概率与统计(文科)
文科统计概率知识点总结

文科统计概率知识点总结统计学是一门研究数据的收集、分析、解释和展示的学科。
统计学是一种通过数学方法来分析数据的学科,它有着广泛的应用领域,包括经济学、心理学、社会学和政治学等。
统计学的应用范围也非常广泛,涵盖从商业到医学的各个领域。
而概率是统计学中一个非常重要的概念,它可以帮助我们预测和理解各种现象发生的可能性。
本文将对文科统计学中的概率知识点进行总结和分析。
一、概率的概念概率是一个用来描述事件发生可能性的数学概念。
在统计学中,概率通常用来描述随机事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
在现实生活中,我们经常会面临各种不确定性,比如天气预报、投资风险、疾病传播等。
概率可以帮助我们对这些不确定性进行量化和分析。
二、概率的性质概率有一些基本的性质,这些性质对于理解和计算概率都非常重要。
其中包括:1. 互斥事件的概率:两个事件互斥指的是它们不能同时发生。
如果A和B是互斥事件,那么它们的概率满足P(A∪B) = P(A) + P(B)。
2. 独立事件的概率:两个事件独立指的是它们的发生不会相互影响。
如果A和B是独立事件,那么它们的概率满足P(A∩B) = P(A) × P(B)。
3. 补事件的概率:对于一个事件A,它的补事件指的是A不发生的情况。
补事件的概率满足P(A') = 1 - P(A)。
4. 加法法则:对于两个事件A和B,它们的概率和满足P(A∪B) = P(A) + P(B) - P(A∩B)。
5. 乘法法则:对于两个独立事件A和B,它们的概率乘积等于它们各自的概率。
这些性质可以帮助我们在实际问题中计算概率,而理解这些性质也对于我们理解概率的本质有很大帮助。
三、离散型随机变量的概率分布在统计学中,随机变量是一个可以随机取不同值的变量。
离散型随机变量是指其可能取值是有限的或者可数的,而不是连续的。
1. 离散型随机变量的概率质量函数:对于一个离散型随机变量X,其概率质量函数P(X=x)描述了X取各个可能值的概率。
2017—2018年高考真题解答题:概率与统计(文科)教师版

2017—2018年高考真题解答题:概率与统计(文科)教师版1.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)[)20,30,30,40,, []80,90,并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(1)0.4;(2)20;(3)3:2.【解析】试题分析:(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案. 试题解析:(1)由频率分布直方图知,分数在[)70,80的频率为0.04100.4⨯=, 分数在[)80,90的频率为0.02100.2⨯=, 则分数小于70的频率为10.40.20.4--=,故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4. (2)由频率分布直方图知,样本中分数在区间[]50,90的人数为()0.010.020.040.021010090+++⨯⨯= (人), 已知样本中分数小于40的学生有5人,所以样本中分数在区间[)40,50内的人数为1009055--= (人),设总体中分数在区间[)40,50内的人数为x , 则5100400x =,得20x =, 所以总体中分数在区间[)40,50内的人数为20人. (3)由频率分布直方图知,分数不小于70的人数为()0.040.021010060+⨯⨯= (人), 已知分数不小于70的男女生人数相等, 故分数不小于70分的男生人数为30人, 又因为样本中有一半男生的分数不小于70, 故男生的频率为: 0.6, 即女生的频率为: 0.4,即总体中男生和女生人数的比例约为: 3:2.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A 1,但不包括B 1的概率. 【答案】(1);(2)【解析】试题分析:利用列举法把试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=求出事件A 的概率. 试题解析:(Ⅰ)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:,共 个.所选两个国家都是亚洲国家的事件所包含的基本事件有:,共个,则所求事件的概率为:.(Ⅱ)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:,共个,包含但不包括的事件所包含的基本事件有:,共个,所以所求事件的概率为:.【考点】古典概型【名师点睛】(1)对于事件A的概率的计算,关键是要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所包含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)=求出事件A的概率,这是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重不漏.3.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用,学&科网表示每周计划播出的甲、乙两套连续剧的次数.(I)用,列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】试题分析:根据已知条件列出应满足的条件,注意,表示每周计划播出的甲、乙两套连续剧的次数,根据已知条件列出应满足的条件,画出可行域,设总收视人次为万,则目标函数为,利用线性规划找出最优解,并求出的最值.