中考数学几何部分共顶点模型之共顶点正方形公开课精品课件

合集下载

【中考数学复习】2022中考数学几何模型(费马点,胡不归,阿氏圆)

【中考数学复习】2022中考数学几何模型(费马点,胡不归,阿氏圆)

12讲通关中考数学几何模型中考数学几何模型1:截长补短模型 (1)中考数学几何模型2:共顶点模型 (9)中考数学几何模型3:对角互补模型 (16)中考数学几何模型4:中点模型 (25)中考数学几何模型5:角含半角模型 (35)中考数学几何模型6:弦图模型 (44)中考数学几何模型7:轴对称最值模型 (53)中考数学几何模型8:费马点最值模型 (64)中考数学几何模型9:隐圆模型 (72)中考数学几何模型10:胡不归最值模型 (84)中考数学几何模型11:阿氏圆最值模型 (97)中考数学几何模型12:主从联动模型 (106)中考数学几何模型1:截长补短模型名师点睛拨开云雾开门见山有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系.这一类题目一般可以采取“截长”或“补短”的方法来进行求解.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系.所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等.然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.典题探究启迪思维探究重点例题1.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.变式练习>>>1.已知△ABC的内角平分线AD交BC于D,∠B=2∠C.求证:AB+BD=AC.例题2.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.2.已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.例题3.如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.例题4.在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,求线段AE长度的最大值.例题5.在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.例题6.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.达标检测领悟提升强化落实1.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.2.如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.4.如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;(2)求证:AF=CD+CF.5.如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.6.如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.7.如图,在正方形ABCD 中,点P 是AB 的中点,连接DP ,过点B 作BE ⊥DP 交DP 的延长线于点E ,连接AE ,过点A 作AF ⊥AE 交DP 于点F ,连接BF .(1)若AE =2,求EF 的长;(2)求证:PF =EP +EB .中考数学几何模型2:共顶点模型名师点睛拨开云雾开门见山共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

2020广东中考数学点对点第一部分基础过关课时23正方形课件(共46张PPT)

2020广东中考数学点对点第一部分基础过关课时23正方形课件(共46张PPT)
图8
解:四边形CODP的形状是矩形. 理由:∵DP∥OC,DP=OC, ∴四边形CODP是平行四边形.
∵四边形ABCD是菱形,∴AC⊥BD.∴∠DOC=
90°. ∴四边形CODP是矩形.
(3)如果题目中的矩形变为正方形,如图9,结 论又应变为什么?说明理由.
图9
解:四边形CODP的形状是正方形. 理由:∵DP∥OC,DP=OC, ∴四边形CODP是平行四边形. ∵四边形ABCD是正方形,
∠BAF=∠ADG,
在△BAF 和△ADG 中,∠AFB=∠DGA, AB=AD,
∴△BAF≌△ADG(AAS).∴BF=AG,AF=DG. ∵FG=AG-AF,∴BF-DG=FG.
B 7.(2019菏泽)如图16,E,F是正方形ABCD的对
角线AC上的两点,AC=8,AE=CF=2,则四 边形BEDF的周长是___8__5_____.
图1
3.如图 2,过正方形 ABCD 的顶点 B 作直线 l,
点 A,C 到直线 l 的距离分别为 3 和 4,则 AC 的长
为( A )
A.5 2
B.6 2
C.7 2
D.8
图2
4.(改编)如图3,在正方形ABCD中,对角线 AC,BD相交于点O,∠DBC的平分线BF交CD 于点E,交AC于点F.
(1)证明:∵E 是 AC 的中点,DB=12AC,
∴CE=AE=DB.
∵DB∥AC,∴DB∥CE. ∴四边形 DBCE 是平行四边形. (2)证明:∵DB=AE,DB∥AC,即 DB∥AE, ∴四边形 ADBE 是平行四边形. 由(1)得四边形 DBCE 是平行四边形,
∴DE∥BC.
∵∠ABC=90°,
AD=CD,

