信号与系统 第14讲
信号与系统绪论

2019/9/17
10
3. 信号(signal):信号是信息的载体(蕴含
信息的具体内容),信息通过信号表现和传 递 。信号广泛地出现在各个领域中,以各种 各样的表现形式携带着特定的消息。
光信号、声信号、电信号。
为了有效地传播和利用信息,常常需要 将信息转换成便于传输和处理的信号形式。 电信号易产生、便于控制,容易处理,电信 号与非电信号之间可以相互转换。本课程中 的信号就是指“电信号”。
• 信号的分解 任何信号都可以分解为基本信号的
线性叠加 • LTI系统的分析方法
求任意信号经过 LTI系统后的输出
2019/9/17
7
《信号与系统》的教学内容
两种系统,两类方法,三大变换
两种系统是指本门课程研究的系统按照其处理的对象
而言可以分为连续时间系统和离散时间系统两种;
两类方法是指课程使用的分析方法可以分为时域分析
例子:
f1(t)
1
f2(t)
1
f3(t)
1
f1(t)t
1 1t 1 f2(t)0 其它
-1 0 1 t
-1
f5(t)
1
-1 0 1 t
-1
f6(t)
1
-1 0 1 t
-1
f7(t)
1
t1 1t1
f3(t)
t
其它
f1(t)f2(t)
f5(t)sint()
0
t
0
离散周期信号 f(n) 满足
f(n)=f(n+mN) m=0, ±1, ±2, …
满足上式的最小N值称为f(n)的周期。
不具有周期性的信号称为非周期信号。
信号与系统教案

第 1 次课 2 学时 授课时间 课题(章节) 第一章 绪论 引言 信号概述 教学目的与要求: 了解信号与常用信号,熟练掌握信号描述的各种方法。
教学重点、难点: 对该课程的认识,强调该课的学习方法和要求,以及该课程在今后课程中的作用。 信号的表示方法。 教学方法及师生互动设计: 以通信系统为例,导入信号与系统的教学任务,简单介绍通信系统的知识,让学生逐渐进入专业学习,领会该课程在今后专业学习中所发挥的作用。 板书与PPT演示相结合介绍常见信号,并通过若干例子进一步阐述所讲内容,深化理解信号的表示方法。
课堂练习、作业:
课后小结: 按计划完成内容,通过通信系统实例讲解信号与系统课程作用,使学生对专业有进一步了解。 讲解常见信号,使学生能运用表达式、图形等来描述信号. 第 2 次课 2 学时 授课时间 课题(章节) 2 信号运算 教学目的与要求: 熟练掌握信号描述的各种方法,及信号的基本变换,能熟练进行信号的运算.
教学重点、难点: 信号的变换及计算。
教学方法及师生互动设计: 板书与PPT演示相结合逐步介绍信号的加、减、乘、除,以及时移、反转等变换. 通过部分习题例子来讲解信号是如何变换及计算的,最后布置习题,让学生进一步加强对知识的理解,并通过习题对其加深理解。
课堂练习、作业: 补充习题
课后小结: 本节是重点内容,讲解稍慢。通过多举习题,提高学生解题能力。与学生互动发现学生接收过程偏慢,其原因是学生的基本计算能力还需要提高,应讲解更细致更慢。 第 3 次课 2 学时 授课时间 课题(章节) 3 系统概述
教学目的与要求: 了解系统分类的思路,熟练掌握连续﹑动态﹑时不变线性系统的描述方法和数学模型,对算子法表示系统应能正确运用.
教学重点、难点: 掌握线性时不变系统的辨别,强调线性、时不变性、因果性的独立。 教学方法及师生互动设计: 先列举部分系统,导入LTI系统,然后列举习题,让学生判别LTI系统. 板书与PPT演示相结合介绍其系统的描述方法和数学模型。
信号与系统周期信号的傅立叶级数展开

满足一定条件的周期函数 f ( t ) 可用三角函数集表示为
狄里 赫利
f(t)a 0 a nco sn0 tb nsinn0 t
n 1
0
2 T
条件
a0
1 T
t1T t1
f(t)dt
a n , bn
称为傅立叶系
数
an
t0 T t0
f (t) cos n0tdt
t0 T t0
cos2
n0tdt
信P87号图与4系-2-2统f( t) 4 [ s in0 t 1 3 s in 3 0 t 1 5 s in 5 0 t L 1 n s in n 0 t L ]
f1
(t)
4
sin
0tfLeabharlann 2(t)4
(sin 0t
1 3
sin
30t)
2
0
2 t
2
0
2 t
(a)
f
3
(t)
4
(sin
周期信号
周期信号的特点:
(1)它是一个无穷无尽变化的信号,从理论上也是无始无终的,时间
范围为(, )
(2)如果将周期信号第一个周期内的函数写成 f 0 ( t ),则周期信号 f ( t )
可以写成
f (t) f0(t nT) n
(3)周期信号在任意一个周期内的积分保持不变,即有
aT
bT
T
f(t)dt f(t)dtf(t)dt
f(t)A0Ancon s0tn
n1
两种形式之间系数有如下关系:
A0 a0
An an2 bn2
n 1, 2, L
或
n
arctg
《信号与系统》课程教学大纲