试题解析:(Ⅰ)解:由已知,满足的数学关系式为即该二元一次不等式组所表示的平面区域为图1中的阴影部分:(Ⅱ)解:设总收视人次为万,则目标函数为.考虑,将它变形为,这是斜率为,随变化的一族平行直线.为直线在轴上的截距,当取得最大值时,的值最大.又因为满足约束条件,所以由图2可知,当直线经过可行域上的点M时,截距最大,即最大.解方程组得点M的坐标为.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【考点】线性规划【名师点睛】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,本题就是第三类实际应用问题.4.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
文科第三讲.概率与统计中档难度-讲义

概率及其计算 一、考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。
2.了解两个互斥事件的概率的加法公式。
3.掌握古典概型及其概率计算公式。
4.了解随机数的意义,能运用模拟方法估计概率。
5.了解几何概型的意义。
二、命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。
2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下. 三、知识点精讲(一).必然事件、不可能事件、随机事件 在一定条件下:①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。
(二).概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。
对于必然事件A ,;对于不可能事件A ,=0(三).两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为Aμ.()P A =AμμΩ。
(四).互斥事件1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。
事件A 与事件B 互斥,则()()()P A B P A P B =+U 。
2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。
()()1P A p A =- 。
3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。
四、解答题总结1.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .2.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)3.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈ 的概率是 .4.(2016年全国II 卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.5.(2014新课标1)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.6.(2014新课标2)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.7.(2014浙江)在3张奖券中有一、二等奖各1张,另1张无奖,甲、乙两人各抽取1张,两人都中奖的概率是__________;8.(2013湖北)在区间上随机地取一个数x,若x满足的概率为,则. 9.(2011江苏)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______统计与统计案例一、考纲解读1. 理解随机抽样的必要性和重要性。
广西高考数学人教A版(文科)一轮复习课件:高考大题增分专项六 高考中的概率、统计与统计案例4

, 0.008≈0.09.
-19题型一
题型二
题型三
题型四
题型五
解:(1)由样本数据得(xi,i)(i=1,2,…,16)的相关系数为
16
∑ (x i -x)(-8.5)
r=
=1
16
2
∑ ( -)
i=1
16
∑ (i-8.5)2
= 0.212×
-2.78
16×18.439
≈-0.18.
=1
高考大题增分专项六
高考中的概率、统计与统计案例
核心考点分层突破
从近五年的高考试题来看,在高考的解答题中,对概率、统计与
统计案例的考查主要有三个方面:一是统计与统计案例,以实际生
活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出
估计、判断,其中回归分析、独立性检验、用样本的数据特征估计
总体的数据特征是考查重点,常与抽样方法、茎叶图、频率散布直
题型三
题型四
题型五
(2)当这种酸奶一天的进货量为450瓶时,
9.22)=10.02,
这条生产线当天生产的零件尺寸的均值的估计值为10.02.
16
∑ xi2 =16×0.2122+16×9.972≈1 591.134,
i=1
1
剔除第 13 个数据,剩下数据的样本方差为 (1 591.134-9.22215
15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计
果回答下列问题:
①当年宣传费x=49时,年销售量及年利润的预报值是多少?
②当年宣传费x为何值时,年利润的预报值最大?
