高中数学必修三北师大版 第3章 §2 2.3 互斥事件 学案(Word版含答案)

合集下载

北师大版高中数学必修3《三章 概率 2 古典概型 2.3互斥事件》优质课教案_1

北师大版高中数学必修3《三章 概率  2 古典概型  2.3互斥事件》优质课教案_1

高一数学必修第三章概率互斥事件(第1课时)教案一、教学目标:1、知识与技能:通过实例,理解互斥事件和对立事件的概念,了解互斥事件的概率加法公式,并能简单应用.2、过程与方法:发现法教学,学生通过在抛骰子的试验中获取数据,归纳总结试验结果,发现规律,得到互斥事件的概率加法公式。

通过正确的理解,准确利用公式求概率。

3、情感态度与价值观:通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;体会数学思维的严密性,发展条理清晰的思考表达能力、提高分析能力、解决问题的能力。

二、重点与难点:互斥事件 概率的加法公式及其应用三、教学用具:计算机及多媒体教学.四、教学过程:1、温故知新:古典概型相关知识,并完成练习2、新课引入:(1)日常生活中,我们总有些事件不同时进行。

(互斥事件)(2)从字面上理解“互斥事件”基本概念:不可能同时发生的个事件叫做互斥事件。

A 、B 互斥,即事件A 、B 不可能同时发生(学生自己举例理解)3、实例分析:抛掷一枚骰子一次,下面的事件A 与事件B 是互斥事件吗?(1)事件A=“点数为2”,事件B=“点数3”(2)事件A=“点数为奇数”,事件B=“点数为4”(3)事件A=“点数不超过3”,事件B=“点数超过3”(4)事件A=“点数为5”,事件B=“点数超过3”解:互斥事件: (1) (2) (3)但(4)不是互斥事件,当点为5时,事件A 和事件B 同时发生从集合角度来看,A 、B 两个事件互斥,则表示A 、B 这两个事件所含结果组成的集合的交集是空集。

A 与B 有相交,则A 与B 不互斥。

4、事件和的意义:事件A 、B 的和记作B A +,表示事件A 、B 至少有一个发生。

当A 、B 为互斥事件时,事件B A +是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的,5、事件B A +的概率满足加法公式:对例题 (1),(2)和(3)中每一对事件,完成下表学生自己完成表,自己发现P(A+B)与P(A)+P(B)有什么样大小关系.得到概率加法公式:A 、B 互斥时 ()()()B P A P B A P +=+(4)事件A=“点数为5”,事件B=“点数超过3”,是否也有P (A+B )=P (A )+P (B )?概率加法公式:A、B互斥,则P(A+B)=P(A)+P(B)拓展推广:一般地,如果事件A1,A2,…,An彼此互斥,那么事件发生(即A1,A2,…,An 中有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…An)=P(A1)+P(A2)+…+P(An)例如:事件A表示“点数为奇数”,事件A1表示“点数为1”,A2表示“点数为3”,A3表示“点数5”, A1,A2,A3中任意两个是互斥事件P(A)=P(A1+A2+A3)=P(A1)+P(A2)+P(A3) 6、自主学习:(要求学生自己阅读)从一箱产品中随机地抽取一件产品,设A=:“抽到的是一等品”,B=“抽到的是二等品”,C=“抽到的是三等品”.且(A)=0.7,P(B)=0.1,P(C)=0.05 . 求下列事件的概率:⑴事件D=“抽到的是一等品或三等品”⑵事件E=“抽到的是二等品或三等品”思考交流:事件D+E表示什么事件?P(D+E)=P(D+E)?为什么?(学生自己思考得出结论)用概率加法公式的前提:A与B是互斥事件8、对立事件的概念:1、由实例中(3)事件A=“点数不超过3”,事件B=“点数超过3”P(A)+P(B)=1 分析引入2、从集合的意义来理解。

高中数学 3.2 互斥事件(2)学案 北师大版必修3

高中数学 3.2 互斥事件(2)学案 北师大版必修3

学案必修三第三章第2节互斥事件(2)一、学习目标1、进一步理解互斥事件与对立事件的概念;2、会用枚举法与树状图计算一些随机事件所含的基本事件数;3、掌握较复杂事件概率的求法。

