Equivalence of Covariant and Light-Front Perturbation Theory

合集下载

化学专业类英文科研文献

化学专业类英文科研文献

Conjugation vs hyperconjugation in molecular structure of acroleinSvitlana V.Shishkina a ,⇑,Anzhelika I.Slabko b ,Oleg V.Shishkin a ,caDivision of Functional Materials Chemistry,SSI ‘Institute for Single Crystals’,National Academy of Science of Ukraine,60Lenina Ave.,Kharkiv 61001,Ukraine bDepartment of Technology of Plastic Masses,National Technical University ‘Kharkiv Polythechnic Institute’,21Frunze Str.,Kharkiv 61002,Ukraine cDepartment of Inorganic Chemistry,V.N.Karazin Kharkiv National University,4Svobody Sq.,Kharkiv 61077,Ukrainea r t i c l e i n f o Article history:Received 4August 2012In final form 16November 2012Available online 29November 2012a b s t r a c tAnalysis of geometric parameters of butadiene and acrolein reveals the contradiction between the Csp 2–Csp 2bond length in acrolein and classical concept of conjugation degree in the polarized molecules.In this Letter the reasons of this contradiction have been investigated.It is concluded that the Csp 2–Csp 2bond length in acrolein is determined by influence of the bonding for it p –p conjugation and antibonding n ?r ⁄hyperconjugation between the oxygen lone pair and the antibonding orbital of the single bond.It was shown also this bond length depends on the difference in energy of conjugative and hyperconjuga-tive interactions.Ó2012Elsevier B.V.All rights reserved.1.IntroductionButadiene and acrolein belong to the most fundamental mole-cules in the organic chemistry.They are canonical objects for the investigation of phenomena of p –p conjugation between double bonds and polarization of p -system by heteroatom [1].According to many experimental [2–16]as well as theoretical studies [13,17–23]the molecular structure of butadiene is determined by conjugation between p -orbitals of two double bonds and may be described as superposition of two resonance structures (Scheme 1).The presence of zwitterionic structure causes the shortening of the central single Csp 2–Csp 2bond as compare with similar unconjugated bond [24].Acrolein differs from butadiene by presence of the oxygen atom instead terminal methylene group.According to classical concepts of organic chemistry such replacement should causes polarization of p -system due to presence of highly polar C @O bond [25].This leads to significant increase of the contribution of the zwitterionic resonance structure (Scheme 1)reflecting strengthening of conju-gation between p -systems of double bonds.Therefore the central Csp 2–Csp 2bond must be shorter in acrolein as compared with one in butadiene.However numerous investigations of acrolein by experimental [26–28]and theoretical methods [26,27,29–36]demonstrate an opposite situation:the Csp 2–Csp 2bond length varies within the range 1.469Ä1.481Åin acrolein as compared with 1.454Ä1.467in butadiene.Based on these data one can conclude that conjugation between double bonds in acrolein is weaker than in butadiene.At that time the rotation barrier obtained from quan-tum-chemical calculations is higher in acrolein [26,27],confirming stronger conjugation between double bonds.Thus,results of experimental and theoretical investigations demonstrate the con-tradiction between the strengthening of the conjugation in acrolein as compare with butadiene and the values of the Csp 2–Csp 2bond length in these molecules.Recently such illogical situation was observed also in derivatives of cyclohexene containing conjugated endocyclic and exocyclic double bonds [37].It was assumed that elongation of the Csp 2–Csp 2bond in cycloxen-2-enone as compare with one in 3-methylene-cyclohexene is caused by the influence of n ?r ⁄hyperconjugation.In this Letter we demonstrate the results of the investigation of intramolecular interactions in butadiene and acrolein which ex-plain the experimentally observed contradiction between the length of the Csp 2–Csp 2bond and degree of conjugation in acrolein.2.Method of calculationsThe structures of all investigated molecules were optimized using second-order Møller-Plesset perturbation theory [38].The standard aug-cc-pvtz basis set [39]was applied.The character of stationary points on the potential energy surface was verified by calculations of vibrational frequencies within the harmonic approximation using analytical second derivatives at the same level of theory.All stationary points possess zero (minima)or one (saddle points)imaginary frequencies.The verification of the calculation method was performed using optimization of butadi-ene and acrolein by MP2/aug-cc-pvqz,CCSD(T)/cc-pvtz and CCSD(T)/6-311G(d,p)methods [40].The geometry of saddle points for the rotation process was lo-cated using standard optimization technique [41].The barrier of the rotation in all molecules was calculated as the difference be-tween the Gibbs free energies at 298K of the most stable s-trans0009-2614/$-see front matter Ó2012Elsevier B.V.All rights reserved./10.1016/j.cplett.2012.11.032Corresponding author.Fax:+3805723409339.E-mail address:sveta@ (S.V.Shishkina).conformer and saddle-point conformation.All calculations were performed using the G AUSSIAN 03program [42].The intramolecular interactions were investigated within the Natural Bonding Orbitals theory [43]with N BO 5.0program [44].Calculations were performed using B3LYP/aug-cc-pvtz wave func-tion obtained from single point calculations by G AUSSIAN 03program.The conjugation and hyperconjugation interactions are referred to as ‘delocalization’corrections to the zeroth-order natural Lewis structure.For each donor N BO (i )and acceptor N BO (j ),the stabiliza-tion energy E (2)associated with delocalization (‘2e-stabilization’)i ?j is estimated asE ð2Þ¼D E ij ¼q iF ði ;j Þ22j À2i;where q i is the donor orbital occupancy,e j and e i are the diagonal elements (orbital energies),and F (i,j )is the off-diagonal N BO Fock matrix element.3.Results and discussionThe equilibrium geometry of s-trans and s-cis conformers of butadiene and acrolein calculated by MP/aug-cc-pvtz method (Ta-ble 2)agrees very well with obtained earlier results [2–23,25–34]and data of higher and more computationally expensive methods (Table 1).It can be noted that the C–C bond length in acrolein(Tables 1and 2)is longer as compared with butadiene in all sta-tionary points on the potential energy surface.Such relation does not agree with the conception of the resonance theory [45–47].Analysis of intramolecular interactions in both molecules using N BO theory indicates that acrolein differs from butadiene by pres-ence of intramolecular interaction between lone pair of the oxygen atom and antibonding orbital of the C–C bond (Figure 1)as well as the polarization of one double bond containing more electronega-tive ually the interactions between lone pair and antibonding orbital of single bond are stronger than the interac-tions between the C–H bond and antibonding orbital [48]and they can influence geometrical characteristics.Such type of interactions is named by anomeric effect and it is studied very well for the case when the central bond between interacted orbitals is single [48,49].It is investigated in details [49]an influence of classical anomeric effect on conformation of the substituents about central single bond as well as on values of bond lengths.In the case of hyperconjugation interactions along double bond in acrolein orien-tation of substituents around it is determined by its double charac-ter.Therefore,n ?r ⁄hyperconjugative interaction can influence on the bond lengths of interacted ones only.It can assume the dou-ble character of the central bond must also promote some strengthening of this influence due to shorter distance between the lone pair of the oxygen atom and antibonding orbital of the C–C bond.Results of N BO analysis of intramolecular interactions in butadi-ene and acrolein demonstrate that the energy of n ?r ⁄interaction between lone pair of the oxygen atom and antibonding orbital of the C–C bond in acrolein is twice as high of the energy of r ?r ⁄interaction between the C–H bond and antibonding orbital of the C–C bond in butadiene (Table 2).At that time the energy of n ?r ⁄interaction is close enough to the energy of p –pTable 2The equilibrium geometries (bond lengths,Åand C @C–C @X (X =CH 2,O)torsion angle,deg.),transition state of the rotation process,bond length alternation (BLA)parameter,related energy (D E rel ,kcal/mol),related stability (D G 298,kcal/mol)and energy of strongest intramolecular interactions (E (2),kcal/mol)for butadiene and acrolein optimized by MP2/aug-cc-pvtz method.The wave function calculated by b3lyp/aug-cc-pvtz method was used for N BO analysis.ConformerBond lengths (Å)C @C–C @X torsion angle deg.BLA (Å)D E rel(kcal/mol)D G 298(kcal/mol)E (2)(kcal/mol)C @CC–C C @X p –pn ?r ⁄(C–C)r ?r ⁄(C–C)Butadiene s-trans 1.341 1.453 1.340180.0+0.1120030.74–8.67gauche 1.340 1.465 1.34036.8+0.125 2.83 2.8921.04–8.94TS 1.3361.4801.336101.8+0.1446.446.102.32–10.66Acrolein s-trans 1.339 1.469 1.219180.0+0.1300027.7518.06–s-cis 1.338 1.481 1.2190.0+0.143 2.26 2.2224.6319.05–TS1.334 1.492 1.21692.5+0.1588.017.46–18.78–Acrolein +BH 3s-trans 1.341 1.449 1.235180.0+0.1080033.12 2.4511.43s-cis 1.340 1.460 1.2340.0+0.120 2.45 2.3829.61 2.6011.43TS1.334 1.476 1.23193.7+0.1429.258.61–2.3911.55Table 1The Csp 2–Csp 2bond length in butadiene and acrolein optimized by different quantum-chemical methods.Method of calculationCsp 2–Csp 2bond length (Å)D (Csp 2–Csp 2)(Å)ButadieneAcrolein MP2/aug-cc-pvtz 1.453 1.4690.016MP2/aug-cc-pvqz 1.451 1.4670.016CCSD(T)/cc-pvtz1.461 1.4780.017CCSD(T)/6–311G(d,p)1.4681.4870.019S.V.Shishkina et al./Chemical Physics Letters 556(2013)18–2219conjugation between two double bonds.Therefore it can assume that the influence of p–p conjugation and n?r⁄hyperconjuga-tion on the C–C bond length should be comparable.However two strongest intramolecular interactions in the acrolein differ from each other:p–p conjugation between double bonds causes the shortening of the C–C bond in contrary to n?r⁄hyperconjugation which leads to the elongation of the C–C bond owing to the popu-lation of its antibonding orbital.Taking into account this situation it is possible to conclude that length of the Csp2–Csp2single bond in acrolein is determined by balance of two opposite factors namely p–p conjugation and n?r⁄hyperconjugation which may be considered as bonding and antibonding interactions for this bond(Figure1).In this case the length of the Csp2–Csp2bond in acrolein depends on the con-tribution of each of these factors.The changing of the delocaliza-tion of the structures due to influence of intramolecular interactions can be analyzed easier by mean of the bond length alternation(BLA)parameter(Table2).The analysis of BLA shows the presence of n?r⁄hyperconjugative interaction in acrolein what results in the increasing of alternation of double bonds as compare with butadiene.Clear estimation of influence of both interactions on geometri-cal parameters of molecule may be performed by comparison of properties of single C–C bond and BLA parameter in equilibrium s-trans conformation and in situations where one or both intramo-lecular interactions are absent.It is well known that p–p conjugation between double bonds decreases appreciably up to disappearing(in acrolein)in the tran-sition state for the rotation around single bond process(Figure2). The data of N BO analysis for butadiene and acrolein in the transition state confirm this evidence(Table2).As expected the absence of p–p conjugation results in the elongation of the Csp2–Csp2bond and increasing of BLA as compare with equilibrium geometry.At that time single C–C bond remains longer in the transition state for acrolein as compare with one for butadiene’s transition state.1.4921.4691.4491.476π−π is present n σ* is presentπ−π is absentn σ* is absent without π−πwithout n σ∗Figure2.Influence of p–p⁄conjugation and n?r⁄hyperconjugation on the C–Cbond length in acrolein.Table3The energy(E(2),kcal/mol)of the conjugative(bonding)and hyperconjugative(antibonding)intramolecular interactions influencing the Csp2–Csp2bond length in butadiene, acrolein and its complex with BH3.Molecule Bonding interactions E(2)(kcal/mol)Antibonding interactions E(2)(kcal/mol)Butadienes-trans BD(2)C1-C2–BD(2)C3-C430.74BD(1)C1-H5–BD(1)C2-C38.67 BD(1)C2-H7–BD(1)C3-H87.68BD(1)C4-H9–BD(1)C2-C38.67 gauche BD(2)C1-C2–BD(2)C3-C421.04BD(1)C1-H5–BD(1)C2-C38.94 BD(1)C2-H7–BD(1)C3-C4 5.36BD(1)C4-H9–BD(1)C2-C39.01BD(1)C3-H8–BD(1)C1-C2 5.36TS BD(1)C1-C2–BD(1)C3-C4 3.5BD(1)C1-H5–BD(1)C2-C310.66 BD(1)C1-C2–BD(2)C3-C4 3.46BD(1)C4-H9–BD(1)C2-C310.66BD(1)C3-C4–BD(2)C1-C2 3.46BD(2)C1-C2–BD(2)C3-C4 2.32BD(1)C3-H8–BD(2)C1-C29.57BD(1)C2-H7–BD(2)C3-C49.57Acroleins-trans BD(1)C1-C2–BD(1)C3-O4 2.73BD(1)C1-H5–BD(1)C2-C38.25 BD(2)C1-C2–BD(2)C3-O427.75LP(2)O4–BD(1)C2-C318.06BD(1)C2-H7–BD(1)C3-H8 5.95s-cis BD(2)C1-C2–BD(2)C3-O424.63BD(1)C1-H5–BD(1)C2-C38.76 BD(1)C2-H7–BD(1)C3-O4 4.05LP(2)O4–BD(1)C2-C319.05BD(1)C3-H8–BD(1)C1-C2 5.01TS BD(1)C1-C2–BD(2)C3-O4 2.98BD(1)C1-H5–BD(1)C2-C39.07 BD(1)C3-O4–BD(2)C1-C2 4.48LP(2)O4–BD(1)C2-C318.78BD(1)C3-H8–BD(2)C1-C2 5.85BD(1)C2-H7–BD(2)C3-O4 6.16Acrolein+BH3s-trans BD(1)C1-C2–BD(1)C3-O4 3.07BD(1)C1-H6–BD(1)C2-C38.09 BD(2)C1-C2–BD(2)C3-O433.12BD(1)C2-C3–BD(1)O4-B511.43BD(1)C2-H8–BD(1)C3-H9 5.97LP(1)O4–BD(1)C2-C3 2.45 s-cis BD(1)C1-C2–BD(1)C3-H9 4.98BD(1)C1-H6–BD(1)C2-C38.51 BD(2)C1-C2–BD(2)C3-O429.61BD(1)C2-C3–BD(1)O4-B511.43BD(1)C2-H8–BD(1)C3-O4 4.41LP(1)O4–BD(1)C2-C3 2.60 TS BD(1)C1-C2–BD(1)C3-O40.55BD(1)C1-H6–BD(1)C2-C39.05 BD(1)C1-C2–BD(2)C3-O4 3.01BD(1)C2-C3–BD(1)O4-B511.55BD(2)C1-C2–BD(1)C3-O4 4.90LP(1)O4–BD(1)C2-C3 2.39BD(1)C3-H9–BD(2)C1-C2 6.13BD(1)C2-H8–BD(2)C3-O4 6.8820S.V.Shishkina et al./Chemical Physics Letters556(2013)18–22It is additional argument about the influence of n?r⁄hypercon-jugation on the C–C bond length through the C@O double bond.In contrary to p–p conjugation n?r⁄hyperconjugation is present in all stationary points on the potential energy surface for acrolein(Table2).But this interaction can be shielded by for-mation of dative bond involving lone pair of the oxygen atom and unoccupied orbital of Lewis acid,for example,BH3.The formed O–B bond has r-character and the energy of its interaction with antibonding orbital of the central C–C bond is very close to the en-ergy of similar C–H?r⁄(C–C)interaction in butadiene(Table2). The absence of n?r⁄hyperconjugation results significant short-ening of the Csp2–Csp2bond and decreasing of BLA in all stationary points for acrolein.It is more interesting that the C–C bond in acro-lein becomes shorter and p–p conjugation becomes stronger as compare with ones in butadiene in the case of absence of n?r⁄hyperconjugative interaction(Table2)what agrees well with the resonance theory.This evidence is confirmed also by values of BLA parameter.It is very interesting the situation when both strong intramolec-ular interactions are absent namely acrolein with shielded by BH3 lone pair in the transition state for the rotation process.In absence of p–p conjugative and n?r⁄hyperconjugative interactions the C–C bond length is almost equal to mean value for length of this bond for s-trans and s-cis conformers of acrolein with both interac-tions(Table2).This fact confirms that the C–C bond length in acro-lein in the equilibrium state is determined by balance of p–p conjugation and n?r⁄hyperconjugation.Taking into account the opposite influence of two types of intra-molecular interactions on the C–C bond one may assume that its length depends on the difference in energy of bonding and antibonding interactions for this bond.In such case all bonding for C–C bond and antibonding for it interactions(Table3)must be taken into account.Specially,this is important for transition states where p–p conjugative interaction is minimal and r(c-H)–p interaction appears instead it.This interaction has bond-ing for Csp2–Csp2bond character and it is weaker as compare with p–p interaction.Analysis of relation between C–C bond length and total energy of intramolecular interaction influencing on it demon-strates good correlation between them(Figure3)with correlation coefficient aboutÀ0.93.The barrier of the rotation around ordinary C–C bond is also sensitive to intramolecular interactions.The absence of n?r⁄hyperconjugation in acrolein results the increase of conjugation in molecule what leads to the increase of the rotation barrier (Table2).4.ConclusionsResults of quantum-chemical calculations demonstrate the structure of acrolein does not correspond to conventional views about influence of the polarization of p-system by the oxygen atom.According to classic viewpoint this effect should lead to in-crease of conjugation between double bonds and shortening of central single C–C bond as compared to butadiene.However,anal-ysis of intramolecular interactions shows that the geometry of acrolein is determined by counteraction of p–p conjugation and n?r⁄hyperconjugation.The energies of these interactions are very close but ones influence on the C–C bond lengths in opposite directions.Conjugation promotes the shortening of the central sin-gle bond due to the overlapping of the p-orbitals of two double bonds.In the contrary the n?r⁄hyperconjugation causes the elongation of the C–C bond due to the population of its antibonding orbital.The absence of conjugation in the transition state for the rotation about the C–C bond process results in the elongation of the single bond in conjugated system.In turn the shielding of n?r⁄hyperconjugation by the formation of dative bond between lone pair of oxygen atom and vacant orbital of Lewis acid causes the shortening of the C–C bond in acrolein.The C–C bond length correlates well with the difference between two strong intramolec-ular interactions.The absence of both interactions does not almost change the C–C bond length.Thus,these data clearly indicate that molecular structure of conjugated systems containing heteroatoms is determined by not only p–p conjugation but also by n?r⁄hyperconjugation.References[1]F.A Carey,R.J.Sundberg,Advanced Organic Chemistry.Part A:Structure andMechanisms,Springer,Virginia,2007.[2]Yu.N.Panchenko,Yu.A.Pentin,V.I.Tyulin,V.M.Tatevskii,Opt.Spectrosc.13(1962)488.[3]A.R.H.Cole,G.M.Mohay,G.A.Osborne,Spectrochim.Acta23A(1967)909.[4]K.Kuchitsu,T.Fukuyama,Y.Morino,J.Mol.Struct.1(1967–1968)463.[5]R.L.Lipnick,E.W.Garbisch Jr.,J.Am.Chem.Soc.95(1973)6370.[6]Yu.N.Panchenko,Spectrochim.Acta31A(1975)1201.[7]Yu.N.Panchenko,A.V.Abramenkov,V.I.Mochalov,A.A.Zenkin,G.Keresztury,G.J.Jalsovszky,J.Mol.Spectrosc.99(1983)288.[8]W.Caminati,G.Grassi,A.Bauder,Chem.Phys.Lett.148(1988)13.[9]M.E.Squillacote,T.C.Semple,P.W.Mui,J.Am.Chem.Soc.107(1985)6842.[10]Y.Furukawa,H.Takeuchi,I.Harada,M.Tasumi,Bull.Chem.Soc.Jpn.56(1983)392.[11]B.R.Arnold,V.Balaji,J.W.Downing,J.G.Radziszewski,J.J.Fisher,J.Michl,J.Am.Chem.Soc.113(1991)2910.[12]J.Saltiel,J.-O.Choi,D.F.Sears Jr.,D.W.Eaker,F.B.Mallory,C.W.Mallory,J.Phys.Chem.98(1994)13162.[13]K.W.Wiberg,R.E.Rosenberg,J.Am.Chem.Soc.112(1990)1509.[14]J.Saltiel,D.F.Sears Jr,A.M.Turek,J.Phys.Chem.A105(2001)7569.[15]M.S.Deleuze,S.Knippenberg,J.Chem.Phys.125(2006)104309-1.[16]P.Boopalachandran,N.C.Craig,ane,J.Phys.Chem.A116(2012)271.[17]H.Guo,M.Karplus,J.Chem.Phys.94(1991)3679.[18]R.Hargitai,P.G.Szalay,G.Pongor,G.Fogarasi,J.Mol.Struct.(THEOCHEM)112(1994)293.[19]G.R.De Maré,Yu.N.Panchenko,J.V.Auwera,J.Phys.Chem.A101(1997)3998.[20]J.C.Sancho-García,A.J.Pérez-Jiménez,F.Moscardó,J.Phys.Chem.A105(2001)11541.[21]N.C.Craig,P.Groner,D.C.McKean,J.Phys.Chem.A110(2006)7461.[22]D.Feller,K.A.Peterson,J.Chem.Phys.126(2007)114105.[23]D.Feller,N.C.Craig,A.R.Maltin,J.Phys.Chem.A112(2008)2131.[24]D.Feller,N.C.Craig,J.Phys.Chem.A113(2009)1601.[25]H.-B.Burgi,J.D.Dunitz,Structure Correlation,vol.2,VCH,Weinheim,1994.[26]K.B.Wiberg,R.E.Rosenberg,P.R.Rablen,J.Am.Chem.Soc.113(1991)2890.[27]K.B.Wiberg,P.R.Rablen,M.Marquez,J.Am.Chem.Soc.114(1992)8654.[28]K.Kuchitsu,T.Fukuyama,Y.Morino,J.Mol.Struct.1(1967–1968)463.[29]G.Celebre,M.Concistré,G.DeLuca,M.Longeri,G.Pileio,J.W.Emsley,Chem.Eur.J.11(2005)3599.[30]R.J.Loncharich,T.R.Schwartz,K.N.Houk,J.Am.Chem.Soc.109(1987)14.[31]G.R.DeMare,Yu.N.Panchenko,A.J.Abramenkov,J.Mol.Struct.160(1987)327.S.V.Shishkina et al./Chemical Physics Letters556(2013)18–2221[32]G.R.DeMare,Can.J.Chem.63(1985)1672.[33]Y.Osamura,H.F.Schaefer III,J.Chem.Phys.74(1981)4576.[34]C.E.Bolm,A.Bauder,Chem.Phys.Lett.88(1982)55.[35]B.Mannfors,J.T.Koskinen,L.-O.Pietilä,L.Ahjopalo,J.Mol.Struct.(THEOCHEM)393(1997)39.[36]J.I.García,J.A.Mayoral,L.Salvatella,X.Assfeld,M.F.Ruiz-López,J.Mol.Struct.(THEOCHEM)362(1996)187.[37]S.V.Shishkina,O.V.Shishkin,S.M.Desenko,J.Leszczynski,J.Phys.Chem.A112(2008)7080.[38]C.Møller,M.S.Plesset,Phys.Rev.46(1934)618.[39]R.A.Kendall,T.H.Dunning Jr.,R.J.Harrison,J.Chem.Phys.96(1992)6792.[40]W.H.Hehre,L.Radom,P.V.R.Schleyer,J.A.Pople,Ab initio Molecular OrbitalTheory,Wiley,New York,1986.[41]P.Culot,G.Dive,V.H.Nguyen,J.M.Ghuysen,Theor.Chim.Acta82(1992)189.[42]M.J.Frisch et al.,G AUSSIAN,Inc.,Wallingford CT,2004.[43]F.Weinhold,in:P.V.R.Schleyer,N.L.Allinger,T.Clark,J.Gasteiger,P.A.Kollman,H.F.Schaefer III,P.R.Schreiner(Eds.),Encyclopedia of Computational Chemistry,vol.3,John Wiley&Sons,Chicheste,UK,1998.1792–1792. [44]E.D.Glendening,J.K.Badenhoop,A.E.Reed,J.E.Carpenter,J.A.Bohmann,C.M.Morales,F.Weinhold,N BO5.0Theoretical Chemistry Institute,University of Wisconsin,Madison,WI,2001.[45]E.D.Glendening,F.Weinhold,put.Chem.19(1998)593.[46]E.D.Glendening,F.Weinhold,put.Chem.19(1998)610.[47]E.D.Glendening,J.K.Badenhoop,F.Weinhold,put.Chem.19(1998)628.[48]A.J.Kirby,Stereoelectronic Effects,Oxford University Press,New York,1996.[49]I.V.Alabugin,K.M.Gilmore,P.W.Peterson,WIREs Computational MolecularScience1(2011)109.22S.V.Shishkina et al./Chemical Physics Letters556(2013)18–22。