-14题型一
题型二
题型三
题型四
概率与统计文科讲义(学霸版)

概率与统计文科讲义(学霸版)课程简介:即PPT(第1页):概率与统计,首先要做一个小说明,为什么有文科版和理科版?因为我们不只是讲解必修三的概率与统计,还要加入一些选修的内容。
其中文科生会加入选修1-2的统计案例。
而理科生会加入选修2-3里面的更多内容。
这样组合成我们文理科不同的概率与统计的知识树。
必修三是不分文理科的,文理科这里的区别在于选修内容不同而已。
(以上提到的课本都是针对人教A版)概率与统计我们需要识记的东西比较多,尤其统计那里不是很容易懂,我更希望你能够懂得统计到底在做什么,而不是只会根据题目给的公式代数计算,这个是小学生的工作,不是高中生的。
这节课我们学习:1、概率与统计的知识树构建;2、如何运用知识树解题。
概率与统计属于CBA方法中的C——Common Sense类,概率会出小题,比较简单。
统计问题会出现在18或19题的位置,12分。
所以这一章的内容不难,但是分值比重却很大。
曾经的统计大题非常简单,大家都是看着题目里给出的公式,然后直接代数计算就结束了。
但是这样的日子很可能一去不复返,我们的统计题不能总是那么考了,现在的重点是要求你能理解为什么在统计,越来越接近真实的统计,所以题目文字量越来越大,有时光是读题就已经头大了,但是,真实的统计就是这样的。
计算谁不会?就算你我不会,计算机也会呀,所以要重新审视一下统计题目的地位了。
好了,摆正心态,不要认为今天的内容非常简单,让我们开始今天的学习吧。
PPT(第2页):我们依然不像B类一样过多介绍知识点特点,因为知识点都是识记类的。
我们直接来看对应模块一般怎么出题,以及应对策略。
1、概率会怎么出题?概率我们文科生就相对简单很多,古典概型和几何概型都不难,古典概型会数数就好,几何概型会算面积就可以了。
记得考虑问题要全面,数数的时候手指头要掰得开,嘿嘿。
2、统计题目又怎么考?刚刚介绍过,必考大题。
而现在也越来越难,与其说越来越难,不如说越来越像真正的统计。
概率与统计文科高考知识点

概率与统计文科高考知识点概率与统计是文科高考中的重要考点之一,它既是数学的一门分支,也是我们日常生活中经常用到的一种思维工具。
在本文中,我们将探讨概率与统计在文科高考中的基本概念和应用。
概率是指某一事件在一次试验中发生的可能性,它是通过数值来描述的。
我们通常用0到1之间的数值来表示概率,其中0表示不可能事件,1表示必然事件。
在概率的计算中,我们可以利用排列组合的方法进行推导。
比如,当我们投掷一个硬币时,硬币正面朝上的概率是1/2,而反面朝上的概率也是1/2,两者之和为1。
概率的计算方式有很多,常见的有古典概率和条件概率。
古典概率是指在样本空间中,各个事件发生的概率是相等的。
比如,当我们掷一个骰子时,出现每个面的概率都是1/6。
而条件概率是指在给定一些条件下,某个事件发生的概率。
比如,当我们知道某个人是男性时,他患某种疾病的概率是多少。
概率在文科高考中的应用非常广泛。
例如,在历史考试中,我们可以通过统计往年的试题分布来推测今年的考点。
在政治考试中,我们可以通过统计选民的投票意向来预测选举结果。
在文学作品的研究中,我们可以通过统计词频来揭示作者的写作风格。
而统计则是指对一组数据进行整理、分析和解释的方法。
在文科高考中,统计常常以表格、图表和描述性统计等形式展示。
通过数据的分析,我们可以得出结论,并提供依据用于问题的解决。
在统计中,常常涉及到两个重要的概念:平均数和标准差。
平均数是一组数据的中心趋势的度量,它等于所有数据之和除以数据的个数。
标准差则是一组数据的离散程度的度量,它可以告诉我们数据分布的广泛程度。
通过求解平均数和标准差,我们可以在文科高考中对数据进行分析,判断一组数据的特征和趋势。
除了平均数和标准差,还有其他一些统计方法在文科高考中也是非常重要的。
例如,相关性分析可以用来研究两个变量之间的关系。
回归分析则可以用来建立一个数学模型,通过已知的自变量来预测因变量。
这些方法不仅可以帮助我们从数据中提取有用的信息,还可以为文科研究提供理论框架和理论支持。
概率统计(文科).pdf

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率1,0AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:db c a d cb a bcd a n K22满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意2k KP 0.10 0.05 0.01 0.005 0k 2.7063.8416.6357.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ . 18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间[25,30)[30,35)[35,40)[40,45)[45,50]人数25ab(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.31 B.21 C.32 D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.107 B.85 C.83 D.10322.在区间[-2,3]上随机选取一个数x ,则1x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为()A.1?x yB.1?x yC.xy 2188? D.176?y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程axb y ???中的b ?为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程at by ???;(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程at b y ???中,t by atn t yt n y t b ni ini ii ??,?1221. 