二、重点与难点重点:互斥事件与对立事件概率公式的进一步应用难点:复杂事件概率的求法三、课前预习1、设A、B为两个事件,当事件A、B至少有一个发生,我们把这个事件记作;2、若A、B是互斥事件,那么P(A+B)= ;3、对立事件A与A必有一个发生,故A+A为①事件,从而P(A+A)= ②,又A与A互斥,所以有P(A+A)= ③,故P(A)+P(A)= ④,即P(A)=1- ⑤。

四、堂中互动教师点拔1:(1)O型血与B型血可以输给小明,其概率求为用这两种血型的人数之和比上总人数就可得出结果;(2)因为事件“血不能输给小明”与(1)中事件“血可以输给小明”是对立事件,其概率就可以利用对立事件的概率求法公式来求得。

例1、黄种人群中各种血型的人所占的比如表所示:已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给 AB 型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?点评:在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和,二是先去求此事件的对立事件的概率,进而再求所求事件的概率。

教师点拔2:用枚举法算出所有的可能结果数,其中能打开锁的只有一种结果,设其概率为P(A),则不能打开锁的概率为1- P(A)。

例2、小明的自行车用的是密码锁,密码锁的四位数密码由4个数字2,4,6,8按一定顺序构成。

小明不小心忘记了密码中4个数字的顺序,试问:随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率是多少?点评:求概率时采用迂回的策略,不直接求有关事件的概率,转而求其对立事件的概率,从而达到求有关事件概率的目的,体现了数学中“正难则反”的数学思想。