2021年中考一轮复习数学专题4 共顶点模型

2021年中考一轮复习数学专题4   共顶点模型

九年级数学专题共顶点模型解题策略:1.等边三角形共顶点2.等腰直角三角形共顶点3.等腰三角形共顶点4.相似三角形共顶点能力训练:1.如图,在正方形ABCD中,F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH·AC;④DG⊥AC.其中正确的结论个数为()A.1个B.2个C.3个D.4个 2.如图,△ABC 和△CDE 都是等边三角形,且点A ,C ,E 在同一直线上,AD 与BE ,BC 分别交于点F ,M ,BE 与CD 交于点N ,连接MN.下列结论中正确的是 .(写出所有正确结论的序号)①AM=BN ; ②△ABF ≌△DNF ; ③∠FMC+∠FNC=180°; ④CEAC MN 111+=. 3.如图1,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D ,E 分别在AC ,BC 边上,DC=EC ,连接DE ,AE ,BD ,M ,N ,P 分别是AE ,BD ,AB 的中点,连接PM ,PN ,MN. (1)BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转得到图2和图3所示的位置,判断BE 与MN 有怎样的数量关系?写出你的猜想,并利用图2或图3进行证明.4.如图1,菱形AEGH 的顶点E ,H 在菱形ABCD 的边上,且∠BAD=60°. (1)请直接写出HD:GC:EB 的结果;(2)将图1中的菱形AEGH 绕点A 旋转一定角度,如图2,求HD:GC:EB ;(3)把图2中的菱形换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB 的结果与第(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果;若无变化,请说明理由.5.在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,CE与AD 的位置关系是;(2)如图2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.(3)如图3,当点P在线段BD的延长线上时,连接BE.若AB=23,BE=219,求四边形ADPE的面积.6.如图1,点G 在正方形ABCD 的对角线AC 上,GE ⊥BC 于点E ,GF ⊥CD 于点F. (1)【推断】BEAG的值为 ; (2)【探究与证明】如图2,将正方形CEGF 绕点C 顺时针旋转角α(0°<α<45°),试探究线段AG 与BE 之间的数量关系,并说明理由;(3)【拓展与运用】如图3,正方形CEGF 在旋转的过程中,当B ,E ,F 三点在一条直线上时,延长CG 交AD 于点H.若AG=6,GH=22,则BC= .7.(1)【问题】如图1,在Rt △ABC 中,AB=AC ,D 是BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的数量关系是 ; (2)【探索】如图2,在Rt △ABC 与Rt △ADE 中,AB=AC ,AD=AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间的数量关系,并证明你的结论;(3)【应用】如图3,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.8.△ABC 中,CA=CB ,∠ACB=α.P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转角α得到线段DP ,连接AD ,BD ,CP. (1)【观察与猜想】如图1,当α=60°时,CPBD的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 .(2)【类比探究】如图2,当α=90°时,请写出CPBD的值及直线BD 与直线CP 相交所成的较小角的度数,并说明理由;(3)【解决问题】当α=90°时,若E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时CPAD的值.9.(1)问题背景:如图1,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;(2)尝试应用:如图2,在△ABC 和△ADE 中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC 与DE 相交于点F ,点D 在BC 边上,3 BD AD ,求CFDF的值; (3)拓展创新:如图3,D 是△ABC 内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=23,直接写出AD 的长.10.已知△ABC和△DEC均为直角三角形,且∠ACB=∠DCE=90°.(1)如图1,若△ABC和△DEC均为等腰直角三角形,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②已知AC=BC=10,DC=CE=2,则线段AD的长为;(2)如图2,已知AC=21,BC=7,CD=3,CE=1,将△DEC绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.。

2020初中几何专项精讲《第17讲.正方形模型I》

2020初中几何专项精讲《第17讲.正方形模型I》

第十七讲.正方型模型I【教学目标】1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

【知识、方法梳理】正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等。

③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

【典例精讲】例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD-DM=22-2=2(2-1),∴AG=BM=2(2-1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+.可得:222110(10)4x x =++.故6x =.216256ABCD S ==.例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,•垂足为M ,AM AB =,则有EF BE DF =+,为什么?【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可. 理由:连结AE 、AF .由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用, ∴△ABE ≌△AME . ∴BE=ME .同理可得,△ADF ≌△AMF .∴DF=MF .∴EF=ME+MF=BE+DF .例4.如下图E 、F 分别在正方形ABCD 的边BC 、CD 上,且45EAF ︒∠=,试说明EF BE DF =+。