28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80)[80,90)[90,100)[100,110)频数 3 4 8 15 分组[110,120)[120,130)[130,140)[140,150]频数15x32乙校:分组[70,80)[80,90)[90,100)[100,110)频数 1 2 8 9 分组[110,120)[120,130)[130,140)[140,150]频数1010y3(1)计算y x,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;(3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算db c a d cb abcadn K22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩x (分)89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;甲校乙校总计优秀非优秀总计2k KP 0.10 0.05 0.010 0k 2.7063.8416.635(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:ax b y ???,其中x byaxx y y x x b ni ini i i??,?121;90,93y x ,30,4051251yy x x xx ii i i i.30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 5保费0.85aa1.25a1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁)频数频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350 [35,40) 30 b [40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
高考文科数学概率及统计题型归纳及训练.docx

2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】题型一古典概型例 1从甲、乙等5名学生中随机选出2人,则甲被选中的概率为().A. 1B.2C.8D. 5525925【答案】 B【解析】可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有种选法,其中只有前 4 种是甲被选中,所以所求概率为 . 故选 B.例 2将2本不同的数学书和1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 ________.【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数 2; 数 2,数 1,语 ;数2,语,数1;语,数2,数1;语,数1,数2共有6 种,其中 2 本数学书相邻的有 4 种,则其概率为:p 4 2.6 3【易错点】列举不全面或重复, 就是不准确【思维点拨】直接列举, 找出符合要求的事件个数.题型二几何概型例 1 如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是().A. 1B.πC.1D.π4824【答案】 B【解析】不妨设正方形边长为 a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半. 由几何概型概率的计算公式得,所求概率为21a22a28.故选B.例 2在区间[0,5]上随机地选择一个数p ,则方程 x2 + 2 px + 3 p - 2 = 0 有两个负根的概率为 ________.【答案】234 p24(3 p2)0【解析】方程 x2 + 2 px + 3p -2 = 0 有两个负根的充要条件是x1 x22p0即x1x2 3 p202p 1, 或 p 2 ,又因为 p[0,5] ,所以使方程x2+ 2 px + 3 p - 2 = 0 有两个负根的p3(1 2) (5 2) 2,故填:2 .的取值范围为 ( 2,1] U [2,5] ,故所求的概率33533【易错点】“有两个负根”这个条件不会转化 .【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可.题型三抽样与样本数据特征例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200, 400,300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】 18【解析】按照分层抽样的概念应从丙种型号的产品中抽取6018(件).3001000例 2已知样本数据 x1, x2,, x n的均值x 5 ,则样本数据2x11, 2x21,,2x n1的均值为.【答案】 11【解析】因为样本数据,,,的均值,又样本数据,,,的和为 2 x1x2 L x n n ,所以样本数据的均值为= 11.例 3 某电子商务公司对10000名网络购物者 2018 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3,0.9] 内,其频率分布直方图如图所示.(1)直方图中的a =.(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.【答案】 a 3人数为 0.6 10000 6000【解析】由频率分布直方图及频率和等于1,可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.5 0.1 a 0.1 1 ,解之得 a 3 .于是消费金额在区间0.5,0.9 内频率为 0.2 0.1 0.8 0.1 2 0.1 3 0.10.6 ,所以消费金额在区间0.5,0.9 内的购物者的人数为 0.6 10000 6000.例 4某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图所示.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取 11户居民,则从月平均用电量在220,240的用户中应抽取多少户?【答案】见解析【解析】(1)由0.002 0.0095 0.011 0.0125x 0.005 0.0025 20 1,得 x0.0075 .220 240(2)由图可知,月平均用电量的众数是230 .2因为 0.002 0.0095 0.011 20 0.450.5 ,又 0.002 0.0095 0.011 0.0125 20 0.70.5 ,所以月平均用电量的中位数在220,240 内.设中位数为 a ,由0.002 0.0095 0.011 20 0.0125 a 2200.5,得 a 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为220,240的用户有0.0125 20 100 25(户);月平均用电量为 240,260 的用户有 0.0075 20 100 15(户);月平均用电量为 260,280 的用户有 0.005 20 100 10 (户);月平均用电量为280,300 的用户有 0.0025 20 100 5 (户).