2021学年高中数学第三章概率3.2.3互斥事件课时作业含解析北师大版必修3.doc

2021学年高中数学第三章概率3.2.3互斥事件课时作业含解析北师大版必修3.doc

课时作业20 互斥事件时间:45分钟满分:100分——基础巩固类——一、选择题(每小题5分,共40分)1.事件A与B是对立事件,且P(A)=0.6,则P(B)等于(A)A.0.4 B.0.5C.0.6 D.1解析:P(B)=1-P(A)=1-0.6=0.4.2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是(C)A.“至少有1个白球”和“都是红球”B.“至少有1个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”解析:该试验有三种结果:“恰有1个白球”“恰有2个白球”“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件且不是对立事件.3.从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品至少有一件是次品},则下列结论正确的是(A) A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥解析:∵从一批产品中取出三件产品包含4个基本事件.D1={没有次品},D2={1件次品},D3={2件次品},D4={3件次品},∴A=D1,B=D4,C=D2∪D3∪D4,故A与C互斥,A与B互斥,B与C不互斥.4.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为(D)A.60%B.30%C.10%D.50%解析:甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.5.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( C )A .①B .②④C .③D .①③解析:从1~9中任取两数,有以下三种情况:(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数,故选C.6.甲袋中有大小相同的4只白球、2只黑球,乙袋中有大小相同的6只白球、5只黑球,现从两袋中各取一球,则两球颜色相同的概率是( D )A.1233B.533C.433D.1733解析:基本事件总数有6×11=66,而两球颜色相同包括两种情况:两白或两黑,其包含的基本事件有4×6+2×5=34(个),故两球颜色相同的概率P =3466=1733. 7.掷一枚骰子的试验中,出现各点的概率为16.事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B (B 表示事件B 的对立事件)发生的概率为( C )A.13B.12C.23D.56解析:由题意知,B 表示“大于或等于5的点数出现”,事件A 与事件B 互斥,由概率的加法计算公式可得P (A +B )=P (A )+P (B )=26+26=46=23. 8.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( A )A.27B.38C.37D.928解析:设事件A =“至少摸到2个黑球”,则它包含两种情况:“恰好摸到3个黑球”记为事件B 和“恰好摸到2个黑球”记为事件C ,很明显事件B 、C 互斥,又事件B 中有1种结果,事件C 中有12×3×2×5=15种结果,而试验总共有8×7×6÷3÷2=56种结果,所以P (A )=P (B +C )=P (B )+P (C )=156+1556=1656=27.本题也可用对立事件性质解答. 二、填空题(每小题5分,共15分)9.某一时期内,一条河流某处的最高水位在各个范围内的概率如下:0.5.解析:法1:记“最高水位在[8,10)内”为事件A 1,记“最高水位在[10,12)内”为事件A 2,记“最高水位不超过12 m ”为事件A 3,由题意知,事件A 1,A 2彼此互斥,而事件A 3包含基本事件A 1,A 2,所以P (A 3)=P (A 1)+P (A 2)=0.2+0.3=0.5.法2:记“最高水位在[12,14)内”为事件B 1,记“最高水位不超过12 m ”为事件B 2,由题意知,事件B 1和B 2互为对立事件,所以P (B 2)=1-P (B 1)=1-0.5=0.5.10.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为45,那么所选3人中都是男生的概率为15. 解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以P (B )=1-P (A )=15. 11.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为0.2. 解析:由5根竹竿一次随机抽取2根竹竿的种数为4+3+2+1=10,它们的长度恰好相差0.3m 的是2.5和2.8、2.6和2.9两种,则它们的长度恰好相差0.3m 的概率为P =210=0.2.三、解答题(共25分,解答应写出必要的文字说明、证明过程或演算步骤)12.(12分)在数学考试中,小明的成绩在90分以上的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07,计算:(1)小明在数学考试中取得80分以上成绩的概率;(2)小明考试及格的概率.解:记小明的成绩“在90分以上”、“在80分~89分”、“在70分~79分”、“在60分~69分”为事件A ,B ,C ,D ,这四个事件彼此互斥.(1)小明成绩在80分以上的概率是:P (A ∪B )=P (A )+P (B )=0.18+0.51=0.69.(2)小明及格的概率是:P (A ∪B ∪C ∪D )=P (A )+P (B )+P (C )+P (D )=0.18+0.51+0.15+0.09=0.93,∴小明及格的概率为0.93.13.(13分)某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为不合格.假设此人对A 和B 两种饮料没有鉴别能。

北师大版高中数学必修三学练测精品练习:第3章 概率 §2.3 互斥事件2(含解析)

北师大版高中数学必修三学练测精品练习:第3章 概率 §2.3 互斥事件2(含解析)

北师大版高中数学必修三学练测精品练习
第三章 概 率
§2 古典概型
2.3 互斥事件(第二课时)
课后拔高提能练
一、选择题
1.从3台甲型彩电和2台乙型彩电中任选两台,其中甲型彩电至多一台的概率为( )
A.710
B.45
C.35
D.15
解析:选A 从5台彩电中任取2台,都是甲型彩电的概率为P 1=310,∴甲
型彩电至多一台的概率为P =1-310=710
. 2.掷一枚硬币,若出现正面记1分,出现反面记2分,则恰好得3分的概率为( )
A.58
B.18
C.14
D.12
解析:选A 有三种情况:①连续3次都是正面,其概率为P 1=18;②第1
次是正面,第2次是反面,其概率为P 2=14;③第1次是反面,第2次是正面,
其概率为P 3=14.因此所求概率为P =P 1+P 2+P 3=18+14+14=58.
3.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 不落在圆x 2+y 2=9内的概率为( )。

3.2.3互斥事件教案(北师大版必修3)

3.2.3互斥事件教案(北师大版必修3)