中考数学专题1共顶点模型-【压轴必刷】2023中考数学压轴大题之经典模型培优案(原卷版)--漫兮教育

中考数学专题1共顶点模型-【压轴必刷】2023中考数学压轴大题之经典模型培优案(原卷版)--漫兮教育

专题1共顶点模型【例1】把两个等腰直角△ABC和△ADE按如图1所示的位置摆放,将△ADE绕点A按逆时针方向旋转,如图2,连接BD,EC,设旋转角为α(0°<α<360°).(1)当DE⊥AC时,AD与BC的位置关系是,AE与BC的位置关系是.(2)如图2,当点D在线段BE上时,求∠BEC的度数;(3)若△ABD的外心在边BD上,直接写出旋转角α的值.【例2】已知Rt ABC△中,AB AC=,90BAC∠=︒,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt ADE△,AD AE=,连接CE.(1)发现问题:如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系________,位置关系________;②线段CE、CD、BC之间的关系是_________;(2)尝试探究:如图②,当点D在边BC的延长线上且其他条件不变时,(1)中CE、CD、BC之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸:如图③,当点D在边CB的延长线上且其他条件不变时,若6BC=,1CE=,则线段AD的长为________.【例3】有如下一道作业题:(1)请你完成这道题的证明:(2)如图2,在正方形ABCD中,点N是边CD上一点,CM=CN,连接DM,连接FC.①求证:∠BFC=45°.②把FC绕点F逆时针旋转90°得到FP,连接CP(如图3).求证:BF=CP+DF.【例4】已知等边ABC,D为边BC中点,M为边AC上一点(不与A,C重合),连接DM.(1)如图1,点E是边AC的中点,当M在线段AE上(不与A,E重合)时,将DM绕点D逆时针旋转120 得到线段DF,连接BF.①依题意补全图1;②此时EM 与BF 的数量关系为: ,DBF ∠= °.(2)如图2,若2DM MC =,在边AB 上有一点N ,使得120NDM ∠=︒.直接用等式表示线段BN ,ND ,CD 之间的数量关系,并证明.【例5】如图1,在Rt △ACB 中,∠ACB =90°,AB =2BC ,点M ,F 分别为边AB ,AC 的中点,点D 在边AC 上,且CD =2AD ,点N 为CD 的中点,过点D 作DE ∥AB 交BC 于点E ,点G 为DE 的中点.将△DCE 绕点C 顺时针旋转,旋转角为α,连接MG ,FN .(1)问题发现当α=0°时,FN GM = √32;直线MG 与直线FN 相交所成的较小夹角的度数为 30° . (2)类比探究当0°<α<360°时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形给出证明;若不成立,请说明理由.(3)拓展应用若AB =4,直线MG 和直线FN 交于点O ,在旋转的过程中,当点O 与点N 重合时,请直接写出线段FN 的长.1.ACB △和CDE △都是等腰直角三角形,90ACB DCE ∠=∠=︒,将CDE △绕点D 旋转.(1)如图1,当点B 落在直线DE 上时,若26AC =,CE =BE 的长;(2)如图2,直线BD 、AE 交于点F ,再连接CF EF DF =+;(3)如图3,8AC =,4CD =,G 为ED 中点,连接AG ,BG ,以AG 直角边构造等腰Rt AHG ,过H 作HI AB ⊥交AB 于点I ,连接GI ,当HI 最小时,直接写出GI 的长度.2.在ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)(请直接写出你的结论)如图1,当点D在线段BC上:①如果∠BAC=90°,则∠BCE=°;②如果∠BAC=100°,则∠BCE=°;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α、β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α、β之间有怎样的数量关系?请画出图形,并直接写出你的结论.3.有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,DE,M是BF的中点(观察猜想)(1)线段DE与AM之间的数量关系是,位置关系是;(探究证明)(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,线段DE与AM之间的关系是否仍然成立?并说明理由.(3) 若正方形ABCD的边长为4,将其沿EF翻折,点D的对应点G恰好落在BC边上,直接写出DG+DH 的最小值4.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合).连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是,位置关系是;(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD、CD、DE之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,则线段AD 的长为5.已知:等腰Rt ABC 和等腰Rt ADE △中,AB AC =,AE AD =,90BAC EAD ∠=∠=︒.(1)如图1,延长DE 交BC 于点F ,若68BAE ∠=︒,则DFC ∠的度数为 ;(2)如图2,连接EC 、BD ,延长EA 交BD 于点M ,若90AEC ∠=︒,求证:点M 为BD 中点; (3)如图3,连接EC 、BD ,点G 是CE 的中点,连接AG ,交BD 于点H ,9AG =,5HG =,直接写出AEC △的面积.6.如图,点A ,M ,B 在同一直线上,以AB 为边,分别在直线两侧作等边三角形ABC 和等边三角形ABD ,连接CM ,DM ,过点M 作MN =DM ,交BC 边于点G ,交DB 的延长线于点N .(1)求证:∠BCM =∠BDM ;(2)求∠CMN 的度数;(3)求证:AM =BN .7.问题发现(1)如图①,已知△ABC ,以AB 、AC 为边向△ABC 外分别作等边△ABD 和等边△ACE ,连接CD ,BE .试探究CD 与BE 的数量关系,并说明理由.问题探究(2)如图②,四边形ABCD 中,∠ABC =45°,∠CAD =90°,AC =AD ,AB =2BC =60.求BD 的长. 问题解决(3)如图③,△ABC 中,AC =2,BC =3,∠ACB 是一个变化的角,以AB 为边向△ABC 外作等边△ABD ,连接CD ,试探究,随着∠ACB 的变化,CD 的长是否存在最大值,若存在求出CD 长的最大值及此时∠ACB 的大小;若不存在,请说明理由.8.在学习全等三角形知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成在相对位置变化的同时始终存在一对全等三角形通过资料查询,他们得知这种模型称为“手拉手模型”兴趣小组进行了如下探究:(1)如图1,两个等腰三角形ABC 和ADE 中,AB AC =,AE AD =,BAC DAE ∠=∠,连接BD 、CE ,如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和ADB △全等的三角形是______,此线BD 和CE 的数量关系是______.