抽取比例为111051 ,25155所以从月平均用电量在220,240 的用户中应抽取2515 (户).5【易错点】没有读懂题意 , 计算错误 . 不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式; 2 牵涉到策略问题 , 一般可以转化为比较两个指标的大小.题型四回归与分析例 1 下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量 .参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得,,,,.因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系 .(1)变量与的相关系数,又,,,,,所以,故可用线性回归模型拟合变量与的关系 .(2),,所以,,所以线性回归方程为.当时, . 因此,我们可以预测2016 年我国生活垃圾无害化处理亿吨.【易错点】没有读懂题意 , 计算错误 .【思维点拨】将题目的已知条件分析透彻 , 利用好题目中给的公式与数据 .题型五独立性检验例 1 甲、乙、丙、丁四位同学各自对 A、 B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数 r 与残差平方和 m如下表:甲乙丙丁rm 115 106 124103则哪位同学的试验结果体现A、B 两变量更强的线性相关性?() A.甲B.乙C.丙D.丁【答案】 D【解析】 D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数 r 的绝对值越趋向于 1, 相关性越强 . 残差平方和 m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷次,则出现向上的点数之和小于的概率是.【答案】【解析】将先后两次点数记为,则基本事件共有(个),其中点数之和大于等于有,共种,则点数之和小于共有种,所以概率为.2. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 723 .在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是().A.1B.1C.1D.1 12141518【答案】 C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个,随机选取两数有 45 (种)情况,其中两数相加和为30 的有 7 和 23,11 和 19,31P451513 和 17,共 3 种情况,根据古典概型得.故选C.3.袋中有形状、大小都相同的 4 只球,其中 1只白球, 1只红球, 2 只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.【答案】P56【解析】 1只白球设为a,1只红球设为b, 2 只黄球设为c,d,则摸球的所有情况为a,b , a, c , a,d , b, c , b,d , c,d ,共6件,足意的事件a,b , a,c , a,d , b,c , b,d ,共5件,故概率P 5 .6型二几何概型1.某公司的班在 7:00 ,8:00 ,8:30 ,学 . 小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是().B.D.【答案】 B【解析】如所示,画出.小明到达的会随机的落在中段中,而当他的到达落在段或,才能保他等的不超分 .根据几何概型,所求概率. 故B.2.从区随机抽取 2n个数,,⋯,,,,⋯,,构成n个数,,⋯,,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似().A.B.C.D.【答案】 C【解析】由意得:在如所示方格中,而平方和小于 1 的点均在如所示的阴影中,由几何概型概率计算公式知,所以.故选C.3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边AB, AC ,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1, p2, p3,则A.p1p2B.p1p3C.p2p3D.p1p2p3【答案】 A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可 .设直角三角形ABC 的三个角A,B, C 所对的边长分别为 a ,b, c ,则区域Ⅰ的面积为 S11 ab,2区域Ⅱ的面积为区域Ⅲ的面积为222S21π1c1π1b1ab1π1a1ab ,2222222221 π 1 b21 πa21ab .S3 1 π 1 c1ab2222282显然 p1p2.故选A.题型三抽样与样本的数据特征1. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.【答案】 10【解析】平均数 x 1 4658766.62.某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为_________.【答案】 3;6000【解析】频率和等于 1 可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.50.1a0.1 1 ,解之得 a 3 .于是消费金额在区间 [0.5, 0.9] 内频率为 0.20.10.80.120.1 3 0.1 0.6 ,所以消费金额在区间 [0.5, 0.9] 内的购物者的人数为: 0.6100006000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费 . 为了了解居民用水情况,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照,,,分成组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数,请说明理由;(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由 .【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在中的频率为,同理,在,,,,,中的频率分别为,,,,,.由,解得 .(2)由( 1),位居民每人月均用水量不低于吨的频率为.由以上样本的频率分布,可以估计全市万居民中月均用水量不低于吨的人数为.