轧制变形基本原理
轧制原理与工艺

轧制原理与工艺
嘿,朋友们!今天咱来聊聊轧制原理与工艺,这可真是个有意思的事儿啊!
你想啊,轧制就像是一场钢铁的奇妙变形记。
把那些硬邦邦的钢坯啊,通过巨大的压力和不断的滚压,变得又薄又长,就好像是给钢铁施了魔法一样。
咱就说那轧制过程,钢坯被送进轧机里,就像是进入了一个超级大力士的怀抱。
轧辊不停地转动,挤压着钢坯,让它一点点地改变形状。
这不就跟咱揉面团似的嘛,只不过这个“面团”可硬得多啦!
那轧制工艺呢,可就有讲究了。
就像厨师做菜,火候、调料都得恰到好处。
轧制的时候,温度、速度、压力等等,每一个因素都得拿捏得稳稳的。
温度高了不行,低了也不行;速度快了容易出问题,慢了又影响效率。
这可不是随便玩玩就能搞定的事儿哟!
而且啊,不同的钢材需要不同的轧制方法。
有的要反复轧制好多遍,就像雕琢一件艺术品一样,得精心打磨。
这可不是一朝一夕就能学会的本事,得靠经验的积累和不断地尝试。
再想想,要是没有轧制工艺,咱们的生活得少多少东西啊!那些高楼大厦的钢梁、汽车的车身、家里的铁锅,哪一个离得开轧制出来的钢材呢?这轧制工艺简直就是现代工业的脊梁啊!
你说轧制是不是很神奇?它能把那么硬的东西变得服服帖帖,还能变出各种各样我们需要的形状。
这可不是随随便便就能做到的,得靠那些专业的师傅们,用他们的智慧和技术,才能让轧制工艺发挥出最大的作用。
所以啊,轧制原理与工艺可真不是简单的事儿,它是一门大学问!它让我们的生活变得更加丰富多彩,让那些钢铁有了新的生命和价值。
咱可得好好感谢那些默默奉献的轧制工人和技术人员们,是他们让这一切成为可能啊!这轧制啊,真的是太了不起啦!。
轧钢工艺简介ppt课件

采用隔声、吸声等措施,降低噪声对周围环境的影响。
绿色轧钢工艺的发展趋势
短流程生产
采用短流程生产方式,减少中间环节,降低能源消耗和环境污染 。
智能化控制
引入智能化控制系统,实现生产过程的自动化和智能化,提高生产 效率和环保性能。
低碳环保
积极推广低碳环保技术,如新能源、清洁能源等,降低碳排放,实 现绿色可持续发展。
精轧
对粗轧后的钢材进行精细轧制,使 其形状、尺寸更加符合要求。
尺寸控制
通过调整轧制参数和控制冷却速度 ,控制钢材的厚度、宽度和长度等 尺寸。
精整
矫直
将轧制后的钢材进行矫直,消除 应力并改善其平直度。
表面处理
根据需要,对钢材表面进行抛光 、涂层或镀层等处理。
分级和包装
根据钢材的质量、尺寸和用途进 行分级,并进行包装,便于后续
纵轧机
主要用于加工板材和带材,其优点是产量高、品 种多。
斜轧机
主要用于加工锥形断面的金属材料,其优点是能 够实现高速、高效的生产。
轧机的工作原理
金属材料进入轧机后,受到轧 辊的压缩和变形,使其形状和 尺寸发生变化。
通过调整轧辊之间的距离,可 以控制金属材料的变形程度, 从而达到所需的形状和尺寸。
在轧制过程中,还需对金属材 料进行冷却和润滑,以降低摩 擦和温度,提高产品质量。
挑战
随着全球市场竞争的加剧,轧钢工艺面临着节能减排、降低成本、提高产品质 量的挑战。同时,由于环保政策的加强,如何减少轧钢生产过程中的环境污染 和废弃物排放也成为亟待解决的问题。
新技术对轧钢工艺的影响与推动
新技术应用
数字化轧钢、智能制造、新材料技术等新技术的应用,使得轧钢生产过程更加高 效、精准和可控。例如,通过数字化技术,可以实现轧钢生产过程的实时监控和 优化控制,提高产品质量和生产效率。
轧制技术的原理