(2)如图2,两个等腰直角三角形ABC 和ADE 中,AB AC =,AE AD =,90BAC DAE ∠=∠=︒,连接BD 、CE ,两线交于点P ,请判断线段BD 和CE 的关系,并说明理由.9.在学习全等三角形知识时,数学兴趣小组发现这样一个模型:模型是由两个顶角相等且有公共顶角顶点的等腰三角形组成的图形,如果把它们的底角顶点连接起来,则在相对位置变化的过程中,始终存在一对全等三角形,我们把这种模型称为“手拉手模型”.这个数学兴趣小组进行了如下操作:(1)如图1.在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE =40°(AB >AD ),连接BD ,CE ,当点E 落在AB 边上,且D ,E ,C 三点共线时,则在这个“手拉手模型”中,和△ABD 全等的三角形是 ,∠BDC 的度数为 .(2)如图2.在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE =90°,连接BD ,CE ,当点B ,D ,E 在同一条直线上时,请判断线段BD 和CE 的关系,并说明理由.(3)如图3,已知△ABC ,请画出图形:以AB ,AC 为边分别向△ABC 外作等边三角形ABD 和等边三角形ACE (等边三角形三条边相等,三个角都等于60°),连接BE ,CD ,交于点P ,请直接写出线段BE 和CD 的数量关系及∠BPD 的度数.10.如图1,在△ABC 中,CA =CB ,∠ACB =90°.点D 是AC 中点,连接BD ,过点A 作AE ⊥BD 交BD 的延长线于点E ,过点C 作CF ⊥BD 于点F .(1)求证:∠EAD =∠CBD ;(2)求证:BF =2AE ;(3)如图2,将△BCF 沿BC 翻折得到△BCG ,连接AG ,请猜想并证明线段AG 和AB 的数量关系.11.如图,在四边形ABCD 中,90,12cm,10cm A ABC AB BC AD ∠=∠=︒===.点P 从点A 出发,以3cm/s 的速度沿AB 向点B 匀速运动设运动时间为(s)t .(1)如图①,连接BD CP 、,当BD CP ⊥时,求t 的值;(2)如图②,当点P 开始运动时,点Q 同时从点C 出发,以cm/s a 的速度沿CB 向点B 匀速运动,当P Q 、两点中有一个点到达终点时,另一个点也随之停止运动.当ADP △与BQP 全等时,求a 和t 的值; (3)如图③,当(2)中的点Q 开始运动时,点M 同时从点D 出发,以1.5cm/s 的速度沿DA 向点A 运动,连接CM ,交DQ 于点E .连接AE 当920MD AD =时,ADE CDE S S =,请求出此时a 的值.12.(1)如图1,已知△CAB 和△CDE 均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是 .(2)将图1中的△CDE 绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F .①判断线段AD 和BE 的数量关系,并证明你的结论;②图2中∠AFB 的度数是 .(3)如图3,若△CAB 和△CDE 均为等腰直角三角形,∠ABC =∠DEC =90°,AB =BC ,DE =EC ,直线AD 和直线BE 交于点F ,分别写出∠AFB 的度数,线段AD 、BE 间的数量关系.13.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,点O 为AB 中点,点P 为直线BC 上的动点(不与点B 、点C 重合),连接OC 、OP ,将线段OP 绕点P 逆时针旋转60°,得到线段PQ ,连接BQ .(1)如图1,当点P 在线段BC 上时,请直接写出线段BQ 与CP 的数量关系.(2)如图2,当点P 在CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P 在BC 延长线上时,若∠BPO =45°,AC =√6,请直接写出BQ 的长.14.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,求DE与BC的数量关系是DE=√32BC.(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,∠PDF=60°,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请猜测DE,BF,BP三者之间的数量关系,并证明你的结论.15.(1)观察理解:如图①,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A,B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D,E,求证:△AEC≌△CDB.(2)理解应用:如图②,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的结论,请按照图中所标注的数据计算图中实线所围成的图形的面积S=50;(3)类比探究:如图③,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB',连接B′C,则S△AB′C=8.(4)拓展提升:如图④,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E 沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.若点F恰好落在射线EB上,求点P运动的时间ts.(画出示意图)16.已知等腰Rt△ABC与等腰Rt△CDE,AC=BC,CD=CE,∠ACB=∠DCE=90°.(1)如图1,当点D在AC上,点E在BC延长线时,连接AE、BD,找出AE与DB的关系,并说明理由;(2)材料:材料:图2,当点D不在AC上,点E不在BC延长线上时,连接AD、BE,点M为AD中点,连接MC,并延长MC交BE与N,我们可以证明MN⊥BE:辅助线和证明方法为:过点D作DG∥AC交CM的延长线于G,易证△AMC≌△DMG(AAS),再证明△GDC≌△BCE(SAS),从而得到∠CNE =90°,MN⊥BE;问题:把等腰Rt△DCE绕点C转至如图3位置,点M是线段AD的中点,问MN与BE的位置关系是否发生改变?如果没有,请在图3画出辅助线,并说明理由.17.某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC =90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①CF与BC的位置关系为CF⊥BC;②CF,DC,BC之间的数量关系为BC=DC+CF(直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2√2,请求出线段CE的长.18.