长都为1,则图中阴影部分面积的和是________(结果保留π).18. 如图7,△ABC是等腰直角三角形,AC=BC=,以斜边AB上的点O为圆心的圆分别与AC,BC相切与点E,F,与AB 分别交于点G,H,且 EH 的延长线和 CB 的延长线交于点D,则 CD 的长为 .19. 如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.四、解答题20. (1)(2)21. 先化简,再求值:,在0,1,2,三个数中选一个合适的,代入求值.22. 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.23. 甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是.(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.24. 为了解“数学思想作文对学习数学帮助有多大?”一研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和表来表示(图、表都没制作完成).25. 选项帮助很大帮助较大帮助不大几乎没有帮助人数a543269btd26. 如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B 的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D间的距离AC和AD(如果运算结果有根号,请保留根号). (2)已知距离观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁的危险?(参考数据:≈1.41,≈1.73)27. 如图,AD是圆O的切线,切点为A,AB是圆O的弦。

2019年淮安市淮安区中考数学模拟试卷(一)含答案解析

2019年淮安市淮安区中考数学模拟试卷(一)含答案解析

2019年江苏省淮安市淮安区中考数学模拟试卷(一)一、选择题(本大题共8小题,每小题3分,共计24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上)1.﹣5的倒数是()A.B.C.﹣5 D.52.a2•a3等于()A.3a2B.a5C.a6D.a83.下列事件为必然事件的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚普通的正方体骰子,掷得的点数小于74.如图是一个圆柱体,则它的主视图是()A.B.C.D.5.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)6.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.7.下列各式中与是同类二次根式的是()A.B. C. D.8.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.其中正确命题有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.根据淮安市委、市政府实施“十大工程”的工作部署,全市重点工程计划投资3653000000元,将3653000000用科学记数法表示为______.10.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是______.11.分解因式:x2﹣16=______.12.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为______.13.圆锥底面半径为,母线长为2,它的侧面展开图的面积是______.14.若关于x的一元二次方程kx2+2(k+1)x+k﹣1=0有两个实数根,则k的取值范围是______.15.“校园手机”现象受社会普遍关注,某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了扇形统计图.从调查的学生中,随机抽取一名恰好是持“无所谓”态度的学生的概率是______.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=______.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是______.18.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中作内接正方形A3B3C3D3;…;依次作下去,则第2019个正方形A2019B2019C2019D2019的边长是______.三、解答题(本大题共10小题,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(1)计算:()﹣1+2cos45°﹣(2)化简:÷.20.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.21.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1.(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中点A1所走过的路线长(结果保留π)22.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.23.心理健康是一个人健康的重要标志之一.为了解学生对心理健康知识的掌握程度,某校从800名在校学生中,随机抽取200名进行问卷调查,并按“优秀”、“良好”、“一般”、“较差”(1)求频数分布表中a、b、c的值.并补全频数分布直方图;(2)请你估计该校学生对心理健康知识掌握程度达到“优秀”的总人数.24.现有数字﹣1、1、2各若干,随机拿两个数组成点的坐标(两个数可以重复).请用画树状图或列表的方法罗列所有可能情况,并求组成坐标的点是抛物线y=x2+1上的点的概率.25.九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)26.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)27.某班将举行“趣味数学知识竞赛”活动,班长安排小明购买奖品,下面是小明买回奖品时与班长的对话情况:小明:买了两种不同的笔记本共40本,单价分别为5元和8元,我领了300元,现在找回68元.班长:你肯定搞错了!小明:哦!我把自己口袋里的13元一起当作找回的钱款了.班长:这就对了!请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?28.如图①,点A′、B′的坐标分别为(4,0)和(0,﹣8),将△A′B′O绕点O按逆时针方向旋90°转后得△ABO,点A′的对应点是A,点B′的对应点是点B.(1)写出A、B两点的坐标,并求出直线AB的解析式;(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,点D在线段AB上,点D 不与A、B重合)如图②,使点B落在x轴上,点B的对应点为点E,设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式(包括自变量x的取值范围);②当x为何值时,S的面积最大?最大值是多少?(3)当4<x<8时,是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.2019年江苏省淮安市淮安区中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共计24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上)1.﹣5的倒数是()A.B.C.﹣5 D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.2.a2•a3等于()A.3a2B.a5C.a6D.a8【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则进行计算即可.【解答】解:原式=a2•a3=a2+3=a5.故选B.3.