《信号与系统》课程教学大纲一、课程基本信息1、课程编号:14L181Q2、课程体系/类别:大类专业基础/主干课程3、学时/学分:48/34、先修课程:高等数学、工程数学、电路分析5、适用专业:通信工程、自动化、铁道信号、电子科学与技术二、课程教学目标及学生应达到的能力本课程是大学本科二年级电子信息类本科生必选的技术基础课程。
本课程教学目标是使学生牢固掌握信号与系统的基本原理和基本分析方法,掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念,为学生进一步学习后续课程打下坚实的基础。
通过本课程的学习,使学生在分析问题和解决问题的能力上有所提高,并能够自主性学习,具有一定的创造性工作能力。
本课程主要支撑以下毕业要求指标点:1.2 将具体工程问题抽象为数学、物理问题,选择适当的模型进行描述,并理解其局限性本课程核心内容是信号的表示和系统的描述,包括利用数学的方法将信号从不同角度进行表示;根据实际系统建立描述系统的数学模型,并从不同的域对系统进行描述;理解信号与系统时域、频域和复频域的特点及适用情况,从而根据具体问题选择合适的域进行分析。
1.3 对模型进行推理求解和必要的修正改进本课程在讲授信号的表示和系统的描述的基础上,介绍根据系统的描述,利用信号的表示和线性非时变系统的特性从不同域求解系统模型,即求解系统的响应。
2.2 运用专业基础理论与方法,进行通信信号分析和通信系统设计实现本课程讲授了从时域、频域和复频域进行信号分析,从时域、频域和复频域进行系统描述及系统响应求解,为通信工程、铁道信号、自动化、电子技术等电子信息类专业奠定基础。
三、课程教学内容和要求(一)课程主要知识点、要求及课时分配(二)课程重点、难点1.信号与系统分析导论(2学时)重点:确定信号及线性非时变系统的特性。
难点:线性非时变系统的判断。
信号与系统参考习题解答

收敛域为|2z|<1,即|z|< ;极点为z= ;零点为z=0。
23.用长除法、留数定理、部分分式法求以下X(z)的z反变换:
(1) (2)
(3)
解:(1)①长除法求解
可知极点为 而收敛域为 。因而x(n)为因果序列,所以分子、分母要按降幂排列。
即
所以
②留数定理法求解
,设c为 内的逆时针方向闭合曲线。
y'(n)=3x(n-n0)+2
因为
y(n-n0)=2x(n-n0)+2=y'(n)
故该系统是时不变的。再讨论线性。由于
y(n)=T[ax1(n)+bx2(n)]
=3ax1(n)+3bx2(n)+2
而
T[ax1(n)]=3ax1(n)+2
T[bx2(n)]=3bx2(n)+2
所以得
T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)]
(2)根据脉冲定理,脉冲频率fs≥2f,取=fs=2f=200Hz。脉冲时间间隔应为
T=1/f=1/200=0.005s
(3)设采样周期为T=1/f=0.005s采样信号xa(t),则
=
=0
所以,以T=1/f=0.005s为采样周期,采样信号xa(t),所得采样序列 无法恢复信号xa(t)。为能恢复xa(t),应减小采样周期T(采样频率由T确定)。设新采样周期为原采样周期的一半,即T=0.0025s,则采样信号 为
(3)y(n)=x(n-1) (4)y(n)=x(-n)
要点提示:
利用系统线性定义和时不变定义来证明。满足可加性和比例性的系统是线性系统,即
信号与系统_王明泉_课件第1章