第六章 晶格动力学

第六章 晶格动力学

第六章 晶格动力学 6.1 密度泛函微扰理论固体物理性质的变化依赖于他们的晶格动力学行为:红外、拉曼和中子散射谱;比热,热膨胀和热导;和电声子相互作用相关的现象如金属电阻,超导电性和光谱的温度依赖关系是其中的一部分。

事实上,借助于声子对这些问题的了解最令人信服地说明了目前固体的量子力学图像是正确的。

晶格动力学的基础理论建立于30年代,玻恩和黄昆1954年的专题论文至今仍然是这个领域的参考教科书。

这些早期的系统而确切地陈述主要建立了动力学矩阵的一般性质,他们的对称和解析性质,没有考虑到和电子性质的联系,而实际上正是电子性质决定了他们。

直到1970年才系统地研究了这些联系。

一个系统电子的性质和晶格动力学之间的联系的重要性不仅在原理方面,主要在于通过使用这些关系,才有可能计算特殊系统的晶格动力学性质。

现在用ab initio 量子力学技术,只要输入材料化学成分的信息,理论凝聚态物理和计算材料科学就可以计算特殊材料的特殊性质。

在晶格动力学性质的特殊情况下,基于晶格振动的线性响应理论,大量的ab initio 计算在过去十年中通过发展密度泛函理论已经成为可能。

密度泛函微扰理论是在密度泛函理论的理论框架之内研究晶格振动线性响应。

感谢这些理论和算法的进步,现在已经可以在整个布里渊区的精细格子上精确计算出声子色散关系,直接可以和中子衍射数据相比。

由此系统的一些物理性质(如比热、熱膨胀系数、能带隙的温度依赖关系等等)可以计算。

1 基于电子结构理论的晶格动力学从固体电子自由度分离出振动的基本近似是Born-Oppenhermer (1927) 的绝热近似。

在这个近似中,系统的晶格动力学性质由以下薛定谔方程的本征值ε和本征函数()ΦR 决定。

()()()2222I I I E M εΦΦ⎛⎫∂-+= ⎪∂⎝⎭∑R R R R (6.1.1) 这里I R 是第I 个原子核的坐标,I M 是相应原子核的质量,{}I ≡R R 是所有原子核坐标的集合,()E R 是系统的系统的限位离子能量,常常称为Born-Oppenhermer 能量表面。

黑洞的准正模式(quasinormal modes)

黑洞的准正模式(quasinormal modes)

