中考数学总复习考点突破(第34讲)锐角三角函数和解直角三角形

合集下载

锐角三角函数的复习

锐角三角函数的复习

第 周 星期 第 课时 总 课时 初三备课组 章节 第十章 课题 锐角三角函数课型复习课教法 讲练结合教学目标(知识、能力、教育) 1.理解正弦、余弦、正切的概念,并能运用.2.掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;3.掌握互为余角和同角三角函数间关系,并能运用它们进行计算或化简。

4. 会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.教学重点 掌握特殊角三角函数值,并能运用进行计算和化简;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.教学难点 互为余角和同角三角函数间关系,并能运用它们进行计算或化简.教学媒体 学案教学过程一:【课前预习】 (一):【知识梳理】1.直角三角形的边角关系(如图)(1)边的关系(勾股定理):AC 2+BC 2=AB 2;(2)角的关系:∠A+∠B=∠C=900; (3)边角关系:①:00901230C BC AB A ⎫∠=⎪⇒=⎬∠=⎪⎭②:锐角三角函数:∠A 的正弦=A a sin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.2.特殊角的三角函数值.3.三角函数的关系(1) 互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin Atan (90○-A )= cotA cot (90○-A )=tanA (2) 同角的三角函数关系.①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ×cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==4.三角函数的大小比较(1) 同名三角函数的大小比较①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小. ②余弦、余切是减函数.三角函数值随角的增大而减小,随角的减小而增大。

初三中考数学总复习知识点汇总第九章锐角三角函数解直角三角形

初三中考数学总复习知识点汇总第九章锐角三角函数解直角三角形

初三中考数学总复习知识点汇总:第九章锐角三角函数解直角三角形一、锐角三角函数的概念1、正弦在Rt △ABC 中,∠C =90°,AB =c ,BC =a ,AC =b. sinA =∠A 的对边斜边=a c 2、余弦在Rt △ABC 中,∠C =90°,AB =c ,BC =a ,AC =b. cosA =∠A 的邻边斜边=b c 3、正切在Rt △ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.tanA =∠A 的对边∠A 的邻边=a b二、特殊角三角函数值1、sin 30°= 12 sin 45°= 22 sin 60°= 322、cos 30°=32 cos 45°= 22 cos 60°= 123、tan 30°= 33 tan 45°= 1 tan 60°= 3 三、锐角三角函数的增减性函数的增减性:(0°<α<90°)1、sin α,tan α的值都随α增大而增大;2、cos α的值随α增大而减小.四、解直角三角形1、解直角三角形的定义在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形.2、解直角三角形的常用关系在Rt △ABC 中,∠C =90°,则:(1)三边关系:a 2+b 2=c 2;(2)两锐角关系:∠A +∠B =90°;(3)边与角关系:sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b; (4)sin 2A +cos 2A =1.三角形面积公式:S △=12ah =12ab sin C. 五、仰角和俯角在视线与水平线所成的角中,视线在水平线上方的叫仰角,视线在水平线下方的叫俯角.六、坡度和坡角坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),记作i =h ∶l.坡面与水平面的夹角叫做坡角,记作α.i =tan α,坡度越大,α角越大,坡面越陡.七、方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的角叫做方向角.。

中考数学总复习 第四章 三角形 第6节 锐角三角函数和解直角三角形课件

中考数学总复习 第四章 三角形 第6节 锐角三角函数和解直角三角形课件

12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )
12/10/2021 ◆教材回顾 ◆突破考点(考点一 考点二 考点三 考点四 )

2021年中考数学总复习突破-锐角三角函数(解析版)

2021年中考数学总复习突破-锐角三角函数(解析版)

2021年数学中考一轮单元总复习达标精准突破(解析版)锐角三角函数单元知识点呈现知识点一:锐角三角函数 1.三角函数定义在Rt △ABC 中,若∠C=90°A sin A ac ∠==的对边斜边A cos A bc∠==的邻边斜边A tan A A ab∠==∠的对边的邻边A cot A A ba ∠==∠的邻边的对边2.同角三角函数的关系(1)平方关系:22sin cos 1A A +=(2)商数关系:sin tan cos A A A =cos cot sin A A A = (3)倒数关系:tan cot 1A A ⋅=3.互为余角的三角函数关系sin(90)cos A A ︒-=,cos(90)sin A A ︒-=tan(90)cot A A ︒-=,cot(90)tan A A ︒-=或者:若∠A+∠B=90°,则sinA=cosB ,cosA=sinB ,tanA=cotB ,cotA=tanB 4. 特殊角的三角函数值5.锐角三角函数的增减性(0°--90°)(1)锐角的正弦值(或正切值)随着角度的增大而增大,随着角度的减小而减小。