(3)因为前组的频率之和为,而前组的频率之和为,所以由,解得 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:收入 x(万元)支出 y (万元)根据上表可得回归直线方程???,其中???y bx a b0.76,a y bx ,据此估计,该社区一户收入为 15 万元家庭年支出为()A.万元B.万元C.万元D.万元【答案】 B8.28.610.011.311.9(万元),【解析】由已知得x5106.27.58.0 8.59.88(万元),故 ?8 0.76 10 0.4,5所以回归直线方程为y? 0.76 x 0.4 .当社区一户收入为15 万元,家庭年支出为y? 0.76 150.411.8 (万元).故选B.2.为了研究某班学生的脚长x (单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为 24,据此估计其身高为().A.B.C.D.【答案】 C【解析】,,所以,时,.故选C.3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位: t )和年利润z(单位:千元)的影响,对近8 年的年宣传费 x i和年销售量y i i 1,2, ,8数据作了初步处理,得到下面的散点图及一些统计量的值.x y w82888x i x2w i w y i yw i w x i x y i y i 1i 1i 1i 1561469 3表中 w i18x i, w w i ,8 i 1(1)根据散点图判断,y a bx 与y c d x 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由)?(2)根据( 1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系式为z 0.2 y x,根据( 2)的结果回答下列问题:(ⅰ)年宣传费x49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据 u1, v1u2,v2,, u n ,v n,其回归直线v u 的斜率和n?u i u v i vi 1?截距的最小二乘估计分别为, ? v u .nu i2ui 1【答案】见解析【解析】(1)由散点图变化情况可知选择y c d x 较为适宜.8w i w y iy(2)由题意知di 182108.8 68 .又 y c d x 一定过点, y ,w i w1.6i 1所以 c y d563 68 6.8 100.6 ,所以 y 与 x 的回归方程为 y 100.6 68 x .(3)(ⅰ)由( 2)知,当 x 49 时, y 100.6 6849 576.6 t ,z 0.2 576.6 49 66.32(千元),所以当年宣传费为 x 49 时,年销售量为 576.6 t ,利润预估为 66.32千元.(ⅱ)由( 2)知, z0.2 y x0.2100.6 68 x x 13.6 x x 20.122x 6.8时,年利润的预估值最大,x 6.86.82 20.12 ,所以当即 x 6.8 2 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用, 把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2列联表计算的 K 2≈,则下列表述中正确的是( )A .有 95℅的把握认为“这种血清能起到预防感冒的作用”B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒C.这种血清预防感冒的有效率为95℅D.这种血清预防感冒的有效率为5℅【答案】 A【解析】由题可知,在假设 H 成立情况下,P( K23.841)的概率约为,即在犯错的概率不错过的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用” . 这里的 95℅是我们判断H不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误. C,D也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x,y 之间关系最强的是( )A.B.【答案】 D【解析】在频率等高条形图中,C.D.a与c相差很大时,我们认为两个分类变量a b c d有关系,四个选项中,即等高的条形图中x1, x2所占比例相差越大,则分类变量 x, y 关系越强,故选 D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于 50kg ,新养殖法的箱产量不低于50kg ,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量箱产量50kg⋯50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01).附:P K2⋯kkK 2n( ad bc)2.(a b)(c d )(a c)(b d )【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ”为事件B,“新养殖法的箱产量不低于50kg”为事件 C,由题图并以频率作为概率得P B0.040 5 0.034 5 0.024 5 0.014 5 0.012 5 0.62,P C0.068 5 0.046 5 0.010 5 0.008 50.66,P A P B P C0.4092 .(2)箱产量50kg箱产量≥50kg 旧养殖法6238新养殖法3466k 220062 6638 342由计算可得 K2的观测值为15.705 ,因为15.705 6.635,所以10010096104P K2≥ 6.6350.001,从而有 99%以上的把握认为箱产量与养殖方法有关.(3)1 5 0.2,0.10.0040.0200.0440.032,0.0320.0688,85 2.35,171750 2.35 52.35,所以中位数为52.35.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[提醒]
系统抽样中,易忽视抽取的样本数也就是分段的
N 段数,当 n 不是整数时,注意剔除,剔除的个体是随机的,各 段入样的个体编号成等差数列.
[典题例析]
(2014· 广东高考)为了解 1 000 名学生的学习情况,采用系统抽 样的方法,从中抽取容量为 40 的样本,则分段的间隔为( A.50 C.25 B.40 D.20 )
P ( A )= A 包含的基本事件的个数 基本事件的总数
基本事件 的和.