下列事件为必然事件的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚普通的正方体骰子,掷得的点数小于7【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:打开电视机,它正在播广告是随机事件,A错误;某彩票的中奖机会是1%,买1张一定不会中奖是随机事件,B错误;抛掷一枚硬币,一定正面朝上是随机事件,C错误;投掷一枚普通的正方体骰子,掷得的点数小于7是必然事件,D正确,故选:D.4.如图是一个圆柱体,则它的主视图是()A .B .C .D .【考点】简单几何体的三视图.【分析】找到从物体的正面看,所得到的图形即可.【解答】解:一个直立在水平面上的圆柱体的主视图是长方形,故选A5.在平面直角坐标系中,点P (﹣1,2)关于x 轴的对称点的坐标为( )A .(﹣1,﹣2)B .(1,2)C .(2,﹣1)D .(﹣2,1)【考点】关于x 轴、y 轴对称的点的坐标.【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P (﹣1,2)关于x 轴对称的点的坐标为(﹣1,﹣2).故选:A .6.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .B .C .D .【考点】不等式的解集.【分析】由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x ≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x <2,所以这个不等式组的解集为﹣1≤x <2,从而得出正确选项.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x ≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x <2,所以这个不等式组的解集为﹣1≤x <2,即:.故选:C .7.下列各式中与是同类二次根式的是( )A .B .C .D .【考点】同类二次根式.【分析】根据二次根式的性质,可得最简二次根式,根据被开方数相同的二次根式是同类二次根式,可得答案.【解答】解:=2,A 、与2不是同类二次根式,故A 错误;B 、=4与2不是同类二次根式,故B 错误;C 、=3与2不是同类二次根式,故C 错误;D 、=5与2是同类二次根式,故D 正确;故选:D.8.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.其中正确命题有()A.1个B.2个C.3个D.4个【考点】反比例函数的性质;二次根式有意义的条件;一元二次方程的解;余角和补角.【分析】分别根据二次根式有意义的条件、补角的定义、一元二次方程的解及反比例函数的性质对各小题进行逐一解答即可.【解答】解:①若式子有意义,则x≥1,故本小题错误;②若∠α=27°,则∠α的补角=180°﹣27°=153°,故本小题正确;③已知x=2是方程x2﹣6x+c=0的一个实数根,则22﹣12+c=0,解得c=8,故本小题正确;④在反比例函数y=中,若x>0时,y随x的增大增大,则k﹣2<0,解得k<2,故本小题错误.故选:B.二、填空题(本大题共10小题,每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.根据淮安市委、市政府实施“十大工程”的工作部署,全市重点工程计划投资3653000000元,将3653000000用科学记数法表示为 3.653×109.【考点】科学记数法—表示较大的数.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.科学记数法形式:a×10n,其中1≤a<10,n为正整数.【解答】解:将3653000000用科学记数法表示为3.653×109.故答案为:3.653×109.10.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是8.5.【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有8个,按从小到大排列后为:7、7、8、8、9、9、9、10.故中位数是按从小到大排列后第4,第5两个数的平均数作为中位数,故这组数据的中位数是×(8+9)=8.5.故答案为:8.5.11.分解因式:x2﹣16=(x﹣4)(x+4).【考点】因式分解-运用公式法.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣16=(x+4)(x﹣4).12.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出∠ABE,最后根据∠EBC=∠ABC﹣∠ABE代入数据进行计算即可得解.【解答】解:∵AB=AC,∠A=36°,∴∠ABC==×=72°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=72°﹣36°=36°.故答案为:36°.13.圆锥底面半径为,母线长为2,它的侧面展开图的面积是π.【考点】圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:圆锥的侧面展开图的面积是π××2=π.故答案为π.14.若关于x的一元二次方程kx2+2(k+1)x+k﹣1=0有两个实数根,则k的取值范围是k≥﹣,且k≠0.【考点】根的判别式.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵a=k,b=2(k+1),c=k﹣1,∴△=4(k+1)2﹣4×k×(k﹣1)=3k+1≥0,解得:k≥﹣,∵原方程是一元二次方程,∴k≠0.故本题答案为:k≥﹣,且k≠0.15.“校园手机”现象受社会普遍关注,某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了扇形统计图.从调查的学生中,随机抽取一名恰好是持“无所谓”态度的学生的概率是9%.【考点】概率公式;扇形统计图.【分析】根据扇形统计图求出持“无所谓”态度的学生所占的百分比,即可求出持“无所谓”态度的学生的概率.【解答】解:恰好是持“无所谓”态度的学生的概率是1﹣35%﹣56%=9%.故答案为:9%.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.【考点】锐角三角函数的定义;勾股定理.【分析】首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是﹣4或6.【考点】坐标与图形性质.【分析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x﹣1|=5,从而解得x的值.【解答】解:∵点M(1,3)与点N(x,3)之间的距离是5,∴|x﹣1|=5,解得x=﹣4或6.故答案为:﹣4或6.18.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中作内接正方形A3B3C3D3;…;依次作下去,则第2019个正方形A2019B2019C2019D2019的边长是.【考点】正方形的性质;等腰直角三角形.【分析】根据等腰直角三角形和正方形的性质可以得出A n D n+1=D n+1C n+1=C n+1B n=A n B n,再结合AB=1即可得出A n B n=,代入n=2019即可得出结论.【解答】解:∵△OA n B n为等腰直角三角形,∴A n D n+1=D n+1C n+1=C n+1B n=A n B n,∵AB=1,∴A n B n=,∴第2019个正方形A2019B2019C2019D2019的边长是.故答案为:.三、解答题(本大题共10小题,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(1)计算:()﹣1+2cos45°﹣(2)化简:÷.【考点】实数的运算;分式的乘除法;负整数指数幂;特殊角的三角函数值.【分析】(1)原式利用负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+2×﹣2=2﹣;(2)原式=﹣•=﹣1.20.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.【考点】解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.【分析】(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;(2)根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.