(2)锐角的余弦值(或余切值)随着角度的增大而减小,随着角度的减小而增大。

6.锐角三角函数的取值范围0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0. 知识点二:解直角三角形 1.直角三角形中边角关系在直角三角形ABC 中,如果∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,那么(1)三边之间的关系为222a b c +=(勾股定理)(2)锐角之间的关系为∠A+∠B=90° (3)30°角所对直角边等于斜边的一半。

(4)直角三角形斜边上的中线等于斜边的一半。

(5)边角之间的关系为:(三角函数定义) 2.其他有关公式 (1)1sin 2S ab C ∆==1sin 2bc A =1sin 2ac B (2)Rt △面积公式:1122S ab ch == (3)直角三角形外接圆的半径2c R =,内切圆半径2a b c r +-=结论:直角三角形斜边上的高abh c= 3.实际问题中术语的含义 (1)仰角与俯角在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。

中考复习分析——解直角三角形

中考复习分析——解直角三角形

中考复习分析——解直角三角形黄金洞民族中小学罗建华第一部分地位与作用一.复习定位解直角三角形这一部分知识是数学中的基本工具之一.解直角三角形不仅在实际问题中有着广泛的应用,而且更为重要的是,它在数学本身也有着极为广泛的应用,凡是有关图形中量的计算问题,以及坐标系里点的坐标的计算,大多数的情况都需借助于构造与解直角三角形.因此解直角三角形的知识是近年各地中考命题的热点之一.(一)试题类型与考法分析1.考察内容以基础知识与基本技能为主,应用意识进一步增强,联系实际,综合运用知识,技能的要求越来越明显,不仅有传统的计算距离、高度、角度的应用题,还要求学生根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.2.本章知识是中考常考的内容,尤其是特殊角的三角函数值的有关的计算时必考内容,试题以填空题、计算题为主.3. 应用解直角三角形的知识解决实际问题是中考的热点,试题以填空题和解答题为主.4.2013-2015年我州中考试题中“解直角三角形”部分的权重:10~12%左右.二、中考卷研究(一)中考对知识点的考查:2013-2015年我州中考涉及的知识点如下表:关于锐角三角函数的考纲要求1.基本要求:通过实例认识锐角的正弦、余弦、正切;知道30°、45°、60°角的三角函数值.2.略高要求:由某个角的一个三角函数值,会求其余两个三角函数值;会计算含有特殊角的三角函数式的值.3.较高要求:能运用三角函数解决与直角三角形有关的简单实际问题.。

关于解直角三角形的考纲要求1.基本要求:知道解直角三角形的含义.2.略高要求:会解直角三角形;能根据问题的需要合理作出垂线,构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题.3.较高要求:会解有特殊条件的四边形中的计算问题;会设计简单的测量方案;能综合运用直角三角形的性质解决简单的实际问题.(三)中考热点:新课标对解直角三角形的要求略有减弱,从前几年各省、市的中考命题来看,运用解直角三角形的知识解决与生活、生产相关联的应用题是中考的热点.三、中考命题趋势及复习对策解直角三角形在实际生活中的应用题,是中考的重点内容,其次是特殊角的三角函数值,锐角三角函数包含三部分内容,一是解直角三角形及特殊锐角函数值的考查,以填空,选择题的形式出现;二是解决实际问题,以解答题的形式出现;三是渗透在中高档解答证明题中,一般占10分左右.在复习时,要正确了解三角函数概念把握其本质,才能正确理解解直角三角形中边角之间关系,才能利用这些关系解题,另外还要注意数形结合,解题时通过画图来找出函数关系,帮助解题.第二部分 考点突破 一、考点讲解:考点1.锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图1-1-1,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c .∠A 的正弦=A asin A=c ∠的对边,即斜边; ∠A 的余弦=A bcos A=c ∠的邻边,即斜边, ∠A 的正切=A atan=A b ∠的对边,即∠的邻边注:三角函数值是一个比值.二、经典考题剖析:【考题1-1】在Rt △ABC 中,∠C=90°,AB=15,BC=9,则sinA 的值是( )A .34B .45C .35D . 43点拨: (基本)通过实例认识锐角的正弦、余弦、正切【考题1-2】在Rt △ABC 中,∠C=90°,则sinA=35 ,则cosA=____.点拨: (略高)由某个角的一个三角函数值,会求其余两个三角函数值【考题1-3】(2009温州)△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 ;点拨: (略高)由某个角的一个三角函数值,结合已知条件,会求其余的 边或角。