轧制技术的原理轧制是冷轧带钢生产中的最重要的工序,对它的基本要求是轧件较快地通过轧机,对轧银产生较小的损伤,并生产出厚度在公差范围内、具有良好板性和表面质量的产品。
所有这些,与坯料状况、设备类型及其特性、轧制方式、工艺制度与操作等一系列因素都有尖。
1、加工硬化现象冷轧中金属产生剧烈的加工硬化现象。
按严格的定义,金属在再结晶温度以下进行轧制称作冷轧。
但是,习惯上将带钢不经过加热而在常温下进行轧制统称作冷轧。
从宏观上看,经过冷轧过程产生的变形,轧件厚度被压薄,纵向上产生相应的延伸。
由于不发生在结晶行为,金属内部冷变形的结果与特性被保留下来,与轧件的宏观变形相似,晶粒被压成扁平状,甚至被压成薄片状,在纵向上延伸成长条状,甚至呈纤维状。
而且,在晶粒内部,除可出现滑移带、李晶组织和变形带外,还可使晶内缺陷增加,出现新的压晶、位错、空位、间隙原子和层错等。
同时,当变形量相当大时,各个晶粒的转动方向会趋于一致,出现择优取向而形成织构,以及晶粒和晶界的排列规则也有不同程度的破坏,等等。
金属组织、结构的变化,必然导致其性能发生变化,金属性能最大的变化,是力学性能的变化,一般的规律是强度极限。
b和屈服极限。
S随着变形程度£的增大而增大‘延伸率3和断面收缩率©随着变形程度的增大而减小。
上述现象表明,即金属经过冷变形其强度指标(° 匕和° s)和塑性指标(3和©)随变形量£变化而变化的现象,叫做加工硬化现象。
在冷轧过程中,金属会产生剧烈的加工硬化现象,从而导致变形抗力增大而使能耗增加,以及当加工硬化超过一定的程度之后,由于轧件过分硬脆而容易产生裂边和难以继续轧制,而不得不进行软化处理。
因此,很好地掌握各种金属材料的加工硬化特性,对正确确定总变形率和选取坯料规格,合理安排轧程和用尽可能少的轧程进行轧制,正确进行轧制力计算和制定压下制度与张力制度等,都有重要的意义。
第一节 轧钢基础知识

第一节轧钢基础知识一、轧制原理1.冷轧塑性变形基本参数冷连轧的主要工艺参数为轧制力和前滑,由于冷轧过程中存在下述特殊现象而使轧制力及前滑的计算公式复杂化。
(1)轧制过程中材料加工硬化现象严重,如果确定各种材料退火状态下的变形阻力以及随累计加工率而硬化的增加率将是精确确定轧制力的一个重要课题。
(2)在一定的工艺润滑下如何确定轧辊与轧件在变形区接触面上的摩擦力(摩擦系数)将是精确确定轧制力和前滑的另一个重要课题。
(3)冷轧过程前后张力较大,有关张力对轧制力及前滑的影响应给予足够重视。
(4)冷轧时变形区单位压力极高,轧辊将产生明显的弹性压扁,轧辊压扁一方面增加了轧辊与轧件的接触面积,同时又将使接触弧加长,加剧了外摩擦对轧制力的影响,并通过改变中性角而影响到前滑。
(5)轧件在出口处的弹性恢复,对于压下量不太大的道次将不容忽视,这亦将影响总的轧制力值。
所有这一切现象都将使冷连轧的轧制力和前滑公式复杂化。
1.1轧制变形区及其参数1.1.1基本参数变形区是轧件在轧制过程中直接与轧辊相接触而发生变形的那个区域,如图1-1所示。
其基本参数为:D为轧辊直径,mm;R为轧辊半径,mm;ho为轧制前轧件之高度(或称厚度),mm;h1为轧制后轧件之高度(或称厚度),mm;h m为轧件的平均高度,h m=2h1)(ho,mm;△h 为压下量(或称绝对压下量),△h=ho-h1,mm;bo为轧制前轧件的宽度,m;b1为轧制后轧件的宽度,m;△b=b1-bo为轧制前轧件之长度,m;L1为轧制后轧件之长度,m;a为咬入角(变形区所对应的轧辊中心角);cosa=1-△h/D;r为中性角;AB为咬入弧或1触弧;Lc为咬入角(接触弧)水平投影的长度,Lc=,㎜。