2.3互斥事件●三维目标1.知识与技能.知识与技能使学生理解互斥事件和对立事件的概念;能利用公式解决简单的概率问题.使学生理解互斥事件和对立事件的概念;能利用公式解决简单的概率问题.2.过程与方法.过程与方法通过知识迁移,与集合中相关概念的对比;培养学生用对立统一思想分析问题并解决问题.题.3.情感、态度与价值观.情感、态度与价值观通过学生独立思考、分组讨论,培养学生自主学习的习惯、与人合作的团队精神.通过学生独立思考、分组讨论,培养学生自主学习的习惯、与人合作的团队精神. ●重点难点重点:理解互斥事件和对立事件概念的区别和联系.重点:理解互斥事件和对立事件概念的区别和联系.难点:灵活运用P (A +B )=P (A )+P (B )和P (A )=1-P (A )两个公式来解决问题.两个公式来解决问题.●教学建议以问题为主线,引导发现法,教师可以从学生生活掷骰子事件出发,逐步导出互斥事件,使学生既有兴趣又很轻松的理解互斥事件,为下面的学习打好理论基础.使学生既有兴趣又很轻松的理解互斥事件,为下面的学习打好理论基础.●教学流程创设情境,引入新课,以课本上的掷骰子为例探究各事件间的关系⇒总结出互斥和对立事件的概念并展现它们之间的区别与联系,给出概率加法公式⇒通过例1及变式训练,使学生明确,互斥和对立事件的关系掌握判断事件的方法⇒通过例2及变式训练,使学生掌握互斥事件概率的运算⇒通过对互斥事件和对立事件的理解完成例3及变式训练进一步体会概率加法公式⇒归纳总结,知识升华,使学生从整体上把握本节知识⇒完成当堂双基达标,巩固本节知识并进行反馈、矫正固本节知识并进行反馈、矫正课标解读 1.了解互斥事件的概念及概率加法公式(重点).2.掌握对立事件的概率及概率的计算公式(重点). 3.能利用互斥事件、对立事件的概率计算公式解决复杂的古典概率的计算问题(难点).4.理解互斥事件和对立事件的区别和联系.互斥事件 【问题导思】在掷骰子试验中,我们用集合形式定义如下事件:C 1={出现1点},C 2={出现2点},C 3={出现3点},C 4={出现4点},C 5={出现5点},C 6={出现6点},D 1={出现的点数不大于1},D 2={出现的点数大于4},D 3={出现的点数小于6},E ={出现的点数小于7},F ={出现的点数大于6},G ={出现的点数为偶数},H ={出现的点数为奇数}.1.事件D 3与事件F 能同时发生吗?能同时发生吗?【提示】 不能.2.如果事件“C 2发生或C 4发生或C 6发生”,就意味着哪个事件发生?发生”,就意味着哪个事件发生?【提示】 意味着事件G 发生.3.事件D 2与事件H 同时发生,意味着哪个事件发生?同时发生,意味着哪个事件发生?【提示】C5发生.1.互斥事件的定义在一个随机试验中,我们把一次试验中不能同时发生的两个事件A和B称作互斥事件.2.事件A与B至少有一个发生给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和事件B至少有一个发生.少有一个发生.根据上述定义推广可得:事件A1+A2+…+A n表示在一次随机试验中,事件A1,事件A2,…,事件A n中至少有一个发生.中至少有一个发生.3.互斥事件的概率加法公式一般地,如果事件A,B互斥,那么事件A+B发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这个公式称为互斥事件的概率加法公式.概率加法公式.如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n发生(即A1,A2,…,A n中至少有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A_n)=P(A1)+P(A2)+…+P(A n).对立事件及其概率的求法公式【问题导思】在知识1的问题导思中,事件G与事件H能同时发生吗?这两个事件有什么关系?能同时发生吗?这两个事件有什么关系?【提示】事件G与事件H不能同时发生,但必有一个发生.1.定义在每一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作是对立事件,事件A的对立事件记为A. 2.性质P(A)+P(A)=1,即P(A)=1-P(A).互斥事件与对立事件的判断从装有除颜色外其他均相同的5只白球和5只红球的袋中任意取出3只球,判断下列每对事件是否为互斥事件,是否为对立事件.断下列每对事件是否为互斥事件,是否为对立事件.(1)“取出2只红球和1只白球”与“取出1只红球和2只白球”;只白球”;(2)“取出3只红球”与“取出3只球中至少有1只白球”;只白球”;(3)“取出3只红球”与“取出3只球中至少有1只红球.”只红球.”【思路探究】根据对立事件和互斥事件的定义来判断.【自主解答】从袋中任意取出3只球有4种结果:3只白球;2只白球1只红球;1只白球2只红球;3只红球.(1)因为“取出2只红球1只白球”与“取出1只红球2只白球”不能同时发生,所以它们是互斥事件.当“取出3只白球”时,它们都没有发生,所以它们不是对立事件.(2)“取出3只球中至少有1只白球”包括三种结果:1只白球2只红球,2只白球1只红球,3只白球.因此它与“取出3只红球”不能同时发生,它们是互斥事件,且它们中必有一个发生,所以又是对立事件.(3)当取出的3只球都是红球时,它们同时发生,所以它们不是互斥事件,也不是对立事件.1.