Quasi-Normal Modes of Stars and Black HolesKostas D.KokkotasDepartment of Physics,Aristotle University of Thessaloniki,Thessaloniki54006,Greece.kokkotas@astro.auth.grhttp://www.astro.auth.gr/˜kokkotasandBernd G.SchmidtMax Planck Institute for Gravitational Physics,Albert Einstein Institute,D-14476Golm,Germany.bernd@aei-potsdam.mpg.dePublished16September1999/Articles/Volume2/1999-2kokkotasLiving Reviews in RelativityPublished by the Max Planck Institute for Gravitational PhysicsAlbert Einstein Institute,GermanyAbstractPerturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades.They are of partic-ular importance today,because of their relevance to gravitational waveastronomy.In this review we present the theory of quasi-normal modes ofcompact objects from both the mathematical and astrophysical points ofview.The discussion includes perturbations of black holes(Schwarzschild,Reissner-Nordstr¨o m,Kerr and Kerr-Newman)and relativistic stars(non-rotating and slowly-rotating).The properties of the various families ofquasi-normal modes are described,and numerical techniques for calculat-ing quasi-normal modes reviewed.The successes,as well as the limits,of perturbation theory are presented,and its role in the emerging era ofnumerical relativity and supercomputers is discussed.c 1999Max-Planck-Gesellschaft and the authors.Further information on copyright is given at /Info/Copyright/.For permission to reproduce the article please contact livrev@aei-potsdam.mpg.de.Article AmendmentsOn author request a Living Reviews article can be amended to include errata and small additions to ensure that the most accurate and up-to-date infor-mation possible is provided.For detailed documentation of amendments, please go to the article’s online version at/Articles/Volume2/1999-2kokkotas/. Owing to the fact that a Living Reviews article can evolve over time,we recommend to cite the article as follows:Kokkotas,K.D.,and Schmidt,B.G.,“Quasi-Normal Modes of Stars and Black Holes”,Living Rev.Relativity,2,(1999),2.[Online Article]:cited on<date>, /Articles/Volume2/1999-2kokkotas/. The date in’cited on<date>’then uniquely identifies the version of the article you are referring to.3Quasi-Normal Modes of Stars and Black HolesContents1Introduction4 2Normal Modes–Quasi-Normal Modes–Resonances7 3Quasi-Normal Modes of Black Holes123.1Schwarzschild Black Holes (12)3.2Kerr Black Holes (17)3.3Stability and Completeness of Quasi-Normal Modes (20)4Quasi-Normal Modes of Relativistic Stars234.1Stellar Pulsations:The Theoretical Minimum (23)4.2Mode Analysis (26)4.2.1Families of Fluid Modes (26)4.2.2Families of Spacetime or w-Modes (30)4.3Stability (31)5Excitation and Detection of QNMs325.1Studies of Black Hole QNM Excitation (33)5.2Studies of Stellar QNM Excitation (34)5.3Detection of the QNM Ringing (37)5.4Parameter Estimation (39)6Numerical Techniques426.1Black Holes (42)6.1.1Evolving the Time Dependent Wave Equation (42)6.1.2Integration of the Time Independent Wave Equation (43)6.1.3WKB Methods (44)6.1.4The Method of Continued Fractions (44)6.2Relativistic Stars (45)7Where Are We Going?487.1Synergism Between Perturbation Theory and Numerical Relativity487.2Second Order Perturbations (48)7.3Mode Calculations (49)7.4The Detectors (49)8Acknowledgments50 9Appendix:Schr¨o dinger Equation Versus Wave Equation51Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt41IntroductionHelioseismology and asteroseismology are well known terms in classical astro-physics.From the beginning of the century the variability of Cepheids has been used for the accurate measurement of cosmic distances,while the variability of a number of stellar objects(RR Lyrae,Mira)has been associated with stel-lar oscillations.Observations of solar oscillations(with thousands of nonradial modes)have also revealed a wealth of information about the internal structure of the Sun[204].Practically every stellar object oscillates radially or nonradi-ally,and although there is great difficulty in observing such oscillations there are already results for various types of stars(O,B,...).All these types of pulsations of normal main sequence stars can be studied via Newtonian theory and they are of no importance for the forthcoming era of gravitational wave astronomy.The gravitational waves emitted by these stars are extremely weak and have very low frequencies(cf.for a discussion of the sun[70],and an im-portant new measurement of the sun’s quadrupole moment and its application in the measurement of the anomalous precession of Mercury’s perihelion[163]). This is not the case when we consider very compact stellar objects i.e.neutron stars and black holes.Their oscillations,produced mainly during the formation phase,can be strong enough to be detected by the gravitational wave detectors (LIGO,VIRGO,GEO600,SPHERE)which are under construction.In the framework of general relativity(GR)quasi-normal modes(QNM) arise,as perturbations(electromagnetic or gravitational)of stellar or black hole spacetimes.Due to the emission of gravitational waves there are no normal mode oscillations but instead the frequencies become“quasi-normal”(complex), with the real part representing the actual frequency of the oscillation and the imaginary part representing the damping.In this review we shall discuss the oscillations of neutron stars and black holes.The natural way to study these oscillations is by considering the linearized Einstein equations.Nevertheless,there has been recent work on nonlinear black hole perturbations[101,102,103,104,100]while,as yet nothing is known for nonlinear stellar oscillations in general relativity.The study of black hole perturbations was initiated by the pioneering work of Regge and Wheeler[173]in the late50s and was continued by Zerilli[212]. The perturbations of relativistic stars in GR werefirst studied in the late60s by Kip Thorne and his collaborators[202,198,199,200].The initial aim of Regge and Wheeler was to study the stability of a black hole to small perturbations and they did not try to connect these perturbations to astrophysics.In con-trast,for the case of relativistic stars,Thorne’s aim was to extend the known properties of Newtonian oscillation theory to general relativity,and to estimate the frequencies and the energy radiated as gravitational waves.QNMs werefirst pointed out by Vishveshwara[207]in calculations of the scattering of gravitational waves by a Schwarzschild black hole,while Press[164] coined the term quasi-normal frequencies.QNM oscillations have been found in perturbation calculations of particles falling into Schwarzschild[73]and Kerr black holes[76,80]and in the collapse of a star to form a black hole[66,67,68]. Living Reviews in Relativity(1999-2)5Quasi-Normal Modes of Stars and Black Holes Numerical investigations of the fully nonlinear equations of general relativity have provided results which agree with the results of perturbation calculations;in particular numerical studies of the head-on collision of two black holes [30,29](cf.Figure 1)and gravitational collapse to a Kerr hole [191].Recently,Price,Pullin and collaborators [170,31,101,28]have pushed forward the agreement between full nonlinear numerical results and results from perturbation theory for the collision of two black holes.This proves the power of the perturbation approach even in highly nonlinear problems while at the same time indicating its limits.In the concluding remarks of their pioneering paper on nonradial oscillations of neutron stars Thorne and Campollataro [202]described it as “just a modest introduction to a story which promises to be long,complicated and fascinating ”.The story has undoubtedly proved to be intriguing,and many authors have contributed to our present understanding of the pulsations of both black holes and neutron stars.Thirty years after these prophetic words by Thorne and Campollataro hundreds of papers have been written in an attempt to understand the stability,the characteristic frequencies and the mechanisms of excitation of these oscillations.Their relevance to the emission of gravitational waves was always the basic underlying reason of each study.An account of all this work will be attempted in the next sections hoping that the interested reader will find this review useful both as a guide to the literature and as an inspiration for future work on the open problems of the field.020406080100Time (M ADM )-0.3-0.2-0.10.00.10.20.3(l =2) Z e r i l l i F u n c t i o n Numerical solutionQNM fit Figure 1:QNM ringing after the head-on collision of two unequal mass black holes [29].The continuous line corresponds to the full nonlinear numerical calculation while the dotted line is a fit to the fundamental and first overtone QNM.In the next section we attempt to give a mathematical definition of QNMs.Living Reviews in Relativity (1999-2)K.D.Kokkotas and B.G.Schmidt6 The third and fourth section will be devoted to the study of the black hole and stellar QNMs.In thefifth section we discuss the excitation and observation of QNMs andfinally in the sixth section we will mention the more significant numerical techniques used in the study of QNMs.Living Reviews in Relativity(1999-2)7Quasi-Normal Modes of Stars and Black Holes 2Normal Modes–Quasi-Normal Modes–Res-onancesBefore discussing quasi-normal modes it is useful to remember what normal modes are!Compact classical linear oscillating systems such asfinite strings,mem-branes,or cavitiesfilled with electromagnetic radiation have preferred time harmonic states of motion(ωis real):χn(t,x)=e iωn tχn(x),n=1,2,3...,(1) if dissipation is neglected.(We assumeχto be some complex valuedfield.) There is generally an infinite collection of such periodic solutions,and the“gen-eral solution”can be expressed as a superposition,χ(t,x)=∞n=1a n e iωn tχn(x),(2)of such normal modes.The simplest example is a string of length L which isfixed at its ends.All such systems can be described by systems of partial differential equations of the type(χmay be a vector)∂χ∂t=Aχ,(3)where A is a linear operator acting only on the spatial variables.Because of thefiniteness of the system the time evolution is only determined if some boundary conditions are prescribed.The search for solutions periodic in time leads to a boundary value problem in the spatial variables.In simple cases it is of the Sturm-Liouville type.The treatment of such boundary value problems for differential equations played an important role in the development of Hilbert space techniques.A Hilbert space is chosen such that the differential operator becomes sym-metric.Due to the boundary conditions dictated by the physical problem,A becomes a self-adjoint operator on the appropriate Hilbert space and has a pure point spectrum.The eigenfunctions and eigenvalues determine the periodic solutions(1).The definition of self-adjointness is rather subtle from a physicist’s point of view since fairly complicated“domain issues”play an essential role.(See[43] where a mathematical exposition for physicists is given.)The wave equation modeling thefinite string has solutions of various degrees of differentiability. To describe all“realistic situations”,clearly C∞functions should be sufficient. Sometimes it may,however,also be convenient to consider more general solu-tions.From the mathematical point of view the collection of all smooth functions is not a natural setting to study the wave equation because sequences of solutionsLiving Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt8 exist which converge to non-smooth solutions.To establish such powerful state-ments like(2)one has to study the equation on certain subsets of the Hilbert space of square integrable functions.For“nice”equations it usually happens that the eigenfunctions are in fact analytic.They can then be used to gen-erate,for example,all smooth solutions by a pointwise converging series(2). The key point is that we need some mathematical sophistication to obtain the “completeness property”of the eigenfunctions.This picture of“normal modes”changes when we consider“open systems”which can lose energy to infinity.The simplest case are waves on an infinite string.The general solution of this problem isχ(t,x)=A(t−x)+B(t+x)(4) with“arbitrary”functions A and B.Which solutions should we study?Since we have all solutions,this is not a serious question.In more general cases, however,in which the general solution is not known,we have to select a certain class of solutions which we consider as relevant for the physical problem.Let us consider for the following discussion,as an example,a wave equation with a potential on the real line,∂2∂t2χ+ −∂2∂x2+V(x)χ=0.(5)Cauchy dataχ(0,x),∂tχ(0,x)which have two derivatives determine a unique twice differentiable solution.No boundary condition is needed at infinity to determine the time evolution of the data!This can be established by fairly simple PDE theory[116].There exist solutions for which the support of thefields are spatially compact, or–the other extreme–solutions with infinite total energy for which thefields grow at spatial infinity in a quite arbitrary way!From the point of view of physics smooth solutions with spatially compact support should be the relevant class–who cares what happens near infinity! Again it turns out that mathematically it is more convenient to study all solu-tions offinite total energy.Then the relevant operator is again self-adjoint,but now its spectrum is purely“continuous”.There are no eigenfunctions which are square integrable.Only“improper eigenfunctions”like plane waves exist.This expresses the fact that wefind a solution of the form(1)for any realωand by forming appropriate superpositions one can construct solutions which are “almost eigenfunctions”.