在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:BC⊥CF;②BC,CD,CF之间的数量关系为:BC=CF+CD.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①②是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明,(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若AB=2√2,CD=1,请求出GE的长.19.已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的上边作正方形ADEF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为:BC⊥CF;②BC、CD、CF之间的数量关系为:CF=BC﹣CD.(2)数学思考:如图2,当点D在线段CB的延长线上时,以上①②关系是否成立,请在后面的横线上写出正确的结论.①BC与CF的位置关系为:BC⊥CF;②BC、CD、CF之间的数量关系为:CF =CD﹣BC.(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GD,若已知AB=2√2,CD=14BC,请求出DG的长(写出求解过程).20.已知,在△ABC中,∠BAC=90°,∠ABC=45°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时可以证明△ABD≌△ACF,则,①BC与CF的位置关系为:BC⊥CF.②BC,DC,CF之间的数量关系为:BC=DC+CF;(2)类比探究如图2,当点D在线段BC的延长线上时,其他条件不变,(1)中①,②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其他条件不变.①BC、DC、CF三条线段之间的数量关系为:BC=DC﹣CF.②若正方形ADEF的边长为2,对角线AE、DF相交于点O,连结OC,则OC的长度为√2.21.如图,在Rt△ABC中,∠A=90°,AB=AC=4√2.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止,在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0)(1)在整个运动过程中,判断PE与AB的位置关系是(2)如图2,当点D在线段AB上时,连接AQ、AP,是否存在这样的b,使得AP=PQ?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4时,点D经过点A:当t=163时,点E在边AB上.设△ABC与△PQE重叠部分的面积为S,请求出在整个运动过程中S与t之间的函数关系式,以及写出相应的自变量t的取值范围,并求出当4<t≤163时S的最大值.22.【问题情境】如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B小明认为线段P A是点P到⊙O上各点的距离中最短的线段,他是这样考虑的:在⊙O上任意取一个不同于点A的点C,连接OC、CP,则有OP<OC+PC,即OP﹣OC<PC,由OA=OC得OP﹣OA<PC,即P A<PC,从而得出线段P A是点P到⊙O上各点的距离中最短的线段小红认为在图1中,线段PB是点P到⊙O上各点的距离中最长的线段,你认为小红的说法正确吗?请说明理由【直接运用】̂上的一如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是CD个动点,连接AP,则AP的最小值是√5−1【构造运用】如图4,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值解:由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,做点A′在以AD为直径的圆上,如图5,以点M为圆心,MA为半径画⊙M,过M作MH⊥CD,垂足为H(请继续完成本题的后续解题过程)【深度运用】如图6,△ABC、△EFG均是边长为4的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M,当△EFG绕点D旋转时,则线段BM长的最小值和最大值分别是2√3−2和2√3+2.23.如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm.D、E分别为边AB、BC的中点,连接DE.点P从点A出发,沿折线AD﹣DE﹣EB运动,到点B停止.点P在线段AD上以√5cm/s的速度运动,在折线DE﹣EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M在线段AQ上.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为(t﹣2)cm(用含t的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.(4)连接CD,当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M﹣N ﹣M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H 始终在线段MN的中点处,直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.24.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.25.综合与实践:如图1,已知△ABC,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接DC,点P、Q、M分别为DE、BC、DC的中点.(1)观察猜想在图1中,线段PM与QM的数量关系是PM=MQ;(2)探究证明当∠BAC=60°,把△ADE绕点A顺时针方向旋转到图2的位置,判断△PMQ的形状,并说明理由;(3)拓展延伸当∠BAC=90°,AB=AC=5,AD=AE=2,再连接BE,再取BE的中点N,把△ADE绕点A在平面内自由旋转,如图3,①请你判断四边形PMQN的形状,并说明理由;②请直接写出四边形PMQN面积的最大值.26.【问题提出】如图1,△ABC中,AB=AC,点D在AB上,过点D作DE∥BC,交AC于E,连接CD,F,G,H分别是线段CD,DE,BC的中点,则线段FG,FH的数量关系是FG=FH(直接写出结论).【类比探究】将图1中的△ADE绕点A旋转到如图2位置,上述结论还成立吗?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】如图3,在Rt△ABC中,∠C=90°,AC=5,BC=12,点E在BC上,且BE=√61,过点E作ED⊥AB,垂足为D,将△BDE绕点B顺时针旋转,连接AE,取AE的中点F,连接DF.当AE 与AC垂直时,线段DF的长度为√34或√106(直接写出结果).。