【解答】解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.(2)由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.21.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1.(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中点A1所走过的路线长(结果保留π)【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据平移的定义画出图形即可.(2)根据旋转的定义画出图形即可,点A1所走过的路线长为圆心角为90°,半径为4的弧长.【解答】解;(1)Rt△ABC向右平移5个单位长度后的Rt△A1B1C1如图所示.(2)将Rt△A1B1C1绕点C1顺时针旋转90°,得到Rt△A2B2C2如图所示.点A1所走过的路线长为=2π.22.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.23.心理健康是一个人健康的重要标志之一.为了解学生对心理健康知识的掌握程度,某校从800名在校学生中,随机抽取200名进行问卷调查,并按“优秀”、“良好”、“一般”、“较差”(1)求频数分布表中a、b、c的值.并补全频数分布直方图;(2)请你估计该校学生对心理健康知识掌握程度达到“优秀”的总人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据频数分布直方图60的频率是0.3,计算可得良好的频率为0.5,得出b的频数为30,c的频数为10,(2)根据频数分布表可知优秀学生的频率为0.3,该校有800名学生,即可得出该校学生对心理健康知识掌握程度达到“优秀”的总人数.【解答】解:(1)a=0.5,b=30,c=10,频数分布直方图如图:(2)优秀总人数为800×0.3=240(人).24.现有数字﹣1、1、2各若干,随机拿两个数组成点的坐标(两个数可以重复).请用画树状图或列表的方法罗列所有可能情况,并求组成坐标的点是抛物线y=x2+1上的点的概率.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再根据二次函数图象上点的坐标特征可判断(﹣1,2),(1,2)在抛物线y=x2+1上,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中组成坐标的点是抛物线y=x2+1上的点的结果数为2,所以组成坐标的点是抛物线y=x2+1上的点的概率=.25.九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意得:∠DAB=37°,∠CAB=30°,BC=5m,然后分别在Rt△ABC与Rt△DAB 中,利用正切函数求解即可求得答案.【解答】解:根据题意得:∠DAB=37°,∠CAB=30°,BC=5m,在Rt△ABC中,AB===5(m),在Rt△DAB中,BD=AB•tan37°≈5×0.75≈6.495(m),则CD=BD﹣BC=6.495﹣5=1.495(m).答:这棵树一年生长了1.495m.26.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)【考点】扇形面积的计算;切线的判定.【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD∵OA=OD,∠DAB=45°,∴∠ODA=45°∴∠AOD=90°∵CD∥AB∴∠ODC=∠AOD=90°,即OD⊥CD又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O 的半径为1,AB 是⊙O 的直径,∴AB=2,∵BC ∥AD ,CD ∥AB∴四边形ABCD 是平行四边形∴CD=AB=2∴S 梯形OBCD ===;∴图中阴影部分的面积等于S 梯形OBCD ﹣S 扇形OBD =﹣×π×12=﹣.27.某班将举行“趣味数学知识竞赛”活动,班长安排小明购买奖品,下面是小明买回奖品时与班长的对话情况:小明:买了两种不同的笔记本共40本,单价分别为5元和8元,我领了300元,现在找回68元.班长:你肯定搞错了!小明:哦!我把自己口袋里的13元一起当作找回的钱款了.班长:这就对了!请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?【考点】二元一次方程组的应用.【分析】(1)设5元、8元的笔记本分别买x 本、y 本,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可;(2)根据(1)中求出的5元、8元的笔记本的本数求出应找回的钱数,再与68相比较即可得出结论.【解答】解:(1)设一种笔记本买了x 本,另一种笔记本买了y 本,根据题意,得:,解得:, 答:一种笔记本买了25本,另一种笔记本买了15本;(2)解法一:应找回钱款为300﹣5×25﹣8×15=55≠68,故不能找回68元.解法二:设买m 本5元的笔记本,则买(40﹣m )本8元的笔记本,依题意得,5m +8(40﹣m )=300﹣68,解得:m=,∵m 是正整数,∴m=不合题意,舍去.∴不能找回68元.解法三:买25本5元笔记本和15本8元的笔记本的价钱总数应为奇数而不是偶数,故不能找回68元.28.如图①,点A′、B′的坐标分别为(4,0)和(0,﹣8),将△A′B′O绕点O按逆时针方向旋90°转后得△ABO,点A′的对应点是A,点B′的对应点是点B.(1)写出A、B两点的坐标,并求出直线AB的解析式;(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,点D在线段AB上,点D 不与A、B重合)如图②,使点B落在x轴上,点B的对应点为点E,设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式(包括自变量x的取值范围);②当x为何值时,S的面积最大?最大值是多少?(3)当4<x<8时,是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据旋转的性质可以得到OA=OA′,OB=OB′,则A,B的坐标就可以得到,根据待定系数法就可以求出直线AB的解析式.(2)①OB=8,C点的位置应分两种情况进行讨论,当C在OB的中点或在中点与B之间时,重合部分是△CDE;当C在OB的中点与O之间时,重合部分是梯形,就可以得到函数解析式.②求出S与x之间的函数解析式,根据函数的性质就可以得到面积的最值.(3)分△ADE以点A为直角顶点和△ADE以点E为直角顶点,两种情况进行讨论.根据相似三角形的对应边的比相等,求出OE的长,就可以得到C点的坐标.【解答】解:(1)由旋转得,OA=OA′,OB=OB′,∵点A′、B′的坐标分别为(4,0)和(0,﹣8),∴OA′=4,OB′=8,∴A(0,4),B(8,0),设直线AB的解析式y=kx+b,∴,∴∴直线AB 的解析式y=﹣x +4,(2)①Ⅰ、点E 在原点和x 轴正半轴上时,重叠部分是△CDE .则S △CDE=BC ×CD=(8﹣x )(﹣x +4)=(x ﹣8)2,∵CE=OB=4当E 与O 重合时∴4≤x <8Ⅱ、当E 在x 轴的负半轴上时,设DE 与y 轴交于点F ,则重叠部分为梯形 ∵△OFE ∽△OAB=,∴OF=OE又∵OE=8﹣2x∴OF=4﹣x∴S 四边形CDFO =x {4﹣x +(﹣x +4)=﹣x 2+4x当点C 与点O 重合时,点C 的坐标为(0,0)∴0<x <4综合Ⅰ、Ⅱ得,S=②Ⅰ、当4≤x <8时,s=(x ﹣8)2,∴对称轴是直线x=8,∵抛物线开口向上,∴在4≤x <8中,S 随x 的增大而减小∴当x=4时,S 的最大值=4,Ⅱ、当0<x <4时,s=﹣x 2+4x∴对称轴是直线x=∵抛物线开口向下∴当x=时,S 有最大值为综合①②当x=时,S 有最大值为 (3)存在,点C 的坐标为(5,0)①当△ADE 以点A 为直角顶点时,作AE ⊥AB 交x 轴负半轴于点E , ∵△AOE ∽△BOA∴∵AO=4∴EO=2∴点E坐标为(﹣2,0)∴点C的坐标为(3,0)(舍,4<x<8)②当△ADE以点E为直角顶点时同样有△AOE∽△BOA,∴∴∴EO=2∴E(2,0)∴点C的坐标(5,0)综合Ⅰ、Ⅱ知满足条件的坐标有(5,0).2019年9月16日。