要判断两个事件是不是互斥事件,只需找出各个事件包含的所有结果,看它们之间能不能同时发生,若不能同时发生,能不能同时发生,若不能同时发生,则为互斥事件,在互斥的前提下,则为互斥事件,在互斥的前提下,则为互斥事件,在互斥的前提下,看两个事件中是否必看两个事件中是否必有一个发生,可判断是否为对立事件.2.判断事件的关系,尤其是互斥事件和对立事件在求概率时非常重要,它直接决定了求解是否正确.应注意互斥事件不能同时发生,应注意互斥事件不能同时发生,对立事件除不能同时发生外,对立事件除不能同时发生外,对立事件除不能同时发生外,其和事件为必其和事件为必然事件,这些也可类比集合进行理解.判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明道理.判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明道理.从40张扑克牌(红桃、黑桃、方块、梅花点数为1~10各10张)中,任取一张.中,任取一张.(1)“抽出红桃”与“抽出黑桃”;“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”;“抽出红色牌”与“抽出黑色牌”;(3)“抽出牌点数为5的倍数”与“抽出的牌点数大于9”.”.【解】 (1)是互斥事件,不是对立事件.道理是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件,同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)是对立事件.道理是:从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,所以它们是对立事件,(3)不是互斥事件,也不是对立事件.道理是:从40张扑克牌中任意抽取1张.“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”这两个事件可能同时发生.因此,二者不是互斥事件,当然不可能是对立事件.互斥事件的概率盒子里装有除颜色外其他均相同的各色球共12个,其中5红、4黑、2白、1绿,从中任取1球,记事件A 为“取出1个红球”,事件B 为“取出1个黑球”,事件C为“取出1个白球”,事件D 为“取出1个绿球”.已知P (A )=512,P (B )=13,P (C )=16,P (D )=112. 求(1)“取出1球为红球或黑球”的概率;球为红球或黑球”的概率;(2)“取出1球为红球或黑球或白球”的概率.球为红球或黑球或白球”的概率.【思路探究】 从12球中任取一球,取到红球、黑球、白球互斥,所以可用互斥事件概率的加法公式求解.【自主解答】 法一 (1)“取出1球为红球或黑球”的概率为P (A +B )=P (A )+P (B )=512+13=34. (2)“取出1球为红球或黑球或白球”的概率为P (A +B +C )=P (A )+P (B )+P (C )=512+13+16=1112. 法二 (1)“取出1球为红球或黑球”的对立事件为“取出1球为白球或绿球”,即A +B 的对立事件为C +D ,故“取出1球为红球或黑球”的概率为 P (A +B )=1-P (C +D )=1-(P (C )+P (D ))=1-(16+112)=34. (2)“取出1球为红球或黑球或白球”的对立事件为“取出1球为绿球”,即A +B +C 的对立事件为D ,所以“取出1球为红球或黑球或白球”的概率为P (A +B +C )=1-P (D )=1-112=1112. 1.解决本题的关键是明确取到不同颜色球不可能同时发生,即互斥.由此可知用概率加法公式.2.若随机试验中,涉及多个事件,应先分析判断这几个事件是否互斥(或对立),若是,可利用互斥事件概率的加法公式求解.当某一事件包含几个互斥的事件时,求该事件发生的概率也有上述规律.在数学考试中,小明的成绩在90分以上(含90分)的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07. (1)求小明在数学考试中,取得80分以上(含80分)成绩的概率;成绩的概率;(2)求小明考试及格的概率.求小明考试及格的概率.【解】分别记小明的成绩“在90分以上”、“在80分~89分”、“在70分~79分”、“在60分~69分”为事件事件B、C、D、E,这四个事件彼此互斥.(1)小明的成绩在80分以上的概率是P(B+C)=P(B)+P(C)=0.18+0.51=0.69. (2)小明考试及格的概率是P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93. 对立事件的概率某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:,计算这个射手在一次射击中:(1)射中10环或7环的概率;环的概率;(2)射中7环以下的概率.环以下的概率.【思路探究】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先去求其对立事件的概率,进而再求所求事件的概率.【自主解答】(1)记“射中10环”为事件A,记“射中7环”为事件B.由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A+B,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49. (2)记“射中7环以下”为事件E,E的对立事件为E,则事件E为“射中7环或8环或9环或10环”.