(In the case V(x)≡0these are wave packets formed from plane waves.)These solutions are the analogs of normal modes for infinite systems.Let us now turn to the discussion of“quasi-normal modes”which are concep-tually different to normal modes.To define quasi-normal modes let us consider the wave equation(5)for potentials with V≥0which vanish for|x|>x0.Then in this case all solutions determined by data of compact support are bounded: |χ(t,x)|<C.We can use Laplace transformation techniques to represent such Living Reviews in Relativity(1999-2)9Quasi-Normal Modes of Stars and Black Holes solutions.The Laplace transformˆχ(s,x)(s>0real)of a solutionχ(t,x)isˆχ(s,x)= ∞0e−stχ(t,x)dt,(6) and satisfies the ordinary differential equations2ˆχ−ˆχ +Vˆχ=+sχ(0,x)+∂tχ(0,x),(7) wheres2ˆχ−ˆχ +Vˆχ=0(8) is the homogeneous equation.The boundedness ofχimplies thatˆχis analytic for positive,real s,and has an analytic continuation onto the complex half plane Re(s)>0.Which solutionˆχof this inhomogeneous equation gives the unique solution in spacetime determined by the data?There is no arbitrariness;only one of the Green functions for the inhomogeneous equation is correct!All Green functions can be constructed by the following well known method. Choose any two linearly independent solutions of the homogeneous equation f−(s,x)and f+(s,x),and defineG(s,x,x )=1W(s)f−(s,x )f+(s,x)(x <x),f−(s,x)f+(s,x )(x >x),(9)where W(s)is the Wronskian of f−and f+.If we denote the inhomogeneity of(7)by j,a solution of(7)isˆχ(s,x)= ∞−∞G(s,x,x )j(s,x )dx .(10) We still have to select a unique pair of solutions f−,f+.Here the information that the solution in spacetime is bounded can be used.The definition of the Laplace transform implies thatˆχis bounded as a function of x.Because the potential V vanishes for|x|>x0,the solutions of the homogeneous equation(8) for|x|>x0aref=e±sx.(11) The following pair of solutionsf+=e−sx for x>x0,f−=e+sx for x<−x0,(12) which is linearly independent for Re(s)>0,gives the unique Green function which defines a bounded solution for j of compact support.Note that for Re(s)>0the solution f+is exponentially decaying for large x and f−is expo-nentially decaying for small x.For small x however,f+will be a linear com-bination a(s)e−sx+b(s)e sx which will in general grow exponentially.Similar behavior is found for f−.Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt 10Quasi-Normal mode frequencies s n can be defined as those complex numbers for whichf +(s n ,x )=c (s n )f −(s n ,x ),(13)that is the two functions become linearly dependent,the Wronskian vanishes and the Green function is singular!The corresponding solutions f +(s n ,x )are called quasi eigenfunctions.Are there such numbers s n ?From the boundedness of the solution in space-time we know that the unique Green function must exist for Re (s )>0.Hence f +,f −are linearly independent for those values of s .However,as solutions f +,f −of the homogeneous equation (8)they have a unique continuation to the complex s plane.In [35]it is shown that for positive potentials with compact support there is always a countable number of zeros of the Wronskian with Re (s )<0.What is the mathematical and physical significance of the quasi-normal fre-quencies s n and the corresponding quasi-normal functions f +?First of all we should note that because of Re (s )<0the function f +grows exponentially for small and large x !The corresponding spacetime solution e s n t f +(s n ,x )is therefore not a physically relevant solution,unlike the normal modes.If one studies the inverse Laplace transformation and expresses χas a com-plex line integral (a >0),χ(t,x )=12πi +∞−∞e (a +is )t ˆχ(a +is,x )ds,(14)one can deform the path of the complex integration and show that the late time behavior of solutions can be approximated in finite parts of the space by a finite sum of the form χ(t,x )∼N n =1a n e (αn +iβn )t f +(s n ,x ).(15)Here we assume that Re (s n +1)<Re (s n )<0,s n =αn +iβn .The approxi-mation ∼means that if we choose x 0,x 1, and t 0then there exists a constant C (t 0,x 0,x 1, )such that χ(t,x )−N n =1a n e (αn +iβn )t f +(s n ,x ) ≤Ce (−|αN +1|+ )t (16)holds for t >t 0,x 0<x <x 1, >0with C (t 0,x 0,x 1, )independent of t .The constants a n depend only on the data [35]!This implies in particular that all solutions defined by data of compact support decay exponentially in time on spatially bounded regions.The generic leading order decay is determined by the quasi-normal mode frequency with the largest real part s 1,i.e.slowest damping.On finite intervals and for late times the solution is approximated by a finite sum of quasi eigenfunctions (15).It is presently unclear whether one can strengthen (16)to a statement like (2),a pointwise expansion of the late time solution in terms of quasi-normal Living Reviews in Relativity (1999-2)11Quasi-Normal Modes of Stars and Black Holes modes.For one particular potential(P¨o schl-Teller)this has been shown by Beyer[42].Let us now consider the case where the potential is positive for all x,but decays near infinity as happens for example for the wave equation on the static Schwarzschild spacetime.Data of compact support determine again solutions which are bounded[117].Hence we can proceed as before.Thefirst new point concerns the definitions of f±.It can be shown that the homogeneous equation(8)has for each real positive s a unique solution f+(s,x)such that lim x→∞(e sx f+(s,x))=1holds and correspondingly for f−.These functions are uniquely determined,define the correct Green function and have analytic continuations onto the complex half plane Re(s)>0.It is however quite complicated to get a good representation of these func-tions.If the point at infinity is not a regular singular point,we do not even get converging series expansions for f±.(This is particularly serious for values of s with negative real part because we expect exponential growth in x).The next new feature is that the analyticity properties of f±in the complex s plane depend on the decay of the potential.To obtain information about analytic continuation,even use of analyticity properties of the potential in x is made!Branch cuts may occur.Nevertheless in a lot of cases an infinite number of quasi-normal mode frequencies exists.The fact that the potential never vanishes may,however,destroy the expo-nential decay in time of the solutions and therefore the essential properties of the quasi-normal modes.This probably happens if the potential decays slower than exponentially.There is,however,the following way out:Suppose you want to study a solution determined by data of compact support from t=0to some largefinite time t=T.Up to this time the solution is–because of domain of dependence properties–completely independent of the potential for sufficiently large x.Hence we may see an exponential decay of the form(15)in a time range t1<t<T.This is the behavior seen in numerical calculations.The situation is similar in the case ofα-decay in quantum mechanics.A comparison of quasi-normal modes of wave equations and resonances in quantum theory can be found in the appendix,see section9.Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt123Quasi-Normal Modes of Black HolesOne of the most interesting aspects of gravitational wave detection will be the connection with the existence of black holes[201].Although there are presently several indirect ways of identifying black holes in the universe,gravitational waves emitted by an oscillating black hole will carry a uniquefingerprint which would lead to the direct identification of their existence.As we mentioned earlier,gravitational radiation from black hole oscillations exhibits certain characteristic frequencies which are independent of the pro-cesses giving rise to these oscillations.These“quasi-normal”frequencies are directly connected to the parameters of the black hole(mass,charge and angu-lar momentum)and for stellar mass black holes are expected to be inside the bandwidth of the constructed gravitational wave detectors.The perturbations of a Schwarzschild black hole reduce to a simple wave equation which has been studied extensively.The wave equation for the case of a Reissner-Nordstr¨o m black hole is more or less similar to the Schwarzschild case,but for Kerr one has to solve a system of coupled wave equations(one for the radial part and one for the angular part).For this reason the Kerr case has been studied less thoroughly.Finally,in the case of Kerr-Newman black holes we face the problem that the perturbations cannot be separated in their angular and radial parts and thus apart from special cases[124]the problem has not been studied at all.3.1Schwarzschild Black HolesThe study of perturbations of Schwarzschild black holes assumes a small per-turbation hµνon a static spherically symmetric background metricds2=g0µνdxµdxν=−e v(r)dt2+eλ(r)dr2+r2 dθ2+sin2θdφ2 ,(17) with the perturbed metric having the formgµν=g0µν+hµν,(18) which leads to a variation of the Einstein equations i.e.δGµν=4πδTµν.(19) By assuming a decomposition into tensor spherical harmonics for each hµνof the formχ(t,r,θ,φ)= mχ m(r,t)r Y m(θ,φ),(20)the perturbation problem is reduced to a single wave equation,for the func-tionχ m(r,t)(which is a combination of the various components of hµν).It should be pointed out that equation(20)is an expansion for scalar quantities only.From the10independent components of the hµνonly h tt,h tr,and h rr transform as scalars under rotations.The h tθ,h tφ,h rθ,and h rφtransform asLiving Reviews in Relativity(1999-2)13Quasi-Normal Modes of Stars and Black Holes components of two-vectors under rotations and can be expanded in a series of vector spherical harmonics while the components hθθ,hθφ,and hφφtransform as components of a2×2tensor and can be expanded in a series of tensor spher-ical harmonics(see[202,212,152]for details).There are two classes of vector spherical harmonics(polar and axial)which are build out of combinations of the Levi-Civita volume form and the gradient operator acting on the scalar spherical harmonics.The difference between the two families is their parity. Under the parity operatorπa spherical harmonic with index transforms as (−1) ,the polar class of perturbations transform under parity in the same way, as(−1) ,and the axial perturbations as(−1) +11.Finally,since we are dealing with spherically symmetric spacetimes the solution will be independent of m, thus this subscript can be omitted.The radial component of a perturbation outside the event horizon satisfies the following wave equation,∂2∂t χ + −∂2∂r∗+V (r)χ =0,(21)where r∗is the“tortoise”radial coordinate defined byr∗=r+2M log(r/2M−1),(22) and M is the mass of the black hole.For“axial”perturbationsV (r)= 1−2M r ( +1)r+2σMr(23)is the effective potential or(as it is known in the literature)Regge-Wheeler potential[173],which is a single potential barrier with a peak around r=3M, which is the location of the unstable photon orbit.The form(23)is true even if we consider scalar or electromagnetic testfields as perturbations.The parameter σtakes the values1for scalar perturbations,0for electromagnetic perturbations, and−3for gravitational perturbations and can be expressed asσ=1−s2,where s=0,1,2is the spin of the perturbingfield.For“polar”perturbations the effective potential was derived by Zerilli[212]and has the form V (r)= 1−2M r 2n2(n+1)r3+6n2Mr2+18nM2r+18M3r3(nr+3M)2,(24)1In the literature the polar perturbations are also called even-parity because they are characterized by their behavior under parity operations as discussed earlier,and in the same way the axial perturbations are called odd-parity.We will stick to the polar/axial terminology since there is a confusion with the definition of the parity operation,the reason is that to most people,the words“even”and“odd”imply that a mode transforms underπas(−1)2n or(−1)2n+1respectively(for n some integer).However only the polar modes with even have even parity and only axial modes with even have odd parity.If is odd,then polar modes have odd parity and axial modes have even parity.Another terminology is to call the polar perturbations spheroidal and the axial ones toroidal.This definition is coming from the study of stellar pulsations in Newtonian theory and represents the type offluid motions that each type of perturbation induces.Since we are dealing both with stars and black holes we will stick to the polar/axial terminology.Living Reviews in Relativity(1999-2)K.D.Kokkotas and B.G.Schmidt14where2n=( −1)( +2).(25) Chandrasekhar[54]has shown that one can transform the equation(21)for “axial”modes to the corresponding one for“polar”modes via a transforma-tion involving differential operations.It can also be shown that both forms are connected to the Bardeen-Press[38]perturbation equation derived via the Newman-Penrose formalism.The potential V (r∗)decays exponentially near the horizon,r∗→−∞,and as r−2∗for r∗→+∞.From the form of equation(21)it is evident that the study of black hole perturbations will follow the footsteps of the theory outlined in section2.Kay and Wald[117]have shown that solutions with data of compact sup-port are bounded.Hence we know that the time independent Green function G(s,r∗,r ∗)is analytic for Re(s)>0.The essential difficulty is now to obtain the solutions f±(cf.equation(10))of the equations2ˆχ−ˆχ +Vˆχ=0,(26) (prime denotes differentiation with respect to r∗)which satisfy for real,positives:f+∼e−sr∗for r∗→∞,f−∼e+r∗x for r∗→−∞.(27) To determine the quasi-normal modes we need the analytic continuations of these functions.As the horizon(r∗→∞)is a regular singular point of(26),a representation of f−(r∗,s)as a converging series exists.For M=12it reads:f−(r,s)=(r−1)s∞n=0a n(s)(r−1)n.(28)The series converges for all complex s and|r−1|<1[162].(The analytic extension of f−is investigated in[115].)The result is that f−has an extension to the complex s plane with poles only at negative real integers.The representation of f+is more complicated:Because infinity is a singular point no power series expansion like(28)exists.A representation coming from the iteration of the defining integral equation is given by Jensen and Candelas[115],see also[159]. It turns out that the continuation of f+has a branch cut Re(s)≤0due to the decay r−2for large r[115].The most extensive mathematical investigation of quasi-normal modes of the Schwarzschild solution is contained in the paper by Bachelot and Motet-Bachelot[35].Here the existence of an infinite number of quasi-normal modes is demonstrated.Truncating the potential(23)to make it of compact support leads to the estimate(16).The decay of solutions in time is not exponential because of the weak decay of the potential for large r.At late times,the quasi-normal oscillations are swamped by the radiative tail[166,167].This tail radiation is of interest in its Living Reviews in Relativity(1999-2)。