2019年江苏省淮安市中考数学摸底测试试卷附解析

2019年江苏省淮安市中考数学摸底测试试卷附解析

2019年江苏省淮安市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题 1.二次根式3a −中字母a 的取值范围( )A . 3a <B .3a ≤C .3a >D .3a ≥2.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于( )A .50,1B .50,50C .1,50D .1,13. 若a 是关于x 的方程20x bx a ++=的根,且0a ≠,则a b +的值为( )A .1B . 1−C .12D .12−4.若正比例函数的图象经过点(-l ,2),则这个图象必经过点( )A .(1,2)B . (-l ,-2)C .(2,-1)D . (1,-2)5.直线443y x =−−与两坐标轴围成的三角形面积是( )A .3B . 4C . 6D . 126.已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为()A .3B .5C .6D .77.使代数式912x −+的值不小于代数式113x +−的值的x 应为( )A .17x >B .17x ≥C .17x <D .29x ≥8.某青年排球队12名队员的年龄情况如下表:年龄(岁) 18 19 20 21 22 人数(个) 1 4 3 2 2 下列结论正确的是( )A .众数是20岁,中位数是19岁B .众数是19岁,中位数是20岁C .众数是20岁,中位数是19.5岁D .众数是19岁,中位数是19岁9.在全等三角形的判定方法中,一般三角形不具有,而直角三形形具有的判定方法是 ( )A .SSSB .SASC .ASAD .HL10. 下图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .11.如果(3x 2y-2xy 2)÷m=-3x+2y ,则单项式m 为( )A .xyB .-xyC .xD .-y12.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对二、填空题13.二次函数y =ax 2+bx +c 的图象如图所示,且P =| a -b +c |+| 2a +b |,Q =| a +b +c |+| 2a -b |,则P 、Q 的大小关系为 . 14.已知三个数 a=2,b=3 c=3,要使 a :c=b :d ,则d= .15.已知2(34)|1|0x y a x −−+−=中,2y <,则a 的取值范围是 .16.在Rt △ABC 中,∠C = 90°,∠B = 35°,则∠A = .17.若)3)(5(−+x x 是二次三项式152−−kx x 的因式,那么k = .18.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为 .三、解答题19. 如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.20.如图是一个食品包装盒的侧面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面体之和).21.如图,已知 AB 是⊙O的直径,CD⊥AB,垂足为 D,CE 切⊙O于点 F,交 AB 的延长线于点 E. 求证:EF EC EO ED⋅=⋅22.判断下列各组数是否成比例,若成比例请写出比例式:(1)73,143,1,2; (2)5−5352,10723.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):数据段(km)频数频率30~40100.0540~503650~600.3960~7070~80200.10总计1,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此地汽车时速不低于60 km即为违章,则违章车辆共有多少辆?24.为了了解用电量的多少,某家庭在6月初连续几天观察电表的读数,显示如下表:日期1日2日3日4日5日6日7日8日度数(千瓦时)114117121126132135140142则请你估计这个家庭六月份的总用电量是千瓦时.25.已知一个正方体的表面展开图如图所示,请在没有数字的方格内各填入1个数,使得复原以后相对两面的数之和为零.26.如图所示,将△ABC绕点O按逆时针方向旋转60°后,得到△DEF,请画出△DEF.−,现有批一批食品,需要在-27c 下冷藏,如果27.某冷冻厂的一个冷库,现在室温是c 3每小时能降温4c ,要降到所需的温度,需要几小时?28.点P从数轴上的原点出发,先向右移动1个单位长度,再向左移动 2个单位长度,然后向右移动 3个单位长度,再向左移动4个单位长度……向右移动2007个单位长度,再向左移动2008个单位长度,此时停止.(1)点 P共移动了多少个单位长度?(2)终止时,点 P对应的数是多少?29.用四张大小完全相同的长方形纸片拼成的图形如右图所示. 若已知长方形的长为 5 cm,宽为2cm,求图中空白部分的面积.30.七(1)班一次数学测验平均成绩是 85 分,老师以平均成绩为基准,记为 0,超过 85 分的记为正,那么92 分、78 分各记作什么?若老师把某 3 名同学的成绩简记为:-5,0,+8,则这3 名同学的实际成绩分别为多少分?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.B4.D5.C6.A7.B8.B9.D10.C11.B12.D二、填空题13.P <Q14. 33215. 5a >−16.55°17.-218.72°三、解答题19.如图,阴影部分即为小明的活动区域.20.(1)这个多面体是六棱柱;(2)侧面积为6ab ;全面积为2633ab b +.21.连结 OF.由CD ⊥AB ,CE 切⊙O 于点F 可得∠CDE=∠OFE=Rt ∠,又∵∠E=∠E ,∴△DEC ∽△OFE ,EC ED EO EF=,即EF EC EO ED ⋅=⋅ 22.(1)成比例:1423713=;(2)=23.(1)略;(2)略;(3)76辆24.120度25.从左到右依次为9,-7,8 26.略27.6小时28.(1)20082009 123200820170362⨯+++⋅+==,点P共移动了2017036个单位长度;(2)把“向右移动 1个单位,再向左移动2个单位”、“向右移动3个单位,再向左移动4个单位”……分别看成一组,则共有1004组,且每组的移动结果均相当于向左移动 1 个单位,所以共向左移动 1004个单位.即终止时,点 P对应的数是-100429.9 cm230.各记作+7,-7;实际成绩分别为 80 分,85分,93 分。

2019年江苏省13市包括南京扬州宿迁淮安苏州无锡等十三市中考数学试卷及答案WORD解析版

2019年江苏省13市包括南京扬州宿迁淮安苏州无锡等十三市中考数学试卷及答案WORD解析版2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:﹣1=.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m 的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