古典概型
1.(2012 年安徽)袋中共有 6 个除了颜色外完全相同的球,其中有 1 个红球、2 个白球和 3 个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于 A. 1 5 2 B. 5 D. 4 5 ( )
3 C. 5
48 20 10 ∴ = = ,解得 x=40,y=5.即 x,y 的值分别为 40,5. 80+x 50 20+y
第二讲 概率——古典概型与几何概型
概率知识的考查是近几年新课改后高考命题的一大热点,高 考每年在选择、填空或解答题中都有所体现,由于文科数学后续 课程不再学习概率,文科数学将重点考查概率的意义、古典概型 与几何概型的掌握和运用.在处理概率问题时主要有两种思路:正 向思路和逆向思路.正向思考可对复杂问题进行分解;逆向思考常 使一些复杂问题得到简化.要学会将实际问题转化为古典概型和
解析:将同色小球编号.从袋中任取两球,所有基本事件为:(红,白 1),(红,白 2),(红, 黑 1),(红,黑 2),(红,黑 3),(白 1,白 2),(白 1,黑 1),(白 1,黑 2),(白 1,黑 3),(白 2, 黑 1),(白 2,黑 2),(白 2,黑 3),(黑 1,黑 2),(黑 1,黑 3),(黑 2,黑 3),共有 15 个基本事件, 而一白一黑的共有 6 个基本事件,P= 6 2 = .故选 B. 15 5
第一讲 随机抽样
考点一
简单随机抽样 (基础送分型考点——自主练透)
[必备知识]
(1)抽取方式:逐个不放回抽取;
(2)每个个体被抽到的概率相等;
(3)常用方法:抽签法和随机数法.
[提醒] 简单随机抽样中易忽视样本是从总体中逐个抽取,是
不放回抽样,且每个个体被抽到的概率相等.
1.(2015· 广东七校联考)假设要考察某公司生产的 500 克袋装牛奶 的三聚氰胺是否超标,现从 800 袋牛奶中抽取 60 袋进行检验, 利用随机数表抽取样本时,先将 800 袋牛奶按 000,001,…, 799 进行编号, 如果从随机数表第 7 行第 8 列的数开始向右读, 068 则得到的第 4 个样本个体的编号是______. (下面摘取了随机数 表第 7 行至第 9 行) 87 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76,63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79,33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解 析: 由随 机数表 ,可 以看出 前 4 个样 本的 个体的编 号是
简单随机抽样
、
系统抽样
、
分层抽样
表示,各小矩形的面积和等于 集中趋势
3.众数、平均数、中位数是描述数据的 标准差则是描述数据的 s
2
的量,方差、
波动大小 .
.其中,方差的计算公式为
1 2 2 2 = n [(x1- x ) +(x2- x ) +…+(xn- x) ]
4.茎叶图通常用来记录两位数的数据,把两位数的 为茎, 个位数字
解:(1)用分层抽样的方法在 35~50 岁年龄段的专业技术人员中抽取一个容量为 5 的样本, 设抽取学历为本科的人数为 m,∴ 30 m = ,解得 m=3. 50 5
(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取 N 个人,其中 35 岁以下 48 人,50 岁以 5 上 10 人,再从这 N 个人中随机抽取 1 人,此人的年龄为 50 岁以上的概率为 ,求 x,y 的值. 39
考点三
分层抽样的交汇命题 (常考常新型考点——多角探明)
[必备知识]
(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定 的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合 在一起作为样本,这种抽样方法是一种分层抽样.
(2)分层抽样的应用范围: 当总体是由差异明显的几个部分组成时,往往选用分层抽样.
从中任取 2 人的所有等可能基本事件共有 10 个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2, B3),(S1,S2),(B1,B2),(B1,B3),(B2,B3), 其中至少有 1 人的学历为研究生的基本事件有 7 个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2, B3),(S1,S2). 7 ∴从中任取 2 人,至少有 1 人学历为研究生的概率为 . 10 10 5 (2)由题意,得 N = ,解得 N=78.∴35~50 岁中被抽取的人数为 78-48-10=20, 39
331,572,455,068.于是,第 4 个样本个体的编号是 068.