模型11 手拉手模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型11 手拉手模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论:(1)BCD ACE≅△△(2)AE BD=(3)AFB DFE∠=∠(4)FC BFE∠平分【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。

【知识总结】【基本模型】一、等边三角形手拉手-出全等图1图2图3图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图4手拉手模型的定义:两个顶角相等且有共顶点的等腰三角形形成的图形。

手拉手模型特点:“两等腰,共顶点”模型探究:例题精讲考点一:等边三角形中的手拉手模型【例1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有_____________.变式训练【变式1-1】.如图,ABD∆,AEC∠的度数是()∆都是等边三角形,则BOCA.135︒B.125︒C.120︒D.110︒【变式1-2】.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正确的有()A .②④B .①②③C .①②④D .①②③④【变式1-3】.如图,△ABC 和△ADE 都是等边三角形,点D 在BC 上,DE 与AC 交于点F ,若AB =5,BD =3,则=.考点二:等腰直角三角形中的手拉手模型【例2】.如图,ACB ∆和ECD ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,D 为AB 边上一点,若5AD =,12BD =,则DE 的长为__________变式训练【变式2-1】.如图,3AB =,2AC =,连结BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C 11D 17【变式2-2】.如图,在Rt ABC ∆中,AB AC =,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①AED CFD ∆≅∆;②EF AD =;③BE CF AC +=;④212AEDF S AD =四边形,其中正确的结论是(填序号).考点三:任意等腰三角形中的手拉手模型【例3】.如图,在△AOB 和△COD 中,OA =OB ,OC =OD ,OA <OC ,∠AOB =∠COD =36°.连接AC ,BD 交于点M ,连接OM .下列结论:1∠AMB =36°,②AC =BD ,③OM 平分∠AOD ,④MO 平分∠AMD .其中正确的结论是_____.变式训练【变式3-1】.如图,等腰ABC ∆中,120ACB ∠=︒,4AC =,点D 为直线AB 上一动点,以线段CD 为腰在右侧作等腰CDE ∆,且120DCE ∠=︒,连接AE ,则AE 的最小值为()A .23B .4C .6D .8【变式3-2】.如图,在△ABC 中,AB =AC =5,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为边BC (不含端点)上的任意一点,在射线CM 上截取CE =BD ,连接AD ,DE ,AE .设AC 与DE 交于点F ,则线段CF 的最大值为.【变式3-3】.【问题背景】(1)如图1,等腰ABC ∆中,AB AC =,120BAC ∠=︒,AQ BC ⊥于点Q ,则BC AB =;【知识应用】(2)如图2,ABC ∆和ADE ∆都是等腰三角形,120BAC DAE ∠=∠=︒,D 、E 、C 三点在同一条直线上,连接BD .求证:ADB AEC ∆≅∆.(3)请写出线段AD ,BD ,CD 之间的等量关系,并说明理由.实战演练1.风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB AD =,B D ∠=∠,BAE DAC ∠=∠,那么AC 与AE 相等.小飞直接证明ABC ADE ∆≅∆,他的证明依据是()A .SSSB .SASC .ASAD .AAS2.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒3.如图,点A 是x 轴上一个定点,点B 从原点O 出发沿y 轴的正方向移动,以线段OB 为边在y 轴右侧作等边三角形,以线段AB 为边在AB 上方作等边三角形,连接CD ,随点B 的移动,下列说法错误的是()A .BOA BDC∆≅∆B .150ODC ∠=︒C .直线CD 与x 轴所夹的锐角恒为60︒D .随点B 的移动,线段CD 的值逐渐增大4.如图,3AB =,2AC =,连结BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C 11D 175.如图,线段OA 绕点O 旋转,线段OB 的位置保持不变,在AB 的上方作等边PAB ∆,若1OA =,3OB =,则在线段OA 旋转过程中,线段OP 的最大值是()A10B.4C.5D.56.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,则∠AOB=.7.如图,△ABC与△ADE均是等腰直角三角形,点B,C,D在同一直线上,AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,则CD=.8.如图,△ABC和△ADE均为等腰直角三角形,连接CD、BE,点F、G分别为DE、BE 的中点,连接FG.在△ADE旋转的过程中,当D、E、C三点共线时,若AB=3,AD=2,则线段FG的长为.9.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.10.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.11.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.12.如图,在△ABC中,分别以AB、AC为腰向外侧作等腰Rt△ADB与等腰Rt△AEC,∠DAB=∠EAC=90°,连接DC、EB相交于点O.(1)求证:BE⊥DC;(2)若BE=BC.①如图1,G、F分别是DB、EC中点,求的值.2如图2,连接OA,若OA=2,求△DOE的面积.13.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD 为一边在AD的右侧作等腰直角△ADF,∠ADE=∠AED=45°,∠DAE=90°,AD=AE,解答下列问题:(1)如果AB=AC,∠BAC=90°,∠ABC=∠ACB=45°.①当点D在线段BC上时(与点B不重合),如图(2),线段CE、BD之间的数量关系为;位置关系为;(不用证明)②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,请写出结论并说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?请写出条件,并借助图(4)简述CE⊥BD成立的理由.14.(注意:本题中的说理过程中的每一步必须注明理由,否则不得分)如图1,在△ABC 中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°;①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.15.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.。