1.1.2 变形系数轧制时轧件塑性变形,使轧件尺寸在三个方向上都发生了变化,即:轧制之高度由ho减少到h1,比值h1/ho=η为轧件高度方向上的变形,η叫做压下系数。
图1-1 变形区基本参数轧件之宽度bo增加到b1,比值b1/bo=X为轧机宽度方向上的变形,X叫做宽度系数。
塑性成形第14章塑性加工工艺(轧制挤压)

品表面光洁、板形平直、尺寸精度高和机械性能好。 工艺特点: (1)加工温度低,产生加工硬化,需要中间退火。 (2)采用工艺冷却和润滑 (3)张力轧制
管材轧制
(1)压下量
h h0 h1 h 2R(1 cos)
咬入角 entering angle
D R
O
(2)变形区长度
l2 R2 (R h )2 2
h0
a
A
C
B
l
h1
l Rh (h2 ) Rh 4
b1
b0
tg
R
Rh ( h)
h R
2
h 2R
(3)延伸系数 λ=L1/L0
(4)压下率Biblioteka 表面夹杂暴露在钢材表面上的非金属物质称为 (1)钢坯带来的表面非金属夹杂物。 表面夹杂,一 般呈点状、块状和条状 (2)在加热或轧制过程中,偶然有非金 分布,其颜色有暗红、淡黄、灰白等, 属夹杂韧(如加热炉的耐火材料及炉 机械的粘结在型钢表面上,夹杂脱落 渣等),炉附在钢坯表面上,轧制时 后出现一定深度的凹坑,其大小、形 被压入钢材,冷却经矫直后部分脱落 状无一定规律。
名。例工、槽、角钢的腿长、腿短、腰 (2)切深孔切人太深,造成腿长无法消除。 厚、腰薄及一腿长,一腿短。
斜轧穿孔生产管材
板带材轧制
特点:宽厚比(B/H)大 规格:中厚板(中板4~20mm,厚板20~60mm,
特厚板60mm以上) 薄板和带材(0.2~4mm) 极薄带材和箔材(0.001~0.2mm) 技术要求: 尺寸精度、板形、表面光洁度、性能
轧制原理——精选推荐

轧制原理第1章轧制过程基本概念轧制:⾦属通过旋转的轧辊受到压缩,横断⾯积减⼩,长度增加的过程。
纵轧:⼆轧辊轴线平⾏,转向相反,轧件运动⽅向与轧辊轴线垂直。
斜轧:轧辊轴线不平⾏,即在空间交成⼀个⾓度,轧辊转向相同,轧件作螺旋运动。
横轧:轧辊轴线平⾏,但转向相同,轧件仅绕⾃⾝的轴线旋转,没有直线运动。
轧制过程:靠旋转的轧辊与轧件之间的摩擦⼒将轧件拖⼊辊缝之间,并使之受到压缩产⽣塑性变形,获得⼀定形状、尺⼨和性能产品的压⼒加⼯过程。
体积不变规律:在塑性加⼯变形过程中,如果忽略⾦属密度的变化,可以认为变形前后⾦属体积保持不变。
最⼩阻⼒定律:物体在塑性变形过程中,其质点总是向着阻⼒最⼩的⽅向流动。
简单轧制过程:轧制时上下辊径相同,转速相等,轧辊⽆切槽,均为传动辊,⽆外加张⼒或推⼒,轧辊为刚性的。
变形区概念:轧件承受轧辊作⽤,产⽣塑性变形的区域。
⼏何变形区:轧件直接承受轧辊作⽤,产⽣塑性变形的区域。
物理变形区:轧件间接承受轧辊作⽤,产⽣塑性变形的区域。
接触弧s (咬⼊弧):轧制时,轧件与轧辊相接触的圆弧(弧AB )咬⼊⾓α:接触弧所对应的圆⼼⾓。
变形区(接触弧)长度(l ):接触弧的⽔平投影长度。
咬⼊⾓α: △h = D (l-cos α)cos α=1- △h /D变形区长度l 简单轧制,即上下辊直径相等。
绝对变形量:轧前、轧后轧件尺⼨的绝对差值。
压下量△ h = H-h宽展量△b = b-B延伸量△l = l- L相对变形量:轧前、轧后轧件尺⼨的相对变化。