2019年江苏省淮安市中考数学摸底考试试卷附解析

2019年江苏省淮安市中考数学摸底考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下面简单几何体的主.视图是( ) 2.下面设施并不是为了扩大视野、减少盲区而建造的是( ) A .建筑用的塔式起重机的驾驶室建在较高地方B .火车、汽车驾驶室要建在车头稍高处,且减少车头伸出部分C .指引航向的灯塔建在岸边高处,且灯塔建得也比较高D .建造高楼时首先在地下建造几层地下室3.已知两圆半径分别为1与5,圆心距为4,则这两圆的位置关系是( ) A .外离B .外切C .相交D .内切4.如图,在正方形ABCD 中,点E 在AB 边上,且AE ∶EB =2∶1,AF ⊥DE 于G 交BC 于F ,则△AEG 的面积与四边形BEGF 的面积之比为( ) A .1∶2B .1∶4C .4∶9D .2∶35.如图,已知 C 是线段 AB 上一点 D 是AB 延长线上一点,且AB ACBD CB=,若 AB =8, AC=3. 2,则 BD 的长为( ) A .11.2 B .12 C .25.6D .2.56.用两块全等的有一个角是30°的直角三角板,能拼成不同的平行四边形有( ) A .2个B .3个C .4个D .无数个 7.一种牛奶包装盒标明“净重300g,蛋白质含量≥2.9%” .那么其蛋白质含量为( ) A .2.9%及以上 B .8.7gC .8.7g 及以上D .不足8.7g8.下列四个图形中,轴对称图形的个数是( )①等腰三角形, ②等边三角形, ③直角三角形, ④等腰直角三角形 A . 1个 B .2个 C .3个 D .4个 9.在△ABC 中,∠A=1O5°,∠B-∠C=15°,则∠C 的度数为( )A . 35°B .60°C .45°D .30°10.若2212m nn x y−−与13218m m x y −−是同类项,则2m n +值为( )A . -4B . 163−C .-2D .103−11.将如图①所示的火柴棒房子变成如图②所示的火柴棒房子,需要旋转两根火柴,请你指出按逆时针旋转的火柴棒是( )A .a ,bB .b ,cC . b ,dD .C ,d12.下列物体的形状,类似于圆柱的个数是( ) ①篮球②书本③标枪头④罐头 ⑤水管 A .1个B .2个C .3个D .4个二、填空题13.某商店专卖莱一品牌服装,根据经验,销售的利润与销售定价存在二次函数关系,根据调查,当定价每件 150 元或 300 元时能获得相同利润,则要使利润最大,每件售价应定 元. 14.在△ABC 中,∠A :∠B :∠C=1:2:3,BC=4,那么AB= .15.如图,(1)直线BD 截直线AB 、CD 得到内错角为 ,同位角为 ,同旁内角为 ;(2)直线AB,CD 被直线BC 所截得到内错角为 .16.已知ab=1,则20061111a b ⎛⎫+ ⎪++⎝⎭= .17.代数式12x −与326x +的和是 1,则x= .18.对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元.请你对“5x ”再给出另一个实际生活方面的合理解释: . 19.在数轴上,与表示-1 的点相距2008个单位长度的点所表示的数是 .三、解答题20.某市某大型超市为方便顾客购物,准备在一至二楼之间安装电梯,如图所示,楼顶与地面平行.要使身高2米以下的人在笔直站立的情况下搭乘电梯时,在B 处不碰到头部.请你帮该超市设计,电梯与一楼地面的夹角α最小为多少度?21.已知抛物线y =12x 2+x -52. (1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.22.如图:在四边形ABCD 中,M 是BC 的中点,AM ,BD 互相平分于点 0,求证:AM=DC.23.如图,在Rt ABC △中,90BAC =∠,E F ,分别是BC AC ,的中点,延长BA 到点D ,使12AD AB =.连结DE DF ,. (1)求证:AF 与DE 互相平分; (2)若4BC =,求DF 的长.24.如图所示,□ABCD 中,AE ,CF 分别平分∠BAD ,∠DCB .求证:AFCE 是平行四边形.25.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11=a ,按上述方法所作的正方形的边长依次为n a a a a ,,,,432 ,请求出432,,a a a 的值;⑵根据以上规律写出n a 的表达式.26.在△ABC 中,AB=AC ,点D ,E 分别在边BC ,AC 上. 实验与探究(1)如图①,若∠BAD=30°,AD 是BC 上的高,AD=AE ,则∠EDC= ; (2)如图②,若∠BAD=40°,AD 是BC 上的高,AD=AE ,则∠EDC= .归纳与发现(3)通过对图①,②的观察和对∠EDC 的探究,当AD 是BC 上的高,AD=AE 时,你会发现∠BAD 与∠EDC 之间有什么关系?请用式子表示; 运用与推广(4)如图③,如果AD 不是BC 上的高,AD=AE ,上述关系是否成立?若成立,请你写出来,并说明理由;若不成立,请举出反例.27.在计算器上按下面的程序进行操作:请问:y 是x 的函数吗?如果是,写出它的表达式;如果不是,说明理由.28.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6. 求旗杆高度的平均数,中位数,众数各是多少?29.如图,AB ∥CD ,∠3=∠4,则BE ∥CF ,请说明理由.30.试说明不论 x 、y 取何值时,代数式322333222332(3561)(222)(4731)x x y xy y x y xy x y x y y x xy +−++−−−−−−+−−−的值是一个常数.241 3 A B CDE F【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.C5.B6.B7.C8.C9.D10.A11.BB二、填空题 13. 22514.815.(1)∠7与∠ABD,∠1与∠4,∠4与∠ABD ;(2)∠2与∠C16.117.7618. 某人以5千米/时的速度走了x 小时,他走的路程是5x 千米(答案不唯一)19.-2009或 2007三、解答题 20.解:如图,过点B 作BE ⊥AD 交AD 于E ,交AC 于F依题意有:BF=2,DE=BC=32,∵CD=4,∴EF=2又AD AECD EF =,∴3242+=AE AE ,∴32=AE 在Rt △AEF 中,33322tan ===AE EF α,∴∠α=30°答:电梯与一楼地面的夹角α最小为30°.21.(1)抛物线的顶点坐标为(-1,-3),对称轴是直线x=-1;(2)AB=26 ..提示:连结MD23.证明:(1)连结EF AE ,. 点E F ,分别为BC AC ,的中点,12EF AB EF AB ∴=,∥. 又12AD AB =,EF AD ∴=. 又EF AD ∥,∴四边形AEFD 是平行四边形.∴AF 与DE 互相平分.(2)在Rt ABC △中,E 为BC 的中点,4BC =,122AE BC ∴==. 又四边形AEFD 是平行四边形,2DF AE ∴==24.证明AE ∥CF 即可25.解:⑴11=a ,211222=+=a ,()()222223=+=a2222224=+=a .⑵12−=n n a .∵12111==−a ,22122==−a22133==−a ,222144==−a , ∴12−=n n a .26.(1)15°(2)20°(3)∠EDC=12∠BAD(4)仍成立,理由如下:∵AB=AC ,∴∠B=∠C.∵AD=AE ,∴∠ADE=∠AED. 在△EDC 中,∠AED= ∠C+∠EDC. 在△ADB 中,∠ADE+∠EDC =∠BAD+∠ B ,∴∠EDC=12∠BA27.y 是x 的函数,y=3x+528.平均数:22.12 m ,中位数:20.0 m,众数:20.0 m29.∵AB∥CD,∴∠ABC=∠DCB,∵∠3=∠4,∴∠ABC-∠3=∠DCB-∠4,∴∠2=∠1,∴BE∥CF30.4。