由“射中7环”、“射中8环”、“射中9环”、“射中10环”是彼此互斥事件,故P(E)=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-P(E)=1-0.97=0.03. 所以射中10环或7环的概率为0.49,射中7环以下的概率为0.03. 1.必须分析清楚事件A,B是否互斥,只有互斥事件才可以用概率的加法公式.2.当直接求某一事件的概率较为复杂或根本无法求时,可先转化为求其对立事件的概率.经统计,在某储蓄所一个营业窗口等候人数及相应概率如下:经统计,在某储蓄所一个营业窗口等候人数及相应概率如下:排队人数012345人及以上人及以上概率0.10.160.30.30.10.04 (1)至多2人排队等候的概率是多少?人排队等候的概率是多少?(2)至少1人排队等候的概率是多少?人排队等候的概率是多少?【解】记事件“在窗口等候的人数为0,1,2,3,4,5人及以上”的事件分别为A,B,C,D,E,F,则它们彼此互斥.(1)至多2人排队等候的概率是:法一P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56. 法二P(A+B+C)=1-P(D+E+F)=0.56. (2)至少1人排队等候的概率是:对互斥事件概念理解有误点的概率都是16,记事件=1,=1,所以=1+1+1+1=2. 互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.一次试验中,两个互斥事件有可能都不发生,一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,也可能有一个发生,也可能有一个发生,但不可能两个都发生;而但不可能两个都发生;而两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥.以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥. 2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式,只有互斥事件才能用概率加法公式,如果事件不互斥,如果事件不互斥,那么公式就不能使用!使用!3.求复杂事件的概率通常有两种方法.求复杂事件的概率通常有两种方法方法一:将所求事件转化成彼此互斥事件的并事件;方法一:将所求事件转化成彼此互斥事件的并事件;方法二:先求其对立事件的概率,再求所求事件的概率.方法二:先求其对立事件的概率,再求所求事件的概率.如果采用方法一,一定要将事件分拆成若干互斥的事件,一定要将事件分拆成若干互斥的事件,不能重复和遗漏;不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.法二,一定要找准其对立事件,否则容易出现错误.1.事件A 与B 是对立事件,且P (A )=0.6,则P (B )等于( ) A .0.4B .0.6C .0.5D .1 【解析】 由对立事件的性质知P (A )+P (B )=1,∴P (B )=1-0.6=0.4. 【答案】 A 2.某产品分甲、乙、丙三级,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对该产品抽查一件抽到甲级品的概率为( ) A .0.09 B .0.97 C .0.99 D .0.96 【解析】 产品共分三个等级,出现乙级品和丙级品的概率分别为0.03和0.01,则出现甲级品的概率为1-0.03-0.01=0.96. 【答案】 D 3.从一箱苹果中任取一个,从一箱苹果中任取一个,如果其重量小于如果其重量小于200克的概率为0.2,重量在[200,300]克的概率为0.5,那么重量超过300克的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8 【解析】 设“重量小于200克”为事件A ,“重量在[200,300]克之间”为事件B ,“重量超过300克”为事件C ,则P (C )=1-P (A )-P (B )=1-0.2-0.5=0.3.故选B. 【答案】 B 4.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求:,求: (1)甲获胜的概率;(2)甲不输的概率.甲不输的概率. 【解】 甲、乙两人下棋,其结果有甲胜、和棋、乙胜三种,它们是互斥事件,“甲获胜”可看做是“和棋或乙胜”的对立事件.“甲不输”可看做是“甲胜”“和棋”这两个互斥事件的和事件,亦可看做“乙胜”的对立事件.于是,(1)“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P =1-12-13=16,即甲获胜的概率是16. (2)法一 设事件A 为“甲不输”,它可看做是“甲胜”“和棋”这两个互斥事件的和事件,所以P (A )=16+12=23. -1=2,一、选择题A.1B.3C.C.33D.99,故选-1=9,故选A.5 B.1 C.1 D.1 1;②第一次掷得正面,第二次1;③第一次掷得反面,第二次掷得正面,其概率为1的概率为1+1+1=5. 上述事件中,对立事件是( ) A .①.①B .②④.