相对压下量ε=(△h/H )% e = ln h/H相对宽展量εb=(△b /B )% eb= ln b/B相对延伸量εl=(△l/L )% el= ln l/L 。
变形系数:轧前轧后轧件尺⼨的⽐值表⽰的变形。
压下系数:η=H/h宽展系数:β(ω)= b/B延伸系数: µ (λ)=l/L总延伸系数与总压下率(累积压下率)设轧件原始⾯积为F0 ,经过n 道次轧制后⾯积为Fn ,则轧制过程:靠旋转的轧辊与轧件之间的摩擦⼒将轧件拖⼊辊缝,并使之受到压缩产⽣塑性变形,获得⼀定形状、尺⼨和性能的压⼒加⼯过程。
轧工作原理

轧工作原理
轧制是一种金属加工方法,旨在通过巨大的压力将金属块或金属板材压制成所需形状和尺寸。
轧机是常用的轧制设备,它通过辊子的旋转和压制,使金属材料发生塑性变形。
轧机主要由辊子、轧辊、传动系统和支撑装置等组成。
当金属材料经过辊子传送至轧辊处时,轧球开始转动。
轧辊通过旋转的方式施加在金属上的压力,使其在压力下发生塑性变形。
在轧制过程中,金属材料会受到辊子和轧辊间的反复压制,从而逐渐改变其形状。
辊子通常由多个轧辊组成,通过逐级轧制,金属材料会逐渐变薄或形成所需的形状,如板材、棒材或型材等。
轧制过程中,金属材料会产生巨大的内部应力,这将导致其物理性能的变化。
因此,在轧制完成后,金属材料通常需要进行热处理或其他后续加工,以消除内部应力并提高其力学性能。
轧制具有高效、精确的特点,可广泛应用于金属加工领域。
它不仅可以用于加工常规的钢铁材料,还可以加工铜、铝、钛等其他金属材料。
通过不同的轧制方法和工艺参数,可以实现对金属材料的不同形状和尺寸的精确控制。
钢锭轧制坯的轧制过程中的辊变形机理研究

钢锭轧制坯的轧制过程中的辊变形机理研究钢锭轧制坯的轧制过程中的辊变形机理是在钢材生产中一项重要的研究内容。
钢锭轧制坯是指通过钢锭经过一系列轧制工序加工而成的坯料,它是钢材生产的重要中间产品,直接影响到后续生产工序的质量和效率。
辊变形是指辊在轧制过程中由于受到力的作用而发生的变形现象。
辊变形会对钢锭轧制坯的表面质量、尺寸和形状产生重要影响,因此研究辊变形机理对于改善钢锭轧制坯品质具有重要意义。
辊变形机理的研究需要考虑多个因素,包括材料力学性质、辊与钢锭轧制坯之间的接触状态以及轧制工艺参数等。
首先,材料的力学性质对辊变形有重要影响。
辊在轧制中承受着巨大的压力,而材料的硬度、韧性和塑性等性质决定了辊与钢锭轧制坯之间的摩擦力和变形能力。
其次,辊与钢锭轧制坯之间的接触状态对辊变形也有较大影响。
辊与钢锭轧制坯之间的接触状态会影响压力分布和滑移行为,从而引起辊的形状变化。
最后,轧制工艺参数,如轧制力、轧制速度和轧制温度等,也会对辊变形产生重要影响。
不同的轧制工艺参数会导致不同的应力分布和变形规律,从而影响辊的形状变化。
在研究辊变形机理中,常用的方法包括理论分析和数值模拟。
理论分析通过建立数学模型,考虑材料性质和轧制工艺参数等因素,从而推导出辊变形的数学表达式。
这种方法可以通过解析的方式得到较为精确的结果,但需要依赖于一定的假设和简化。
另一种方法是数值模拟,通过使用计算机软件对辊变形进行仿真,可以模拟出较为真实的辊变形结果。
这种方法可以考虑更多的因素,并且可以通过参数调整和优化来改善轧制工艺。
在实际应用中,研究辊变形机理可以帮助企业优化钢锭轧制坯的生产工艺,提高产品质量和生产效率。
首先,可以根据研究结果调整轧制工艺参数,以减小辊变形,改善钢锭轧制坯的表面质量。