中考数学复习《解直角三角形》 知识讲解

中考数学复习《解直角三角形》  知识讲解

《解直角三角形》全章复习与巩固(提高) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为,斜边长为,那么.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA= ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边a b ,c 222a b c +=(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB. 同角三角函数关系:sin 2A +cos 2A=1;3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA1cotA1在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.Rt △ABC由求∠A ,∠B=90°-∠A ,由求∠A ,∠B=90°-∠A ,sin ,cos ,tan ,cot a b a b A A A A c c b a====sin ,cos ,tan ,cot b a b a B B B B c c a b====,∠B=90°-∠A,,∠B=90°-∠A,,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。

2021中考数学知识点总结 解直角三角形 (10大知识点+例题)

解直角三角形知识点:一、锐角三角函数:在直角三角形ABC 中,∠C 是直角,如图5-1一、正弦:把锐角A 的对边与斜边的比叫做∠A 的正弦,记作c a A =sin 二、余弦:把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cb A =cos 3、正切:把锐角A 的对边与邻边的比叫做∠A 的正切,记作ba A =tan 4、余切:把锐角A 的邻边与对边的比叫做∠A 的余切,记作ab A =cot 说明:由概念能够看出tanA ·cotA =l (或写成A A cot 1tan =) 五、锐角三角函数:锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数说明:锐角三角函数都不能取负值。

0< sinA < l ; 0<cosA <;l六、锐角的正弦和余弦之间的关系任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。

即sinA =cos (90°一 A )=cosB ;cosA =sin (90°一A )=sinB7、锐角的正切和余切之间的关系任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

即tanA =cot (90°一 A )=cotB ;cotA =tan (90°-A )= tanB说明:式中的90°一A = B 。

八、三角函数值的转变规律(1)当角度在0°— 90°间转变时,正弦值(正切值随着角度的增大(或减小)而增大(或减小)(2)当角度在0°—90°间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大)。

九、同角三角函数关系公式(1)1cos sin 22=+B A ;(2)A A cot 1tan =;(3) tanA =AA cos sin 10.一些特殊角的三角函数值二、解直角三角形由直角三角形中,除直角外的已知元素,求出所有未知元素的进程,叫做解直角三角形。

九年级数学解直角三角形(锐角三角函数)知识精讲

九年级数学解直角三角形(锐角三角函数)【本讲主要内容】解直角三角形(锐角三角函数)包括锐角三角函数:角的正弦、余弦、正切,解直角三角形等。

【知识掌握】 【知识点精析】1. 在直角三角形中,锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。

2. 在直角三角形中,锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA 。

3. 在直角三角形中,锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA 。

4. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。

5. 特殊角的三角函数值:2160cos 30sin =︒=︒,2330cos 60sin =︒=︒;2245cos 45sin =︒=︒; 360tan 145tan 3330tan =︒=︒=︒,,21 30° 321145°6. 在直角三角形中,由已知元素求未知元素的过程,就是解直角三角形。

(1)222c b a =+;(2)︒=∠+∠90B A ;(3)ba A tan cb A cosc aA sin ===,,; (4)c ch 21ab 21S ==∆。

BcaA b CDh c8. 应用解直角三角形的知识解一些简单的实际问题。

【解题方法指导】例1. 选择题:在△ABC 中,∠C =90°,∠B =2∠A ,则tanA 等于( )A.3 B. 33 C. 23 D.21 分析:设法求出∠A 的度数,再求值。

解:Rt △ABC 中,∠A +∠B =90° 把∠B =2∠A 代入,得 3∠A =90° ∴∠A =30°3330tan A tan =︒=∴ 故选B 。

评析:抓住直角三角形中两锐角互余,求出角的度数。

例2. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,32AB 22AC ==,,设∠BCD =α,那么cos α的值是( )A.22 B.23 C.33 D.36分析:由∠ACB =90°,CD ⊥AB ,可知∠BCD =∠A =α,而ABACA cos =,故可解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档