2019年江苏省淮安市中考数学一调试卷附解析

2019年江苏省淮安市中考数学一调试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .503mC .100mD .1003m2.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x −+=的两个根,ABC△内一点P 到三边的距离都相等.则PC 为( )A .1B .2C .322D .223.如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是两腰的中点,且AD=5,BC=7,则EF 的长为( )A .6B .7C .8D .94.下列结论:①平行四边形内角和为360°;②平行四边形对角线相等; ③平行四边形对角线互相平分;④平行四边形邻角互补.其中正确的个数是( ) A .1 B .2 C .3 D .45.把方程)2(5)2(−=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A .10,3,1− B .10,7,1− C .12,5,1− D .2,3,16.已知点P 在x 轴下方,在y 轴右侧.且点P 到x 轴的距离是3,到y 轴的距离是2.则点P 的坐标是( )A . (2,-3)B .(3,-2)C .(-2,3)D .(-3,2) 7.如图,直线AE ∥CD,∠EBF=135°,∠BFD=60°,则∠D 等于( )A .75°B .45°C .30°D .15°8.十位学生的鞋号由小到大分别是20、21、22、22、22、22、23、23、24、24。

这组数据的平均数、中位数、众数中鞋厂最感兴趣的是( )A .平均数B .众数C .中位数D .平均数和中位数9.某牛奶厂家接到 170万箱牛奶的订购单,预计每天加工完 10万箱,正好能按时完成,后因客户要求提前3天交货,设每天应多加工x 万箱,则可列方程( )A .17017031010x +=+B .17017031010x −=+ F E D CB AC .17017031010x −=+D .17017031010x +=+10.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①2001年的利润率比2000年的高2%;②2002年的利润率比2001年的利润率高8%;③这三年的平均利润率为14%;④这三年中2002年的利润率最高.以上判断正确的结论有( )A .1个B .2个C .3个D .4个 11.若25x a b 与30.2y a b −是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =−,2y =−D .3x =,2y =− 12.下列判断中错误..的有( ) ①每一个正数都有两个立方根②零的平方根等于零的算术平方根③没有平方根的数也没有立方根④有理数中绝对值最小的数是零A .1 个B .2 个C .3 个D .4 个 13.9416 ) A .34 B .324± C .223 D 173414. 下列说法不正确的是( )A .8 和-8 互为相反数B .8 是-8 的相反数C .-8 是8 的相反数D .-8 是相反数15.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )A .-1,1B .2,3C . 3,1D .1,l二、填空题16.若tanx=0.2378, 则x= (精确到l ′).17.如图所示,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,要使△ABE ∽△ACD ,需添加一个条件是 (只要写一个条件) .18.(1)x 的3 倍不小于 9,用不等式表示为 ,它的解集为 ; (2)x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 ; 的相反数的 2倍与13的差小于23,用不等式表示为 ,它的解(3)x 集为 . 19.等腰三角形的周长是l0,腰比底边长2,则腰长为 .20.01(1)2π−−⨯= ;32(63)(3)a a a −÷= .21.当3=x 或5−=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。