其次,可以通过改变辊材料和热处理工艺等手段,提高辊的抗变形能力,延长辊的使用寿命。
此外,研究辊变形机理还可以为钢材生产中的质量控制和故障诊断提供理论依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第四章 轧制变形基本原理金属塑性加工是利用金属能够产生永久变形的能力,使其在外力作用下进行塑性成型的一种金属加工技术,也常叫金属压力加工。
基本加工变形方式可以分为:锻造、轧制、挤压、分为:热加工、冷加工、温加工。
金属塑性加工的优点(1)因无废屑,可以节约大量的金属,成材率较高;(2)可改善金属的内部组织和与之相关联的性能;(3)生产率高,适于大量生产。
第一节 轧钢的分类轧钢是利用金属的塑性使金属在两个旋转的轧辊之间受到压缩产生塑性变形,从而得到具有一定形状、尺寸和性能的钢材的加工过程。
被轧制的金属叫轧件;使轧件实现塑性变形的机械设备叫轧钢机;轧制后的成品叫钢材。
一、根据轧件纵轴线与轧辊轴线的相对位置分类轧制可分为横轧、纵轧和斜轧。
如图1、2、3。
横轧:轧辊转动方向相同,轧件的纵向轴线与轧辊的纵向轴线平行或成一定锥角,轧制时轧件随着轧辊作相应的转动。
它主要用来轧制生产回转体轧件,如变断面轴坯、齿轮坯等。
纵轧:轧辊的转动方向相反,轧件的纵向轴线与轧辊的水平轴线在水平面上的投影相互垂直,轧制后的轧件不仅断面减小、形状改变,长度亦有较大的增长。
它是轧钢生产中应用最广泛的一种轧制方法,如各种型材和板材的轧制。
斜轧:轧辊转动方向相同,其轴线与轧件纵向轴线在水平面上的投影相互平行,但在垂直面上的投影各与轧件纵轴成一交角,因而轧制时轧件既旋转,又前进,作螺旋运动。
它主要用来生产管材和回转体型材。
图1 横轧简图1—轧辊;2—轧件;3—支撑辊图2 纵轧示意图图3 斜轧简图1—轧辊;2—坯料;3—毛管;4—顶头;5—顶杆二、根据轧制温度不同又可分为热轧和冷轧。
所有的固态金属和合金都是晶体。
温度和加工变形程度对金属的晶体组织结构及性能都有不可忽视的影响。
金属在常温下的加工变形过程中,其内部晶体发生变形和压碎,而引起金属的强度、硬度和脆性升高,塑性和韧性下降的现象,叫做金属的加工硬化。
把一根金属丝固定于某一点在手中来回弯曲多次后,钢丝就会变硬、变脆进而断裂,这就是加工硬化现象的一个例子。
经加工变形后的金属,随着温度的升高,其晶体组织又重新改组为新晶粒的现象,称为金属的再结晶。
再结晶无晶体类型的变化。
金属进行再结晶的最低温度称为金属的再结晶温度。
金属的再结晶可以消除在加工变形过程中产生的加工硬化,恢复其加工变形前的塑性和韧性。
金属的再结晶温度的高低,主要受金属材质和变形程度的影响。
将金属加热到再结晶温度以上进行轧制叫热轧。
热轧的优点是可以消除加工硬化,能使金属的硬度、强度、脆性降低,塑性、韧性增加,而易于加工。
这是因为金属在再结晶温度以上产生塑性变形(即产生加工硬化)的同时,产生了非常完善的再结晶。
但在高温下钢件表面易生成氧化铁皮,使产品表面粗糙度增大,尺寸不够精确。
金属在再结晶温度以下进行的轧制叫冷轧。
冷轧的优点与热轧相反。
第三节金属塑性变形的力学条件一、内力与外力材料(入轧件)由于外力(如轧辊的轧制力)的作用,其内部产生的抵抗外力的抗力,叫内力。
材料单位面积上的内力叫应力。
当应力分布均匀时,或者应力虽不均匀分布,但为例计算简便时:σ=P/F式中:σ——平均应力,Mpa;F——材料的截面积,P——作用于该截面积的内力,N。