专题 几何模型-旋转三模型(半角模型、三叉口模型、费马点模型)-中考数学第二轮总复习课件(全国通用)

专题 几何模型-旋转三模型(半角模型、三叉口模型、费马点模型)-中考数学第二轮总复习课件(全国通用)

BD
AE
C
【二】将△ABD沿着AD翻折到△ADF,连接EF,得 △ABD≌△AFD;△ACE≌△AFE;再证Rt△DFE
BD F
EC
01
知识点
02
03
半角模型 三叉口模型 费马点模型
典例精讲
三叉口模型
【例2】如图,点P为等边△ABC内一点,且PA=5,PB=3,PC=4,
知识点二
(1)求∠BPC的度数;(2)求等边△ABC的边长;(3)求等边△ABC的面积.
【思路点拨】
A
D
(1)将△APD绕点D逆时针旋转90º
P
得△CQD,再连接PQ,
求得∠APD=∠CQD=45º+90º=135°
Q
(2)作CH⊥DQ于点H, B
求得CH=HQ=1,再由勾股定理得出CD= 10
H C
针对训练
三叉口模型
知识点二
2.如图,点P为正六边形ABCDEF内一点,且PA=8,PB= 3 2 ,PC=10,求正六边形
∵MN=AB=600米,
∴ FN = (600 +500 3)米
B

D
P HH C
针对训练
费马点模型
知识点三
如图,已知矩形ABCD的边AB=2,BC= 2 3,点P为矩形内部一点,连接
PA,PB,PC,则PA+PB+PC的最小值为_2__7_.
A
D


P
B
C
课堂小结
旋转三模型
破解半角模型---口诀:
中考数学第二轮总复习
专题15 几何模型
旋转三模型
半角模型、三叉口模型、费马点模型

中考数学一轮专项——正方形 课件演示

中考数学一轮专项——正方形 课件演示

∴tan∠PAD=ADDP= 33,∴DP= 33b. 易知 DC=AB=a. ∴点 G 在矩形 ABCD 内部和外部时,都有 DP≤DC,均符合题 意.
综上,当∠CGB=120°时,a 与 b 的数量关系为 a=2 3 3b 或 a