2019年江苏省淮安市中考数学十年真题汇编试卷附解析

2019年江苏省淮安市中考数学十年真题汇编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( ) A .DCE △B .四边形ABCDC .ABF △D .ABE △2.若正比例函数2y x =−与反比例函数ky x=的图象交于点A ,且A 点的横坐标是1−,则此反比例函数的解析式为( )A .12y x=B .12y x=−C .2y x= D .2y x=−3.下列说法中不正确的是( ) A .位似图形一定是相似图形; B .相似图形不一定是位似图形;C .位似图形上任意一对对应点到位似中心的距离之比等于位似比;D .位似图形中每组对应点所在的直线必相互平行.4.如图,⊙O 的直径AB=8,P 是上半圆(A 、B 除外)上任意一点,∠APB 的平分线交⊙O 于点C ,弦EF 过AC 、BC 的中点M 、N ,则EF 的长是( ) A .43B .23C .6D .255. 已知二次函数2(3+4y x =−−),当一 1≤x ≤时,下列关于最大值与最小值的说法正确的是( )A .有最大值、最小值分别是 3、0B .只有最大值是 4,无最小值C .有最小值是-12,最大值是 3D .有最小值是-12,最大值是 4 6.下列命题中,是真命题的是 ( ) A .同位角相等B .一组对边相等,另一组对边平行的四边形是平行四边形C .如果|a|=|b|,那么a =bD .夹在两条平行线间的平行线段相等 7.下列语句中是命题的有( ) (1)两点之间线段最短;(2)不在同一直线上的三点确定一个平面; (3)画出△ABC 的高;(4)三个角对应相等的两个三角形不一定全等. A .1个 B .2个 C .3个D .4个8.已知213y x x =−,226y x =−,当12y y =时,x 的值为( ) A .2x =或3x =B .1x =或6x =C .1x =−或6x =D .2x =−或3x =−9.将一个立方体沿某些棱展开后,能够得到的平面图形是( )A .B .C .D . 10.如果22(3)(5)0x y x y +−+−+=,那么22x y −的值是( )A .8B .-8C . 15D .-1511.下列说法中正确的是( ) A .圆是轴对称图形,对称轴是圆的直径 B .正方形有两条对称轴 C .线段的对称轴是线段的中点D .任意一个图形,若沿某直线对折能重合,则此图形就是轴对称图形 12.下列直线的表示中,正确的是( ) A .直线A B .直线AB C .直线ab D .直线A b 13.下列物体的形状类似于球的是( )A .茶杯B .羽毛球C .乒乓球D .白炽灯泡14. m 箱橘子a (kg ),则 3箱橘子的重量是( ) A .3am(kg ) B .3ma(kg ) C .3am (kg )D .3am(kg ) 二、填空题15.己将二次函数23(2)4y x =+−的图象向右平移 1 个单位,再向上平移 3 个单位得到 .16.如图,已知等腰梯形ABCD 的中位线EF 的长为5,腰AD 的长为4,则这个等腰梯形的周长为 .17.必然发生的事件的概率为 ,不可能发生的事件的概率为 ,不确定事件发生的概率介于 与 之间.18.把下面的几何体的名称用序号填在相应的位置.①圆锥②圆柱③正方体④球⑤长方体⑥三棱柱 19.-8的立方根是 ,立方根等于4的数是 .三、解答题20. 如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.21.某公司现有甲、乙两种品牌的打印机,其中甲品牌有A B ,两种型号,乙品牌有C D E ,,三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机. (1)利用树状图或列表法写出所有选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C 型号打印机被选购的概率是多少? (3)各种型号打印机的价格如下表:甲品牌 乙品牌 型号 A B C D E 价格(元) 2000 1700 1300 1200 1000元,问E 型号的打印机购买了多少台?22.已知:如图,A B C ,,三个村庄在一条东西走向的公路沿线上,2AB =千米.在B 村的正北方向有一个D 村,测得45DAB ∠=,28DCB ∠=,今将ACD △区域进行规划,除其中面积为0.5平方千米的水塘外,准备把剩余的一半作为绿化用地,试求绿化用地的面积. (结果精确到0.1平方千米,sin 280.4695=,cos 280.882=,tan 280.5317=)23.如图①所示,已知AE 是△ABC 的高,F 是AE 上的任意一点,G 是E 点关于F 的对称点,过点G 作BC 的平行线与AB 交于点H ,与AC 交于点I ,连结IF 并延长交BC 于点J ,连结HF 并延长交BC 于点K .(1)请你在图②中再画出一个满足条件的四边形HJKI(点F 的位置与图①不同); (2)请你判断四边形HJKl 是怎样的四边形?并对你得到的结论予以证明(图②供思考用).24.试比较54−与76−两数的大小,并说明理由.25.如图,∠1 =∠2,∠1+∠3 =180,问CD 、EF 平行吗?为什么?26.用如图的大正方形纸片 3 张,小正方形纸片2 张,长方形纸片5 张,将它们拼成一个大长方形,并运用面积的关系,将多项式22352a ab b++分解因式.22352(32)()a ab b a b a b++=++27.如果想剪出如图所示的图案,你怎样剪?设法使剪的次数尽可能少.28.在一张由复印机印出来的纸上,一个多边形的一条边由原来的1 cm变成了4 cm,那么这次复印放缩比例是多少?这个多边形的周长发生了怎样的变化?29.汽车轮胎直径为80 cm,轮胎滚动一周后,轴心平移了多少距离?30.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“−”,刚好50km的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km)8−11−14−016−41+8+(2)若每行驶100km需用汽油8L,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?(可用计算器计算)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.A5.D6.D7.C8.A9.C10.D11.DB13.C14.D二、填空题 15.23(1)1y x =+−16.1817.1,0,0,118.②、③、⑤、⑥、④、①19.-2,64三、解答题 20.如图,阴影部分即为小明的活动区域.21.解:(1)所列树状图或列表表示为:C D E AA ,C A ,D A ,EB B ,CB ,DB ,E结果为:()()()()()()A C A D A E B C B D B E ,,,,,,,,,,,; (2)由(1)知C 型号的打印机被选购的概率为2163=; (3)设选购E 型号的打印机x 台(x 为正整数),则选购甲品牌(A 或B 型号)(30)x −ACD EB CD E由题意得:当甲品牌选A 型号时:1000(30)200050000x x +−⨯=,解得10x =, 当甲品牌选B 型号时:1000(30)170050000x x +−⨯=,解得107x =(不合题意) 故E 型号的打印机应选购10台.22.2.6S 绿地≈平方千米.23.(1)作图与①类似;②四边形HJKI 为平行四边形,证略24..平行,说明∠CDF+∠3=180°26.22352(32)()a ab b a b a b ++=++27.由于该图是轴对称图形,所以先把纸对折,然后沿折痕把对称轴的一侧图画上,再进行剪28.1:4,扩大到原来的4倍29.80πcm30.(1)1500km ;(2)6825.6元略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 16 页 2019年江苏省淮安市中考数学试卷解析版 一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(3分)﹣3的绝对值是( )

A.−13 B.﹣3 C.13 D.3 【解答】解:﹣3的绝对值是3. 故选:D. 2.(3分)计算a•a2的结果是( ) A.a3 B.a2 C.3a D.2a2 【解答】解:原式=a1+2=a3. 故选:A. 3.(3分)同步卫星在赤道上空大约36000000米处.将36000000用科学记数法表示应为( ) A.36×106 B.0.36×108 C.3.6×106 D.3.6×107 【解答】解:36 000 000=3.6×107, 故选:D. 4.(3分)如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是( )

A. B. C. D. 【解答】解:从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:

故选:C. 5.(3分)下列长度的3根小木棒不能搭成三角形的是( ) 第 2 页 共 16 页

A.2cm,3cm,4cm B.1cm,2cm,3cm C.3cm,4cm,5cm D.4cm,5cm,6cm 【解答】解:A、2+3>4,能构成三角形,不合题意; B、1+2=3,不能构成三角形,符合题意; C、4+3>5,能构成三角形,不合题意; D、4+5>6,能构成三角形,不合题意. 故选:B. 6.(3分)2019年淮安市“周恩来读书节”活动主题是“阅读,遇见更美好的自己”.为了解同学们课外阅读情况,王老师对某学习小组10名同学5月份的读书量进行了统计,结果如下(单位:本):5,5,3,6,3,6,6,5,4,5,则这组数据的众数是( ) A.3 B.4 C.5 D.6 【解答】解:在这一组数据中,5是出现的次数最多,故这组数据的众数是5. 故选:C. 7.(3分)若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是( ) A.k<﹣1 B.k>﹣1 C.k<1 D.k>1 【解答】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根, ∴b2﹣4ac=4﹣4×1×(﹣k) =4+4k>0, ∴k>﹣1. 故选:B. 8.(3分)当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是( )