新16.3 康普顿效应

新16.3 康普顿效应

16.3.2康普顿效应的解释
• 1923年康普顿用光子与静止电子的弹性碰撞解释 了散射光波长的改变,得出了波长移动的公式。
• 他还测量了X射线在石墨中散射后波长的改变, 测量值与理论推测一致
• 于是人们称这个效应为康普顿效应
光子理论对康普顿效应的解释
若光子和外层电子相碰撞,光子有一部分能量 传给电子,散射光子的能量减少,于是散射光的 波长大于入射光的波长。
c
φ
X θ
mv
h
c
0
n 0
X
h 0 m0c2 h mc2
由动量守恒:
(mv)2 (h 0 )2 (h )2 2(h 0 )(h ) cos
c
c
cc
最后得到:




0

2h sin 2 m0c

2

2c
sin 2

2
c
h 2.431012 m m0c
16.3 康普顿效应 16.3.1 康普顿效应的实验规律
光照射在自由带电粒子上,散射光发生波长改 变的现象,在1920年前人们即已发现,用X射线照 射物质,可以观察到散射的X射线波长发生了改变。 据经典电磁理论,散射光波长是不会改变的。
瞄准直缝让散射角 的光子通过
实验测得散射光波长与散射角的关系如图 有两峰值,其一在入射X射线波长处。新的峰对应的 波长即康普顿理论所预言的散射X射线波长。
电子的康普顿波长。
此式说明:波长改变与散射物质无关,仅决定于散
射角;波长改变随散射角增大而增加。
计算的理论值与实验值符合得很好。
若光子和束缚很紧的内层电子相碰撞,光子将 与整个原子交换能量,由于光子质量远小于原子 质量,根据碰撞理论,碰撞前后光子能量几乎不 变,波长不变。

量子力学索引英汉对照

量子力学索引英汉对照

21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫-玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, 衰变;Alpha particle, 粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥-沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色-爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克-高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, 势垒Delta-function well, 势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量-时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米-狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼-海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g-因子Gamma function, 函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, "好"量子数"Good" states, "好"的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆-施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克LLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g-因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维-西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦-玻尔兹曼分布Maxwell's equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, 子Muon-catalysed fusion, 子催化的聚变Muonic hydrogen, 原子Muonium, 子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置-动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋-轨道耦合Spin-orbit interaction, 自旋-轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋-自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番-玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩-盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。