3 3 b.
考点2 正方形的判定 例 5 如图 5,在平行四边形 ABCD 中,对角线 AC,BD 交于点
(2)连接 CG,设 AB=a,AD=b,探究当∠CGB=120°时,a 与 b 的数量关系.
解:连接 DG,AG,由(1)可知,在△ADG 中,AD=AG, ∠DAG=∠PAD+∠PAG=60°, ∴△ADG 是等边三角形, ∴DG=AG=AD,∠ADG=∠DAG=60°. ∵在矩形 ABCD 中,AB=DC,∠DAB=∠ADC=∠ABC=90°,
2.【2019·福建·4 分】如图,边长为 2 的正方形 ABCD 的中心与 半径为 2 的⊙O 的圆心重合,E,F 分别是 AD,BA 的延长线 与⊙O 的交点,则图中阴影部分的面积是________.(结果保 留 π)
【点拨】如图,分别延长 DC,CB 交⊙O 于点 M,N, 易得图中阴影部分的面积=14×(S⊙O-S 正方形 ABCD)=14×(4π-4)=π -1.
【答案】π-1
Hale Waihona Puke 3.【2020·福建·4 分】设 A,B,C,D 是反比例函数 y=kx(k≠0) 的图象上的任意四点,现有以下结论: ①四边形 ABCD 可以是平行四边形; ②四边形 ABCD 可以是菱形; ③四边形 ABCD 不可能是矩形; ④四边形 ABCD 不可能是正方形.其中正确的是 ____①__④________.(写出所有正确结论的序号)
证明:∵四边形 ABCD 是正方形, ∴AD=CD,∠A=∠ADC=∠BCD=90°, ∴∠DCN=90°,∠1+∠2=90°,∴∠DCN=∠A. ∵DN⊥DM,∴∠3+∠2=90°,∴∠1=∠3, ∴△ADM≌△CDN,∴AM=CN.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何部分
共顶点模型之共顶点正方形
一 例题解析
例 如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形
ACFG,连接EG,AM是BC边上的中线,延长MA交EG于点H.
求证: AM 1 EG .
2
解析: 延长AM到K使MK=AM,连接CK,BK.

MK=AM=
1 2
AK,
CM=BM
∴ 四边形ACKB是平行四边形
∴∠CAB+∠ACK=180°
∵ ∠CAB+∠GAE=180° ∵ AG=AC, AE=AB=CK
∴ GE=AK
∴∠GAE=∠ACK
∴ △AGE≌ △CAK

AM=
1 2
AK=
1
2 GE
方法归纳: K 中线倍长构造全等
变式:如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形 ACFG,连接EG,AM是BC边上的中线,延长MA交EG于点H.
P是EF中点.求证:点P到 BC的距离是BC的一半.
M是HF中点. 求证:MA⊥BC
求证:MO1⊥MO2
求证:O1O3 =O2O4
谢谢
二 方法梳理
方法:
中线倍长构造全等
1 3
2
作垂线构造旋转型全等 N K
结论:
K
AM 1 EG 2
MH EG
S AGE S ABC
三 巩固练习
以 ABCD 的四条边为边,在其形外分别作正方形,连接 EF,GH,IJ,KL.若 ABCD 的面积为5,求图中的阴影部分四个三角形 的面积和.
解析: 连接BD, AC.
求证: S AGE S ABC .
解析: 作KE⊥GA交GA延长线于点K, 作BN⊥AC交AC于点N.
∵∠EKA=∠BNA=90º,∠EAK=∠BAN=90º- ∠BAK,
∵AE=AB
∴ △AKE≌ △ANB.
N K
∴ EK=NB
又∵AG=AC
∴ S AGE S ABC
方法归纳: 作垂线构造旋转型全等
由例题结论可得:SABD SAEF
SBCD SCIJ
同理: SABC SBGH SADC SDKL
∴ S阴影 2S平行四边形ABCD 10
四 拓展提高
如下图,在梯形ABCD中,AB∥CD,AB=4,DC=1,分别以AD, BC为边向外作正方形ADEF与正方形BCGH,I为线段EG的中点,求 △DCI的面积.
解析: 作垂线,在点C,D处构造旋转型全等.
易得 △CGQ≌△CBM, △DPE≌△DNA.
∴ PE=AN,GQ=BM
P
R
Q
∵ MN=CD= 1,
∴中位线RI= (12 PE+GQ)=
2
4
NM
五 课堂小结
共顶点正方形 求证:PE=QF
MN垂直平分AD. 求证:PE=QF
相关文档
最新文档