O
f t 1 O
通常把 称为指数信号的时间常数,记作,代表信 号衰减速度,具有时间的量纲。 重要特性:其对时间的微分和积分仍然是指数形式。
t
信号与系统
第1章 信号与系统概述
22 /48
衰减正弦信号:
K e t sint f (t ) 0
重要特性:同指数信号
f (t )
应用数学知识较多,用数学工具分析物理概念; •常用数学工具: 微分、积分(定积分、无穷积分、变上限积分) 线性代数 微分方程、差分方程 傅里叶级数、傅里叶变换、拉氏变换、z 变换
•经典教材:信号与系统 奥本海姆著 信号与系统 郑君里
信号与系统
第1章 信号与系统概述
5 /48
学习方法
•注重物理概念与数学分析之间的对照,不要盲 目计算; •注意分析结果的物理解释,各种参量变动时的 物理意义及其产生的后果; •同一问题可有多种解法,应寻找最简单、最合 理的解法,比较各方法之优劣; •在学完本课程相当长的时间内仍需要反复学习 本课程的基本概念。
t
2
f t
E
0.78 E
E e
O
2
t
钟形脉冲(高斯)信号最重要的性质是其傅立 叶变换也是钟形脉冲(高斯)信号,在信号分析中 占有重要地位。
返回
信号与系统
第1章 信号与系统概述
28 /48
1.4 奇异信号ቤተ መጻሕፍቲ ባይዱ其基本特性
1.4.1 单位斜变信号
单位斜变信号
0 t 0 f (t ) t t 0
????ttt???jjeej21sin???????ttt???jjee21cos???第1章信号与系统概述2448信号与系统1322复指数信号为复数称为复频率j????????s均为实常数??????tktktktfttst????sinejcosee????????讨论??????????????????????衰减指数信号升指数信号直流衰减指数信号升指数信号直流000000????????????振荡衰减增幅等幅振荡衰减增幅等幅????????????????????????????????000000????????????均为实常数??第1章信号与系统概述2548信号与系统133矩形脉冲和三角脉冲矩形脉冲信号的表示式为????????2021??tttf?三角脉冲信号的表示式为?????????20221???ttttf第1章信号与系统概述2648信号与系统134抽样信号tttsinsa?t??tsa123o?性质
信号与系统信号与系统的基本概念46页PPT
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
信号与系统信号与系统的基本概念
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事Байду номын сангаас情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
信号与系统1.4
练习:化简下列各式子的值
sin( t ) ( t ) dt sin( ) 4 4
3 9
2 sin( t ) (t ) sin( ) (t ) (t ) 4 4 2
2 2
sin(t 4 ) (t 1) ?
0
单位冲激函数是个奇异函数,它是对强度极大,作 用时间极短一种物理量的理想化模型。可直观定义为:
, t 0 (t ) 0, t 0
且:
0) (t )dt 1(注:积分限只要包含
* 定义表明δ函数除原点以外,处处为零,但其面积为1。
d (t ) lim p (t ) lim (t ) 0 0 dt 冲激函数与阶跃函数的关系: d d d ( t() ( t ) lim t) lim (t ) p ( t ) lim 0 0 dt 0 dt dt
1.4 阶跃信号和冲激信号
1.4.1 连续时间阶跃信号
(t) (t-t0 )
1
1tLeabharlann otot0 (c)
t
(b )
图 1.4-1 单位阶跃信号
函数ε(t) 在t=0处由零立即跃变到1,其斜率为无限大,
定义此函数为连续时间单位阶跃信号,简称单位阶跃信号,
用ε(t)表示, 即
0(t 0) 0(t 0) (t ) lim ((tt)) lim (t ) 0 0 1 (t 0) 1(t 0)
f `(t)
求导
t -1 0 1 (-2) f `(t) = 2δ(t+1)- 2δ(t-1) t
《信号与系统》复习重点
《信号与系统》期末复习重点一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,高等教育出版社,2007年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章 周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章 非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier 变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
信号与系统课后答案(PDF)
第二章第二章 课后题答案课后题答案2-1.1.图题2-1所示电路,求响应u 2(t)对激励f(t)的转移算子H(p)及微分方程。
解 其对应的算子电路模型如图题2.1(b )所示,故对节点①,②可列出算子形式的KCL 方程为= +++−=−+0)(111)(1)()(1)(1312121t u p p t u p t f t u p t u p即()=+++−=−+0)(1)()()()(13122121t u p p t u t pf t u t u p联解得)()()(443)(22t f p H t f p p t u =++=故得转移算子为443)()()22++==p p t f t u p H (u 2(t)对f(t)的微分方程为())()(t f t u p p 34422=++即)(t f t u t u dt d t u dt d 3)(4)(4)(22222=++2-2图题2-2所示电路,求响应i(t)对激励f(t)的转移算子H(p)及微分方程。
解 其对应的算子电路模型如图2.2(b)所示。
故得)()(t f p p p p pp t f t i 3011101022221.01)(2+++=+×++=故得转移算子为30111010)()()(2+++==p p p t f t i p Hi(t)对f(t)的微分方程为)()1010()()3011(2t f p t i p p +=++即)(10)(10)(30)(11)(22t f t f dt d t i t i dt d t i dt d +=++2-3图题2-3所示电路,已知u C (0-)=1 V, i(0-)=2 A。
求t>0时的零输入响应i(t)和u C (t)。
解 其对应的算子电路模型如图题2.3(b)所示。
故对节点N 可列写出算子形式的KCL 方程为0)(2312= ++t u p p C又有uc(t)=pi(t),代入上式化简,即得电路的微分方程为=====++−+−+1)0()0(2)0()0(0)()23(2c cu u i i t i p p电路的特征方程为0232=++p p故得特征根(即电路的自然频率)为p 1=-1,p 2=-2。