美国大学生数学建模MCM 数学专用名词

美国大学生数学建模MCM 数学专用名词

美国大学生数学建模MCM 数学专用名词augmented matrix增广矩阵asymptotic渐进的asymptote渐进线asymmetrical非对称的associative law结合律ascending上升的arrangement排列arithmetic算术argument幅角,幅度,自变量,论证area面积arc length弧长apothem边心距apex顶点aperiodic非周期的antisymmetric反对称的antiderivative原函数anticlockwise逆时针的annihilator零化子angular velocity角速度angle of rotation旋转角angle of incidence入射角angle of elevation仰角angle of depression俯角angle of circumference圆周角analytic space复空间analytic geometry解析几何analytic function解析函数analytic extension解析开拓amplitude幅角,振幅alternative互斥的alternate series交错级数almost everywhere几乎处处algebraic topology代数拓扑algebraic expression代数式algebraic代数的affine仿射(几何学)的admissible error容许误差admissible容许的adjugate伴随转置的adjoint operator伴随算子adjoint伴随的adjacency邻接additive加法,加性acute angle锐角accumulation point聚点accidential error偶然误差accessible point可达点abstract space抽象空间abstract algebra抽象代数absolute value绝对值absolute integrable绝对可积absolute convergent绝对收敛Abelian阿贝尔的,交换的balance equation平衡方程bandwidth带宽barycenter重心base基base vectors基向量biased error有偏误差biased statistic有偏统计量bilinear双线性的bijective双射的bilateral shift双侧位移的binomial二项式bisector二等分线,平分线boundary边界的,边界bounded有界的broken line折线bundle丛,把,卷calculus微积分calculus of variations变分法cancellation消去canonical典型的,标准的canonical form标准型cap交,求交运算capacity容量cardinal number基数Cartesian coordinates笛卡尔坐标category范畴,类型cell单元,方格,胞腔cell complex胞腔复形character特征标characterization特征circuit环路,线路,回路circular ring圆环circulating decimal循环小数clockwise顺时针方向的closed ball闭球closure闭包cluster point聚点coefficient系数cofinal共尾的cohomology上同调coincidence重合,叠和collinear共线的collective集体的columnar rank列秩combinatorial theory组合理论common tangent公切线commutative交换的compact紧的compact operator紧算子compatibility相容性compatible events相容事件complementary余的,补的complete完全的,完备的complex analysis复变函数论complex potential复位势composite复合的concave function凹函数concentric circles同心圆concurrent共点conditional number条件数confidence interval置信区间conformal共形的conic圆锥的conjugate共轭的connected连通的connected domain连通域consistence相容,一致constrained约束的continuable可延拓的continuity连续性contour周线,回路,轮廓线convergence收敛性convexity凸形convolution对和,卷积coordinate坐标coprime互质的,互素的correspondence对应coset陪集countable可数的counterexample反例covariance协方差covariant共变的covering覆盖critical临界的cubic root立方根cup并,求并运算curl旋度curvature曲率curve曲线cyclic循环的decade十进制的decagon十边形decimal小数的,十进制的decision theory决策论decomposable可分解的decreasing递减的decrement减量deduction推论,归纳法defect亏量,缺陷deficiency亏格definition定义definite integral定积分deflation压缩deflection挠度,挠率,变位degenerate退化的deleted neighborhood去心邻域denominator分母density稠密性,密度density function密度函数denumerable可数的departure偏差,偏离dependent相关的dependent variable因变量derangement重排derivation求导derivative导数descent下降determinant行列式diagram图,图表diameter直径diamond菱形dichotomy二分法diffeomorphism微分同胚differentiable可微的differential微分differential geometry微分几何difference差,差分digit数字dimension维数directed graph有向图directed set有向集direct prodect直积direct sum直和direction angle方向角directional derivative方向导数disc圆盘disconnected不连通的discontinuous不连续的discrete离散的discriminant判别式disjoint不相交的disorder混乱,无序dissection剖分dissipation损耗distribution分布,广义函数divergent发散的divisor因子,除数division除法domain区域,定义域dot product点积double integral二重积分dual对偶dynamic model动态模型dynamic programming动态规划dynamic system动力系统eccentricity离心率econometrics计量经济学edge棱,边eigenvalue特征值eigenvector特征向量eigenspace特征空间element元素ellipse椭圆embed嵌入empirical equation经验公式empirical assumption经验假设endomorphism自同态end point端点entropy熵entire function整函数envelope包络epimorphism满同态equiangular等角equilateral等边的equicontinuous等度连续的equilibrium平衡equivalence等价error estimate误差估计estimator估计量evaluation赋值,值的计算even number偶数exact sequence正合序列exact solution精确解excenter外心excision切割,分割exclusive events互斥事件exhaustive穷举的expansion展开,展开式expectation期望experimental error实验误差explicit function显函数exponent指数extension扩张,外延face面factor因子factorial阶乘fallacy谬误fiducial置信field域,场field theory域论figure图形,数字finite有限的finite group有限群finite iteration有限迭代finite rank有限秩finitely covered有限覆盖fitting拟合fixed point不动点flag标志flat space平旦空间formula公式fraction分数,分式frame架,标架free boundary自由边界frequency频数,频率front side正面function函数functional泛函functor函子,算符fundamental group基本群fuzzy模糊的gain增益,放大率game对策gap间断,间隙general topology一般拓扑学general term通项generalized普遍的,推广的generalized inverse广义逆generalization归纳,普遍化generating line母线genus亏格geodesic测地线geometrical几何的geometric series几何级数golden section黄金分割graph图形,网格half plane半平面harmonic调和的hexagon六边形hereditary可传的holomorphic全纯的homeomorphism同胚homogeneous齐次的homology同调homotopy同伦hyperbola双曲线hyperplane超平面hypothesis假设ideal理想idempotent幂等的identical恒等,恒同identity恒等式,单位元ill-condition病态image像点,像imaginary axis虚轴imbedding嵌入imitation模仿,模拟immersion浸入impulse function脉冲函数inclination斜角,倾角inclined plane斜面inclusion包含incomparable不可比的incompatible不相容的,互斥的inconsistent不成立的indefinite integral不定积分independence无关(性),独立(性)index指数,指标indivisible除不尽的inductive归纳的inductive definition归纳定义induced诱导的inequality不等式inertia law惯性律inference推理,推论infimum下确界infinite无穷大的infinite decimal无穷小数infinite series无穷级数infinitesimal无穷小的inflection point拐点information theory信息论inhomogeneous非齐次的injection内射inner point内点instability不稳定integer整数integrable可积的integrand被积函数integral积分intermediate value介值intersection交,相交interval区间intrinsic内在的,内蕴的invariant不变的inverse circular funct反三角函数inverse image逆像,原像inversion反演invertible可逆的involution对合irrational无理的,无理数irreducible不可约的isolated point孤立点isometric等距的isomorphic同构的iteration迭代joint distribution联合分布kernel核keyword关键词knot纽结known已知的large sample大样本last term末项lateral area侧面积lattice格子lattice point格点law of identity同一律leading coefficient首项系数leaf蔓叶线least squares solution最小二乘解lemma引理Lie algebra李代数lifting提升likelihood似然的limit极限linear combination线性组合linear filter线性滤波linear fraction transf线性分linear filter线性滤波式变换式变换linear functional线性泛函linear operator线性算子linearly dependent线性相关linearly independent线性无关local coordinates局部坐标locus(pl.loci)轨迹logarithm对数lower bound下界logic逻辑lozenge菱形lunar新月型main diagonal主对角线manifold流形mantissa尾数many-valued function多值函数map into映入map onto映到mapping映射marginal边缘master equation主方程mathermatical analysis数学分析mathematical expectati数学期望matrix(pl. matrices)矩阵maximal极大的,最大的maximum norm最大模mean平均,中数measurable可测的measure测度mesh网络metric space距离空间midpoint中点minus减minimal极小的,最小的model模型modulus模,模数moment矩monomorphism单一同态multi-analysis多元分析multiplication乘法multipole多极mutual相互的mutually disjoint互不相交natural boundary自然边界natural equivalence自然等价natural number自然数natural period固有周期negative负的,否定的neighborhood邻域nil-factor零因子nilpotent幂零的nodal节点的noncommutative非交换的nondense疏的,无处稠密的nonempty非空的noncountable不可数的nonlinear非线性的nonsingular非奇异的norm范数normal正规的,法线normal derivative法向导数normal direction法方向normal distribution正态分布normal family正规族normal operator正规算子normal set良序集normed赋范的n-tuple integral重积分number theory数论numerical analysis数值分析null空,零obtuse angle钝角octagon八边形octant卦限odd number奇数odevity奇偶性off-centre偏心的one-side单侧的open ball开球operations reserach运筹学optimality最优性optimization最优化optimum最佳条件orbit轨道order阶,级,次序order-preserving保序的order-type序型ordinal次序的ordinary寻常的,正常的ordinate纵坐标orient定方向orientable可定向的origin原点original state初始状态orthogonal正交的orthonormal规范化正交的outer product外积oval卵形线overdetermined超定的overlaping重叠,交迭pairity奇偶性pairwise两两的parabola抛物线parallel平行parallel lines平行线parallelogram平行四边形parameter参数parent population母体partial偏的,部分的partial ordering偏序partial sum部分和particle质点partition划分,分类path space道路空间perfect differential全微分period周期periodic decimal循环小数peripheral周界的,外表的periphery边界permissible容许的permutable可交换的perpendicular垂直perturbation扰动,摄动phase相,位相piecewise分段的planar平面的plane curve平面曲线plane domain平面区域plane pencil平面束plus加point of intersection交点pointwise逐点的polar coordinates极坐标pole极,极点polygon多边形polygonal line折线polynomial多项式positive正的,肯定的potency势,基数potential位势prime素的primitive本原的principal minor主子式prism棱柱proof theory证明论probability概率projective射影的,投影proportion比例pure纯的pyramid棱锥,棱锥体quadrant像限quadratic二次的quadric surface二次曲面quantity量,数量quasi-group拟群quasi-norm拟范数quasi-normal拟正规queuing theory排队论quotient商radial径向radical sign根号radication开方radian弧度radius半径ramified分歧的random随机randomize随机化range值域,区域,范围rank秩rational有理的raw data原始数据real function实函数reciprocal倒数的,互反的reciprocal basis对偶基reciprocity互反性rectangle长方形,矩形rectifiable可求长的recurring decimal循环小数reduce简化,化简reflection反射reflexive自反的region区域regular正则regular ring正则环related function相关函数remanent剩余的repeated root重根residue留数,残数resolution分解resolvent预解式right angle直角rotation旋转roundoff舍入row rank行秩ruled surface直纹曲面runs游程,取遍saddle point鞍点sample样本sampling取样scalar field标量场scalar product数量积,内积scale标尺,尺度scattering散射,扩散sectorial扇形self-adjoint自伴的semicircle半圆semi-definite半定的semigroup半群semisimple半单纯的separable可分的sequence序列sequential相继的,序列的serial序列的sheaf层side face侧面similar相似的simple curve简单曲线simplex单纯形singular values奇异值skeleton骨架skewness偏斜度slackness松弛性slant斜的slope斜率small sample小样本smooth manifold光滑流形solid figure立体形solid geometry立体几何solid of rotation旋转体solution解solvable可解的sparse稀疏的spectral theory谱论spectrum谱sphere球面,球形spiral螺线spline function样条函数splitting分裂的statistics统计,统计学statistic统计量stochastic随机的straight angle平角straight line直线stream-line流线subadditive次可加的subinterval子区间submanifold子流形subset子集subtraction减法sum和summable可加的summand被加数supremum上确界surjective满射的symmetric对称的tabular表格式的tabulation列表,造表tangent正切,切线tangent space切空间tangent vector切向量tensor张量term项terminal row末行termwise逐项的tetrahedroid四面体topological拓扑的torsion挠率totally ordered set全序集trace迹trajectory轨道transcendental超越的transfer改变,传transfinite超限的transformation变换式transitive可传递的translation平移transpose转置transverse横截、trapezoid梯形treble三倍,三重trend趋势triad三元组triaxial三轴的,三维的trigon三角形trigonometric三角学的tripod三面角tubular管状的twist挠曲,扭转type类型,型,序型unbiased无偏的unbiased estimate无偏估计unbounded无界的uncertainty不定性unconditional无条件的unequal不等的uniform一致的uniform boundness一致有界uniformly bounded一致有界的uniformly continuous一致连续uniformly convergent一致收敛unilateral单侧的union并,并集unit单位unit circle单位圆unitary matrix酉矩阵universal泛的,通用的upper bound上界unrounded不舍入的unstable不稳定的valuation赋值value值variation变分,变差variety簇vector向量vector bundle向量丛vertex顶点vertical angle对顶角volume体积,容积wave波wave form波形wave function波函数wave equation波动方程weak convergence弱收敛weak derivatives弱导数weight权重,重量well-ordered良序的well-posed适定的zero零zero divisor零因子zeros零点zone域,带</Words>。