②④C .③.③D .①③.①③ 【解析】 互为对立事件的两个事件既不能同时发生又必有一个发生.故③是符合要求的.【答案】 C 二、解答题6.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得黑桃”,则概率P (A +B )=________. 【解析】 一副扑克牌中有1张红桃K,13张黑桃,事件A 与事件B 互斥,∴P (A +B )=P (A )+P (B )=152+1352=72626. . 【答案】 726图3-2-2 7.如图3-2-2所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是________.【解析】 1-0.35-0.30-0.25=0.1. 【答案】 0.1 8.(2013·沈阳高一检测)一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,摸出红球的概率为________.【解析】 由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”为对立事件,P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D ) =1-P (B )-P (D )=1-0.42-0.38=0.2. 【答案】 0.2 三、解答题9.从4名男生和2名女生中任选3人参加演讲比赛.人参加演讲比赛.(1)求所选3人中恰有1名女生的概率;名女生的概率;(2)求所选3人中至少有1名女生的概率.名女生的概率. 【解】 4名男生记为1,2,3,4,两名女生记为5,6,从这6个人中选3个人的方法有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(2,3,4),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(4,5,6),(1,3,4),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,4,5),(2,4,6),(2,5,6),(3,5,6)共20种方法.(1)所选3人中恰好有1名女生的情况有(1,2,5),(1,2,6),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,4,5),(2,4,6)共12种方法.故所选3人中恰好有1名女生的概率为1220=35. (2)所选3人中恰好有2名女生的情况有(1,5,6),(2,5,6),(3,5,6),(4,5,6),共4种情况,则所选3人中至少有1名女生的情况共有12+4=16种.所以,所选3人中至少有1名女生的概率为1620=45(1-15=45). 10.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,每次取出一球记下编号后放回,连续取两次,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.求中奖的概率.【解】 设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两球有:(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共有16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1)(3,0),有7种结果,则中三等奖的概率为P (A )=716. (2)由(1)知两个小球号码相加之和等于3或4的取法有7种;两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).两个小球号码相加之和等于6的取法有1种:(3,3).则中奖的概率为P (B )=7+2+116=58. 11.(2013·湖南高考) 图3-2-3 某人在如图3-2-3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42 这里,两株作物“相近”是指它们之间的直线距离不超过1米.米.(1)完成下表,并求所种作物的平均年收获量:Y 51 48 45 42 频数4 (2)在所种作物中随机选取一株,求它的年收获量至少为48 kg 的概率.的概率.【解】 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:Y 51 48 45 42 频数2 4 6 3 所种作物的平均年收获量为51×2+48×4+45×6+42×315=102+192+270+12615=69015=46. (2)由(1)知,P (Y =51)=215,P (Y =48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P (Y ≥48)=P (Y =51)+P (Y =48)=215+415=25. (教师用书独具) 假设向三个相邻的军火库投掷一枚炸弹,炸中第一个军火库的概率为个小球,分别为红球、黑球、黄球、绿球,从中任取率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、=14,=16,=14. 所以,得到黑球的概率为1,得到黄球的概率为1,得到绿球的概率为1. 。