A. B. 第 3 页 共 16 页

C. D. 【解答】解:∵根据题意xy=矩形面积(定值), ∴y是x的反比例函数,(x>0,y>0). 故选:B. 二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上) 9.(3分)分解因式:1﹣x2= (1+x)(1﹣x) . 【解答】解:1﹣x2=(1+x)(1﹣x). 故答案为:(1+x)(1﹣x). 10.(3分)现有一组数据2,7,6,9,8,则这组数据的中位数是 7 . 【解答】解:数据2,7,6,9,8,从小到大排列为:2,6,7,8,9, 故这组数据的中位数是:7. 故答案为:7.

11.(3分)方程1𝑥+2=1的解是 x=﹣1 .

【解答】解:方程两边都乘以(x+2),得1=x+2, 解得,x=﹣1, 经检验,x=﹣1是原方程的解, 故答案为:x=﹣1. 12.(3分)若一个多边形的内角和是540°,则该多边形的边数是 5 . 【解答】解:设这个多边形的边数是n, 则(n﹣2)•180°=540°, 解得n=5, 故答案为:5.

13.(3分)不等式组{𝑥>2𝑥>−1的解集是 x>2 . 第 4 页 共 16 页

【解答】解:根据“同大取大;同小取小;大小小大中间找;大大小小找不到.”得 原不等式组的解集为:x>2. 故答案为:x>2. 14.(3分)若圆锥的侧面积是15π,母线长是5,则该圆锥底面圆的半径是 3 . 【解答】解:设该圆锥底面圆的半径是为r,

根据题意得12×2π×r×5=15π,解得r=3.

即该圆锥底面圆的半径是3. 故答案为3. 15.(3分)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF= 4 .

【解答】解:∵l1∥l2∥l3, ∴𝐴𝐵𝐵𝐶=𝐷𝐸𝐸𝐹, 又AB=3,DE=2,BC=6, ∴EF=4, 故答案为:4. 16.(3分)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折

叠,点B落在矩形内点P处,连接AP,则tan∠HAP= 43 .

【解答】解:如图,连接PB,交CH于E, 由折叠可得,CH垂直平分BP, ∴E为BP的中点, 第 5 页 共 16 页

又∵H为AB的中点, ∴HE是△ABP的中位线, ∴AP∥HE, ∴∠BAP=∠BHE, 又∵Rt△BCH中,tan∠BHC=𝐵𝐶𝐵𝐻=43, ∴tan∠HAP=43, 故答案为:43.

三、解答题(本大题共有11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)计算: (1)√4−tan45°﹣(1−√2)0; (2)ab(3a﹣2b)+2ab2. 【解答】解:(1)√4−tan45°﹣(1−√2)0 =2﹣1﹣1 =0;

(2)ab(3a﹣2b)+2ab2 =3a2b﹣2ab2+2ab2 =3a2b.

18.(8分)先化简,再求值:𝑎2−4𝑎÷(1−2𝑎),其中a=5. 【解答】解:𝑎2−4𝑎÷(1−2𝑎) =𝑎2−4𝑎÷(𝑎𝑎−2𝑎)

=(𝑎+2)(𝑎−2)𝑎•𝑎𝑎−2 第 6 页 共 16 页

=a+2, 当a=5时,原式=5+2=7. 19.(8分)某公司用火车和汽车运输两批物资,具体运输情况如下表所示: 所用火车车皮数量(节) 所用汽车数量(辆) 运输物资总量(吨) 第一批 2 5 130 第二批 4 3 218 试问每节火车车皮和每辆汽车平均各装物资多少吨? 【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨, 根据题意,得{2𝑥+5𝑦=1304𝑥+3𝑦=218, ∴{𝑥=50𝑦=6, ∴每节火车车皮装物资50吨,每辆汽车装物资6吨; 20.(8分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.

【解答】证明:∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC, ∵点E、F分别是▱ABCD边AD、BC的中点, ∴DE=12AD,BF=12BC, ∴DE=BF, ∴四边形BFDE是平行四边形, ∴BE=DF. 21.(8分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下) 第 7 页 共 16 页

请解答下列问题: (1)该企业员工中参加本次安全生产知识测试共有 40 人; (2)补全条形统计图; (3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数. 【解答】解:(1)20÷50%=40, 所以该企业员工中参加本次安全生产知识测试共有40人; 故答案为40; (2)C等级的人数为40﹣8﹣20﹣4=8(人), 补全条形统计图为:

(3)800×840=160,

所以估计该企业员工中对安全生产知识的掌握能达到A级的人数为160人. 22.(8分)在三张大小、质地均相同的卡片上各写一个数字,分别为5、8、8,现将三张卡片放入一只不透明的盒子中,搅匀后从中任意摸出一张,记下数字后放回,搅匀后再任意摸出一张,记下数字. (1)用树状图或列表等方法列出所有可能结果; (2)求两次摸到不同数字的概率. 【解答】解:(1)画树状图如图所示: 所有结果为:(5,5),(5,8),(5,8),(8,5),(8,8),(8,8),(8,5),(8,8),(8, 第 8 页 共 16 页

8); (2)共有9种等可能的结果,两次摸到不同数字的结果有4个,

∴两次摸到不同数字的概率为49.

23.(8分)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点). (1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1; (2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2; (3)连接AB2、BB2,求△ABB2的面积.

【解答】解:(1)线段A1B1如图所示; (2)线段A1B2如图所示; (3)S△𝐴𝐵𝐵2

=4×4−12×2×2−12×2×4−12×2×4=6.

24.(10分)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,

相关文档
最新文档