数学-科学的王后与仆人

数学: 科学的王后和仆人Mathematics: Queen and Servant of Science北京理工大学叶其孝本文的题目是已故的美国科学院院士、著名数学家、数学史学家和科普作家Eric Temple Bell(贝尔, 1883, 02, 07 ~ 1960, 12, 21)于1951年写的一本书的书名Mathematics: Queen and Servant of Science (数学: 科学的王后和仆人). 该书主要是为大学生和非数学领域的人士写的, 介绍纯粹和应用数学的各个方面, 更着重在说明数学科学的极端重要性.The Mathematical Association of America, 1996, 463 pages实际上这是他1931年写的The Queen of the Sciences (科学的王后)和1937年写的The Handmaiden of the Sciences (科学的女仆)这两本通俗数学论著的合一修订扩大版.Eric Temple Bell Alexander Graham Bell (1847 ~ 1922) 按常识的理解, 女王是优美、高雅、无懈可击、至尊至贵的, 在科学中只有纯粹数学才具有这样的特点, 简洁明了的数学定理一经证明就是永恒的真理, 极其优美而且无懈可击;另一方面, 科学和工程的各个分支都在不同程度上大量应用数学, 这时数学科学就是仆人, 这些仆人是否强有力, 用起来是否得心应手是雇佣这些仆人的主人最为关心的事. 事实上, servant这个字本身就有“供人们利用之物, 有用的服务工具”的意思. 毫无疑问, 我们的目的不是为数学争一个好的名分, 而是想说明数学是怎样通过数学建模来解决各种实际问题的; 数学(数学建模)的极端重要性, 以及探讨正确认识和理解数学科学的作用对于发展我国科学技术、经济以及教育, 从而争取在21世纪把我国真正建设成为屹立于世界民族之林的强国,乃至个人事业发展的至关重要性. 当然, 我们也希望说明王后和仆人集于一身并不矛盾. 历史上, 很多特别受人尊敬的科学家, 不仅仅是由于他们的科学成就, 更因为他们的科学成就能够服务于人类.数学是科学的王后, 算术是数学的王后. 她常常放下架子为天文学和其他科学效劳, 但是在所有情况下, 第一位的是她(数学)应尽的责任. (高斯)Mathematics is the Queen of the Sciences, and Arithmetic the Queen of Mathematics. She often condescends to render service to astronomy and other natural sciences, but under all circumstance the first place is her due.— Carl Friedrich Gauss (卡尔·弗里德里希·高斯, 1777, 4, 30 ~ 1855, 2, 23)From: Bell, Eric T., Mathematics: Queen and Servant of Science, MAA, 1951, p.1;Men of Mathematics, Simon and Schuster, New York, 1937, p. xv.***************************************************自古以来,数学的发展始终与科学技术的发展紧密相连,反之亦然. 首先, 我们来看一下导致我们现在这个飞速发展的信息社会的19、20世纪几乎所有重大科学理论的发展和完善过程中数学(数学建模)所起到的不可勿缺的作用.数学研究的成果往往是重大科学发明的催生素(仅就19、20世纪而言, 流体力学、电磁理论、相对论、量子力学、计算机、信息论、控制论、现代经济学、万维网和互联网搜索引擎、生物学、CT、甚至社会政治学领域等). 但是20世纪上半世纪, 数学虽然也直接为工程技术提供一些工具, 但基本方式是间接的: 先促进其他科学的发展, 再由这些科学提供工程原理和设计的基础. 数学是幕后的无名英雄.现在, 数学无处不在, 数学和工程技术之间,在更广阔的范围内和更深刻的程度上, 直接地相互作用着, 极大地推动了科学和工程科学的发展, 也极大地推动了技术的发展. 数学不仅是幕后的无名英雄, 很多方面开始走向“前台”. 但是对数学的极端重要性迄今尚未有共识, 取得共识对加强一个国家的竞争力来说是至关重要的.硬能力―一位美国朋友谈及对未来中国人的看法: 20年后, 中国年轻人会丢了中国人现在的硬能力, 他们崇拜各种明星, 不愿献身科学, 不再以学术研究为荣, 聪明拔尖的学生都去学金融、法律等赚钱的专业; 而美国人因为认识到其硬能力(例如数学)不行, 进行教育改革, 20年后, 不但保持了其软实力即非专业能力的优势, 而且在硬能力上赶上中国人.‖“正在丢失的硬实力”, 鲁鸣, 《青年文摘》2011年第5期动向:美国很多州新办STEM高中, 一些大学开始开设STEM课程等.STEM = Science + Technology + Engineering + Mathematics2012年2月7日公布的美国总统科技顾问委员会给总统的报告,参与超越:培养额外的100万具有科学、技术、工程和数学学位的大学生(Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics)The Mathematical Sciences in 2025, the National Academies Press, 2013人们使用的数学科学思想、概念和方法的范围在不断扩大的同时,数学科学的用途也在不断扩展. 21世纪的大部分科学与工程将建立在数学科学的基础上.This major expansion in the uses of the mathematical sciences has been paralleled by a broadening in the range of mathematical science ideas and techniques being used. Much of twenty-first century science and engineering is going to be built on a mathematical science foundation, and that foundation must continue to evolve and expand.数学科学是日常生活的几乎每个方面的组成部分.互联网搜索、医疗成像、电脑动画、数值天气预报和其他计算机模拟、所有类型的数字通信、商业和军事中的优化问题以及金融风险的分析——普通公民都从支撑这些应用功能的数学科学的各种进展中获益,这样的例子不胜枚举.The mathematical sciences are part of almost every aspect of everyday life. Internet search, medical imaging, computer animation, numerical weather predictions and othercomputer simulations, digital communications of all types, optimization in business and the military, analyses of financial risks —average citizens all benefit from the mathematical science advances that underpin these capabilities, and the list goes on and on.调查发现:数学科学研究工作正日益成为生物学、医学、社会科学、商业、先进设计、气候、金融、先进材料等许多研究领域不可或缺的重要组成部分. 这种研究工作涉及最广泛意义下数学、统计学和计算综合,以及这些领域与潜在应用领域的相互作用. 所有这些活动对于经济增长、国家竞争力和国家安全都是至关重要的,而且这种事实应该对作为整体的数学科学的资助性质和资助规模产生影响. 数学科学的教育也应该反映数学科学领域的新的状况.Finding: Mathematical sciences work is becoming an increasingly integral and essential component of a growing array of areas of investigation in biology, medicine, social sciences, business, advanced design, climate, finance, advanced materials, and many more. This work involves the integration of mathematics, statistics, and computation in the broadest sense and the interplay of these areas withareas of potential application. All of these activities are crucial to economic growth, national competitiveness, and national security, and this fact should inform both the nature and scale of funding for the mathematical sciences as a whole. Education in the mathematical sciences should also reflect this new stature of the field.****************************************************************为了以下讲述的方便, 我们先来了解一下什么是数学建模.数学模型(Mathematical Model)是用数学符号对一类实际问题或实际发生的现象的(近似的)描述.数学建模(Mathematical Modeling)则是获得该模型并对之求解、验证并得到结论的全过程.数学建模不仅是了解基本规律, 而且从应用的观点来看更重要的是预测和控制所建模的系统的行为的强有力的工具.数学建模是数学用来解决各种实际问题的桥梁.↑→→→→→→→→↓↑↓↑↓↓↑↓←←←←←通不过↓↓通过)定义:数学建模就是上述框图多次执行的过程数学建模的难点观察、分析实际问题, 作出合理的假设, 明确变量和参数, 形成明确的数学问题. 不仅仅是翻译的问题; 涉及的数学问题可能是复杂、困难的, 求解也许涉及深刻的数学方法. 如何作出正确的判断, 寻找合适、简洁的(解析或近似) 解法; 如何验证模型.简言之:合理假设、模型建立、模型求解、解释验证.记住这16个字, 将会终生受用.数学建模的重要作用:源头创新当然数学建模也有局限性, 不能单独包打天下, 因为实际问题是非常复杂的, 需要多学科协同解决.在图灵(A. M. Turing)的文章: The Chemical Basis of Morphogenesis (形态生成的化学基础), Philosophical Transactions of the Royal Society of London (伦敦皇家学会哲学公报), Series B (Biological Sciences),v.237(1952), 37-72.1. 一个胚胎的模型. 成形素本节将描述一个正在生长的胚胎的数学模型. 该模型是一种简化和理想化, 因此是对原问题的篡改. 希望本文论述中保留的一些特征, 就现今的知识状况而言, 是那些最重要的特征.1. A model of the embryo. MorphogensIn this section a mathematical model of the growing embryo will be described. This model will be asimplification and an idealization, and consequently a falsification. It is to be hoped that the features retained for discussion are those of greatest importance in the present state of knowledge.想单靠数学建模本身来解决重大的生物学问题是不可能的,另一方面,想仅仅依靠实验来获得对生物学的合理、完整的理解也是极不可能的. There is no way mathematical modeling can solve major biological problems on its own. On the other hand, it ishighly unlikely that even a reasonably complete understanding could come solely from experiment.—— J. D. Murray, Why Are There No 3-Headed Monsters? Mathematical Modeling in Biology, Notices of the AMS,v. 59 (2012), no. 6, p.793.自古以来公平、公正的竞赛都是培养、选拔人才的重要手段, 科学和数学也不例外.中学生IMO (国际数学奥林匹克(International Mathematical Olympiad), 1959 ~)北美的大学生Putnbam数学竞赛(1938 ~)全国大学生数学竞赛(2010 ~)Mathematical Contest in Modeling (MCM, 1985 ~)美国大学生数学建模竞赛Interdisciplinary Contest in Modeling (ICM, 1999~)美国大学生跨学科建模竞赛China Undergraduate Mathematical Contest in Modeling (CUMCM, 1992~) 中国大学生数学建模竞赛中国大学生参加美国大学生数学建模竞赛情况中国大学生数学建模竞赛情况在以下讲述中涉及物理方面的具体的数学模型 (问题)的叙述和初步讨论可参考《物理学与偏微分方程》, 李大潜、秦铁虎编著, (上册, 1997; 下册, 2000), 高等教育出版社.Seven equations that rule your world (主宰你生活的七个方程式), by Ian Stewart, NewScientist, 13 February 2012.Fourier transformation 2ˆ()()ix f f x e dx πξξ∞--∞=⎰Wave equation 22222u u c t x ∂∂=∂∂ Ma xwell‘s equation110, , 0, H E E E H H c t c t∂∂∇⋅=∇⨯=-∇⋅=∇⨯=∂∂Schrödinger‘s equation ˆψH ψi t∂=∂Ian Stewart, In Pursuit of the Unknown:17 Equations That Changed the World (追求对未知的认识:改变世界的17个方程), Basic Books, March 13, 2012.目录(Contents)Why Equations? /viii1. The squaw on the hippopotamus ——Pythagoras‘sTheorem/12. Shortening the proceedings —— Logarithms/213. Ghosts of departed quantities —— Calculus/354. The system of the world ——Newton‘s Law ofGravity/535. Portent of the ideal world —— The Square Root ofMinus One/736. Much ado about knotting ——Euler‘s Formula forPolyhedra/837. Patterns of chance —— Normal Distribution/1078. Good vibrations —— Wave Equation/1319. Ripples and blips —— Fourier Transform/14910. The ascent of humanity —— Navier-StokesEquation/16511. Wave in the ether ——Maxwell‘s Equations/17912. Law and disorder —— Second Law ofThermodynamics /19513. One thing is absolute —— Relativity/21714. Quantum weirdness —— Schrödinger Equation/24515. Codes, communications, and computers ——Information Theory/26516. The imbalance of nature —— Chaos Theory/28317. The Midas formula —— Black-Scholes Equation/195Where Next?/317Notes/321Illustration Credits/330Index/331相对论Albert Einstein(1879, 3, 14 ~1955, 4, 18)20世纪最伟大的科学成就莫过于Einstein(爱因斯坦)的狭义和广义相对论了, 但是如果没有Minkowski (闵可夫斯基)几何、Riemann(黎曼)于1854年发明的Riemann几何, 以及Cayley(凯莱), Sylvester(西勒维斯特)和Noether(诺特)等数学家发展的不变量理论, Einstein的广义相对论和引力理论就不可能有如此完善的数学表述. Einstein自己也不止一次地说过.早在1905年, 年仅26岁的爱因斯坦就已提出了狭义相对论. 狭义相对论推倒了牛顿力学的质量守恒、能量守恒、质量能量互不相关、时空永恒不变的基本命题. 这是一场真正的科学革命.为了导出狭义相对论,爱因斯坦作出了两个假设:运动的相对性(所有匀速运动都是相对的)和光速为常数(光的运动例外, 它是绝对的). (1)狭义相对性原理,即在所有惯性系中, 物理学定律具有相同的数学表达形式;(2)光速不变原理,真空中光沿各个方向传播的速率都相等,与光源和观察者的运动状态无关.时空不是绝对独立的.由此可以导出一些推论: 相对论坐标变换式和速度变换式, 同时的相对性, 钟慢尺缩效应和质能关系式等.他的好友物理学家P.Ehrenfest指出实际上还蕴涵着第三个假设, 即这两个假设是不矛盾的. 物体运动的相对性和光速的绝对性, 两者之间的相互制约和作用乃是相对论里一切我们不熟悉的时空特征的根源.(部分参阅李新洲:《寻找自然之律--- 20世纪物理学革命》, 上海科技教育出版社, 2001.)1907 年德国数学家H. Minkowski (1864 ~1909) 提出了―Minkowski 空间‖,即把时间和空间融合在一起的四维空间1,3R. Minkowski 几何为Einstein 狭义相对论提供了合适的数学模型.“没有任何客观合理的方法能够把四维连续统分离成三维空间连续统和一维时间连续统. 因此从逻辑上讲, 在四维时空连续统(space- time continuum)中表述自然定律会更令人满意. 相对论在方法上的巨大进步正是建立在这个基础之上的, 这种进步归功于闵可夫斯基(Minkowski).”—Albert Einstein, The Meaning of Relativity, 1922, Princeton University Press. 中译本, 阿尔伯特·爱因斯坦著, 相对论的意义, (普林斯顿科学文库(Princeton Science Library) 1), 郝建纲、刘道军译, 上海科技教育出版社, 2001, p. 27.有了Minkowski 时空模型后, Einstein 又进一步研究引力场理论以建立广义相对论. 1912 年夏他已经概括出新的引力理论的基本物理原理, 但是为了实现广义相对论的目标, 还必须寻求理论的数学结构, Einstein 为此花了 3 年的时间, 最后, 在数学家M. Grossmann 的介绍下学习掌握了发展相对论引力学说所必需的数学工具—以Riemann几何和Ricci, Levi - Civita的绝对微分学, 也就是Einstein 后来所称的张量分析.“根据前面的讨论, 很显然, 如果要表达广义相对论, 就需要对不变量理论以及张量理论加以推广. 这就产生了一个问题, 即要求方程的形式必须对于任意的点变换都是协变的. 在相对论产生以前很久, 数学家们就已经建立了推广的张量演算理论. 黎曼(Riemann)首先把高斯(Gauss)的思路推广到了任意维连续统, 他很有预见性地看到了……进行这种推广的物理意义. 随后, 这个理论以张量微积分的形式得到了发展, 对此里奇(Ricci)和莱维·齐维塔(Tulio Levi-Civita, 1873~1941)做出了重要贡献. ”—阿尔伯特·爱因斯坦著, 相对论的意义, 郝建纲、刘道军译, 上海科技教育出版社, 2001, p. 57.从数学建模的角度看, 广义相对论讨论的中心问题是引力理论, 其基础是以下两个假设: 1. (等效原理)惯性力场与引力场的动力学效应是局部不可分辨的,(或说引力和非惯性系中的惯性力等效);2. (广义相对性原理) 一切参考系都是平权的,换言之,客观的真实的物理规律应该在任意坐标变换下形式不变——广义协变性(即一切物理定律在所有参考系[无论是惯性的或非惯性的]中都具有相同的形式)。