二、变形材料受外力所产生的形状和尺寸的改变,叫变形。
当外力消除后,能够恢复原来形状尺寸的那部分变形,叫弹性变形;若外力超过某一限度,材料不能恢复原来形状尺寸的那部分变形,叫塑性变形。
材料产生塑性变形而不破裂的能力叫塑性。
轧钢生产就是利用金属的塑性使轧件产生塑性变形而成型的。
材料单位尺寸上的变形叫应变,应力与应变是共生共存的。
塑性变形的力学条件材料抵抗塑性变形的能力叫强度。
材料产生塑性变形的最小应力叫屈服强度或屈服极限(R eL/R eH)。
材料破坏前的最大应力叫强度极限(R m)。
显然,金属材料产生塑性变形的力学条件是该材料受外力作用而产生的应力(σ)必须大于或等于其屈服极限(R eL),而小于其强度极限(R m)。
R eL/≤σ≤R m因为,当σ< R eL时,材料不可能产生塑性变形,只产生弹性变形,而σ≥R m时,材料会破裂。
第四节塑性变形的体积不变定律和最小阻力定律一、金属塑性变形的体积不变定律体积不变定律是金属塑性变形时,材料的体积保持不变。
即轧制前后轧件的体积不变。
如以V、V′分别代表轧制前后轧件的体积,则V=V′另H、B、L和hbl分别代表轧件轧制前后轧件的高度、宽度与长度,则有V=HBL;V′=hblHBL=hbl上面公式是体积不变定律的数学表达式,利用他可以计算定轧制后轧件的尺寸,根据产品的断面面积和定尺长度,选择合理的坯料尺寸。
实际上,金属在塑性变形过程中,其体积总有一些变化,这是由于:(1)在轧制过程中,金属内部的缩孔、气泡和疏松被焊合,密度提高,因而改变了金属体积。
这就是说除内部有大量存在气泡的沸腾钢锭(或有缩孔及疏松的镇静钢锭、连铸坯)的加工前期外,热加工时,金属的体积是不变的。
(2)在热轧过程中金属因温度变化而发生相变以及冷轧过程中金属组织结构被破坏,也会引起金属体积的变化,不过这种变化都极为微小。
例如,冷加工时金属的比重约减少0.1~0.2%。
不过这些在体积上引起的变化是微不足道的,况且经过再结晶退火后其比重仍然恢复到原有的数值。
2二、塑性变形的最小阻力定律1、叙述:最小阻力定律是金属材料在塑性变形时,其质点有向各个方向移动的可能性时,则各质点将沿阻力最小的方向移动。
2、最小阻力定律的应用2.确定金属流动的方向。
(1)利用最小阻力定律分析小辊径轧制的特点。
如图2-3图3-3 轧辊直径对宽展的影响在压下量相同的条件下,对于不同辊径的轧制,其变形区接触弧长度是不相同的,小辊径的接触弧较大辊径小,因此,在延伸方向上产生的摩擦阻力较小,根据最小阻力定律可知,金属质点向延伸方向流动的多,向宽度方向流动的少,故用小辊径轧出的轧件长度较长,而宽度较小。
(2)为什么在轧制生产中,延伸总是大于宽展?首先,在轧制时,变形区长度一般总是小于轧件的宽度,根据最小阻力定律得,金属质点沿纵向流动的比沿横向流动的多,使延伸量大于宽展量;其次,由于轧辊为圆柱体,沿轧制方向是圆弧的,而横向为直线型的平面,必然产生有利于延伸变形的水平分力,它使纵向摩擦阻力减少,即增大延伸,所以,即使变形区长度与轧件宽度相等时,延伸与宽展的量也并不相等,延伸总是大于宽展第五节金属塑性变形的表示方法轧制过程中金属产生塑性变形,其结果使轧件厚度减小称为压缩;宽度增加称为宽展;长度增加称为延伸。
为表示以上三种变形的程度,另H、B、L和h、b、l分别为轧制前后轧件的厚度、宽度和长度。