2. (2013· 江西高考)总体由编号为 01,02, …, 19,20 的 20 个个体组成. 利 用下面的随机数表选取 5 个个体,选取方法是从随机数表第 1 行的 第 5 列和第 6 列数字开始由左到右依次选取两个数字,则选出来的 第 5 个个体的编号为 7816 3204 6572 9234 0802 4935 6314 8200 0702 3623 4369 4869 9728 6938 0198 7481 ( )
12.独立性检验 (1)分类变量:变量的不同“值”表示个体所属的不同类别 , 像这类变量称为分类变量. (2)列联表:列出两个分类变量的频数表 ,称为列联表.假设 有两个分类变量 X 和 Y,它们的可能取值分别为{x1,x2}和{y1,y2}, 其样本频数列联表(称为 2×2 列联表)为 2×2 列联表 y1 y2 总计 x1 a b a +b x2 c d c +d 总计 a +c b + d a + b +c + d 2 n(ad-bc) 2 K= (a+b)(a+c)(b+d)(c+d) (其中 n= a+b+c+d 为样本容量),则利用独立性检验判断表 来判断“X 与 Y 的关系”.
几何概型来解决.
古典概型
基础梳理
1. 基本事件 (1)基本事件的定义:
一次试验中可能出现的 试验结果 称为一个基本事件.所有的基本事件 都有有限个,而且是试验中不能再分的最简单的随机事件.
(2) 基本事件的特点: ① 任何两个基本事件是互斥的; ② 任何事件都可以表示成 2. 古典概型 如果某类概率模型具有以下两个特点: (1)试验中所有可能出现的基本事件 只有有限个 . (2) 每个基本事件出现的 可能性相等 . 3. 古典概型的概率公式 对于任何事件A,
(1)先将总体的 N 个个体编号;
N (2)确定分段间隔 k,对编号进行分段.当 n (n 是样本容量) N 是整数时,取 k= n ;
(3)在第 1 段用简单随机抽样确定第一个个体编号 l(l≤k);
(4)按照一定的规则抽取样本.通常是将 l 加上间隔 k 得到 第 2 个个体编号 l+k,再加 k 得到第 3 个个体编号 l+2k,依 次进行下去,直到获取整个样本.
[提醒]
分层抽样中, 易忽视每层抽取的个体的比例是相同
样本容量n 的,即 . 总体个数N
角度一:与频率分布相结合问题
1.(2014· 广东高考)已知某地区中小学生人数和近视情况分别如图 1 和图 2 所示.为了解该地区中小学生的近视形成原因,用分 层抽样的方法抽取 2%的学生进行调查,则样本容量和抽取的 高中生近视人数区域Ω
则P(A∪B)=
P(A)+P(B)
,这个公式推广到n个互斥事件时也成
立.(P(A∪B)也可记为P(A+B))
11.相关关系与回归方程 (1)相关关系的分类 ①正相关:从散点图上看,点散布在从左下角 到右上角 的区域 内;②负相关:从散点图上看,点散布在从左上角 到 右下角 的区域 内. (2)线性相关关系 从散点图上看,如果这些点从整体上看大致分布在一条直线附近 , 则称这两个变量之间具有线性相关关系,这条直线叫 回归直线 .
A.08
B.07
C.02
D.01
解析:从随机数表第 1 行的第 5 列和第 6 列数字开始 由左到右依次选取两个数字,则选出的数字为 08,02,14,07,01,…,故选出的第 5 个个体的编号为 01.
答案:D
考点二
系统抽样 (重点保分型考点——师生共研)
[必备知识] 系统抽样的步骤
假设要从容量为 N 的总体中抽取容量为 n 的样本.
^ , a= y - ^ bx, 其中^ b是回归方程的 斜率 ^ a是在 y 轴上的 截距 .
,
(4)样本相关系数
,用它来衡量两个变量间的线性相关关 系的强弱. ①当 r>0 时,表明两个变量 正相关 ; ②当 r<0 时,表明两个变量 负相关 ; ③r 的绝对值越接近 1,表明两个变量的线性相关性 越强 ;r 的绝 对值越接近 0,表明两个变量的线性相关性 越弱 .通常当|r|>0.75 时, 认为两个变量有很强的线性相关关系.
(3)回归方程 ①最小二乘法:使得样本数据的点到回归直线的 距离的平方和 最 小的方法叫最小二乘法. ②回归方程: 两个具有线性相关关系的变量的一组数据: (x1, y1), (x2, y2) , … , (xn , yn) , 其 回 归 方 程 为 ^ y = ^ b x + ^ a , 则 ^ b =