《轻重子Ξ与重味非奇异介子的相互作用》范文

《轻重子Ξ与重味非奇异介子的相互作用》篇一摘要:本文将探讨轻重子Ξ与重味非奇异介子之间的相互作用机制,从基础理论和实验观测的角度进行综合分析。

文章首先概述了轻子、重味介子的基本性质和特点,接着深入探讨其相互作用的过程和可能的物理机制,最后对实验研究进展及未来发展方向进行展望。

一、引言在粒子物理学中,轻重子Ξ与重味非奇异介子的相互作用是一个重要的研究领域。

Ξ作为轻子家族的成员之一,具有独特的性质和重要的物理意义;而重味非奇异介子则包含了多种具有独特特性的粒子。

了解这两种粒子间的相互作用过程及其机理,有助于深入探索强相互作用的基本原理,推动粒子物理理论的不断发展。

二、轻重子Ξ与重味非奇异介子的基本性质1. 轻重子Ξ的基本性质轻重子Ξ是一种轻子家族成员,其质量和性质与轻子有所不同,具有一定的寿命和稳定的特性。

由于其独特的内部结构和作用力机制,Ξ在实验和理论研究中具有重要意义。

2. 重味非奇异介子的基本性质重味非奇异介子是一类包含重味夸克(如粲、底、顶等)的介子,具有独特的衰变模式和相互作用特性。

这些介子的研究有助于我们理解强相互作用和粒子物理的基本原理。

三、轻重子Ξ与重味非奇异介子的相互作用过程1. 相互作用机制轻重子Ξ与重味非奇异介子的相互作用主要涉及强相互作用力。

在量子色动力学(QCD)框架下,这种相互作用通过交换胶子来实现。

胶子是传递强相互作用的媒介粒子,通过与轻子和介子的耦合作用来实现力的传递。

2. 相互作用的类型与方式在相互作用的类型方面,我们关注的主要包括强作用、弱作用等类型。

在相互作用的实现方式上,可以通过散射实验、衰变实验等方式来观测和研究。

这些实验方法为我们提供了深入了解轻重子Ξ与重味非奇异介子相互作用的机会。

四、实验研究进展及未来发展方向1. 实验研究进展近年来,随着粒子物理实验技术的不断进步,越来越多的实验数据为轻重子Ξ与重味非奇异介子的相互作用提供了有力支持。

通过实验观测,我们可以了解不同条件下的相互作用情况,并分析出相关机制和理论模型。

轻核聚变方程式

轻核聚变方程式
轻核聚变方程式(也称为热核聚变方程式)描述了核聚变反应
产生的能量。其一般形式为:

Q = m1c^2 + m2c^2 - m3c^2 - m4c^2
其中,Q表示释放的能量,m1和m2分别为聚变前两个核的
质量,m3和m4分别为聚变后两个核的质量,c为光速。

值得注意的是,轻核聚变反应在一些情况下也可能产生中子,
因此方程中的质量可能包括中子的质量。

Overlap


¯ and ψ are Dirac fermions and the mass matrix M is infinite. It has a single zero ψ mode but its adjoint has no zero modes. As long as MM† > 0 this setup is stable under small deformations of the mass matrix implying that radiative corrections will not wash the zero mode away. Kaplan’s domain wall suggests the following realization: M = −∂s − f (s), (2)
where s ∈ (−∞, ∞) and f is fixed at −Λ′ for negative s and at Λ for positive s (Λ′ , Λ > 0. There is no mathematical difficulty associated with the discontinuity at s = 0. The infinite path integral over the fermions is easily “done”: on the positive and negative segments of the real line respectively one has propagation with an s-independent “Hamiltonian”. The infinite extent means that at s = 0 the path integrals produce the overlap (inner product) between the two ground states of the many fermion systems corresponding to each side of the origin in s. The infinite extent also means infinite exponents linearly proportional to the respective energies - these factors are subtracted. One is left 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
r
X
i
v
:
h
e
p
-
p
h
/
9
6
1
0
3
6
1
v
1
1
5
O
c
t
1
9
9
6
EquivalenceofCovariantandLight-FrontPerturbation
Theory

N.C.J.Schoonderwoerd
minusregularisation[3].Inthismethodlongitudinalandtransversedivergencesare
treatedinthesameway.Anotheradvantageofminusregularisationisthatthe
ambiguity,causedbyintegrationoverlight-fronttime,isremoved.Thismeansthat
LFFTisequivalenttoCFTinperturbationtheoryandthatourmethodwillyield
covariantphysicalamplitudes.

2Calculationofthefermionselfenergy
AsanexamplewewillshowequivalenceforonediagramintheYukawamodel.Our
light-frontcoordinatesaredefinedas:k±=(k0±k3)/

4k+(q+−k+)
k−γ++k+γ−−k⊥γ⊥+m
2k
+
)(q−−k−−
(q⊥−k⊥)2+l2−iǫ

1+iδq+k

+
1−α(k+)

4k+(q+−k+)
m2+k

2
q−−
m2+k

2
2(q+−k+)

(4)

andtheinstantaneouspart

=2πi󰀃d2k⊥󰀃q+0dk+(1−α(k+))
γ
+
3Minusregularisation
Thepropagatingandtheinstantaneouscontributionssufferfrombothlongitudinal
andtransversedivergences.Ifthesedivergencesaretreatedindifferentwayswe
shouldnotbesurprisedthatitishardtorecovercovariance.However,wewill
usetheminusregularisationscheme[3]whichtreatsthesedivergencesonthesame
footing.ItremovesthelowestordersintheTaylorexpansionoftheamplitude.We
differentiatethediagramwithrespecttotheexternalenergyuntiltheintegration
isfinite.Afterintegratingovertheinternalmomentaweintegratetheresultas
manytimeswithrespecttotheexternalenergyaswehavedifferentiatedbefore.
Thepropagatingpartofthefermionselfenergy(4)containsatermproportionalto
k⊥2/2k+whichhastobedifferentiatedtwice.Theoperationweperformisthen

󰀃q−q2⊥2q+dq′′󰀃d2k⊥󰀃
q
+

0
dk
+

󰀁

相关文档
最新文档