一、绝对变形量绝对压下量,简称压下量hHh-=∆绝对宽展量,简称宽展Bbb-=∆绝对延伸量Lll-=∆上述绝对变形量这种表示方法不能正确地反映出物体的变形程度二、相对变形量相对变形量是以三个方向的绝对变形量与其各自的相应线尺寸的比值表示的变形量。
即:相对压下量%100 1⨯∆=Hh相对宽展量%100 2⨯∆=Bb相对延伸量%100 3⨯∆=Ll上述相对变形量以相对压下量使用较为广泛。
三、变形系数变形系数是另一种表示相对变形的方法,是以轧制前后(或轧制后与轧制前)相应的线尺寸的比值表示,即:压下系数 h H =η 宽展系数 B b=ω延伸系数L l=μ 上述变形系数反映了金属变形前后尺寸变化的倍数关系,在实际生产中应用较为广泛,特别是延伸系数。
依据体积不变定律,延伸系数又可以用以下式表示:Fn F hb HB L l 0===μ式中FF 分别表示轧制前后轧件的断面积。
轧件总的变形程度常用压缩比来表示,压缩比就使轧前轧后轧件断面积之比。
用较大的压缩比轧制,才能充分破碎钢件的铸造组织,使钢材组织致密,改善其性能。
第六节 轧制过程的三阶段轧制过程可分为三个阶段:咬入阶段、稳定轧制阶段和甩出阶段。
一 咬入阶段咬入阶段是轧件前端与轧辊接触的瞬间起到前端达到变形区的出口断面(轧辊中心连线)称为咬入阶段。
如图(7-3)所示。
在此阶段的某一瞬间有如下特点:(1)轧件的前端在变形区有三个自由端(面),仅后面有不参与变形的外端(或称刚端)。
(2)变形区的长度由零连续地增加到最大值,即增加到hR l ∆=图 轧制时的咬入阶段(3)变形区内的合力作用点、力矩皆不断的变化。
(4)轧件对轧辊的压力P 由零值逐渐增加到该轧制条件下的最大值。
(5)变形区内各断面的应力状态不断变化。
二 稳定轧制阶段从轧件前端离开轧辊轴心连线开始,到轧件后端进入变形区入口断面止,这一阶段称为稳定轧制阶段。
变形区的大小、轧件与轧辊的接触面积,金属对轧辊的压力,变形区内各处的应力状态等都是均恒的,这就是此阶段的特点。
三 甩出阶段从轧件后端进入入口断面时起到轧件完全通过辊缝(轧辊轴心连线),称为甩出阶段。
这一阶段的特点类似于第一阶段,即(1)轧件的后端在变形区内有三个自由端(面),仅前面有刚端存在。
(2)变形区的长度由最大变到最小——零。
(3)变形区内的合力作用点、力矩皆不断地变化。
(4)轧件对轧辊的压力由最大变到零。
(5)变形区内断面的应力状态不断地变化。
第七节 建立连轧的基本原则连续轧制简称连轧,它是一根轧件同时在几架顺序排列的轧机中进行轧制。
建立连轧必须遵守轧件在各架轧机中金属秒流量相等的原则。
连轧的变形条件保证连轧过程秒流量相等原则,表示金属秒流量相等的公式为:n n n v h b v h b v h b ==222111式中1b 、n b b 2——第1、第2至第n 架轧机轧后轧件的宽度。
1h 、2h n h ——第1、第2至第n 架轧机轧后轧件的厚度。
1v 、n v v 2——第1、第2至第n 架轧机轧后轧件出口速度。
令1D 、n D D 2;1N 、n D D 2;1F 、n F F 2顺序代表第1、第2至第n 架轧机的轧辊直径、轧辊每分钟转速和轧件出口断面积。
而:60DN v π=;bh F =则金属秒流量相等的方程式又可以表示为:n F N D F N D F === 222111n n N D =C常数C 称为连轧常数。
实现连轧必须满足上市要求,否则会出现拉钢和堆钢现象。
因此连轧生产必须根据各架轧件的不同断面来改变轧辊的转速或辊径,以保持各机架的金属秒流量相等。