高中数学北师大版必修3课件:3.2.3互斥事件

高中数学北师大版必修3课件:3.2.3互斥事件
1
为“取出的两个球是黑球”,同理可得 P(B)=5.
记事件 C 为“取出的两个球的颜色相同”,A,B 互斥,根据互斥事
2
件的概率加法公式,得 P(C)=P(A+B)=P(A)+P(B)=5.
-15-
2 .3
探究一
互斥事件
探究二
首页
探究三
思维辨析
课前篇
自主预习
课堂篇
探究学习
当堂检测
(2)记事件 D 为“取出的两个球中有白球 0 个,黑球 2 个”,则这个
-9-
2 .3
探究一
互斥事件
探究二
首页
探究三
思维辨析
课前篇
自主预习
课堂篇
探究学习
当堂检测
互斥事件、对峙事件的判断
【例1】 (1)某小组有3名男生和2名女生,从中任选2名同学参加
演讲比赛,下列每对事件是对峙事件的是 (
)
A.恰有1名男生与恰有2名男生
B.至少有1名男生与全是男生
C.至少有1名男生与全是女生
先求各事件分别产生的概率,再求其和.
-17-
2 .3
探究一
互斥事件
探究二
课前篇
自主预习
首页
探究三
思维辨析
课堂篇
探究学习
当堂检测
变式训练2黄种人群中各种血型的人所占的比例见下表:


该血型的人所占比例
A
28%
B
29%
AB
8%
O
35%
已知同种血型的人可以输血,O型血可以输给任一种血型的人,AB
型血的人可以接受任一种血型的血.其他不同血型的人不能互相输
峙事件.

度北师大版高中数学必修3第三章概率古典概型3.2.3互斥事件课件


A、B 是互斥事件
对峙事件:不会同时产生且必有一个产生,
事件A的对峙事件记为: A
抽象理解 对峙事件:必有一个产生的两个彼此互斥的事件 (也称互逆事件)
A的对峙事件,记作
P( A) =1-P(A)
从集合的意义上来看对峙事件:
1、A与 的交集为空集 2、A+ 为事件全体,为必然事件。
对峙事件一定是互斥事件 但是互斥未必是对峙事件
⑵事件E=“抽到的是二等品或三等品”
阅读课本P142例5
实验:将一枚质地均匀的骰子随机抛掷一次, 视察骰子向上一面的点数.设 U = “出现点 数的全体”, A=“,出现的点数是偶数” B=“出现的点数是奇数”A、U是互斥事件吗
A、B 是互斥事件吗? B、U是互斥事件吗
AB
事件全体
A+B=U
A、B 是对峙事件
分析:从图中可以看出,3个兴趣小组总 人数:6+7+8+11+10+10=60表达要清楚,
不可少
解(1)用事件A表示“选取的成员参加不超过2个小组”用A1表示“选取成员只参
加1个小组”,A2“选取成员只参加2个小组”,A1与A2互斥事件
P(A)=P(A1+A2)= 6 8 10 7 1110 52 0.87
3、已知A、B为互斥事件,P(A)=0.4,P(A+B)=0.7, P(B)= 0.3
4、经统计,在某储蓄所一个营业窗口等候的人数为及相应 概率如下:
排队人数 0 1 2 3 4 5人及5人以上
概率 0.1 0.16 0.3 0.3 0.1
0.04
(1)至多1人排队等候的概率是多少? (2)有人排队等候的概率是多少?
P(B)

北师大版高中数学必修三第三章概率2.3.docx

高中数学学习材料唐玲出品2.3互斥事件课时目标 1.通过实例理解互斥事件和对立事件的定义及其关系.2.会用概率加法公式求互斥事件及对立事件的概率.1.互斥事件:在一个随机试验中,把__________________________的两个事件A与B 称作互斥事件.2.事件A+B:事件A+B发生是指__________________________________________________.3.在一个随机试验中,如果随机事件A和事件B是互斥事件,那么有P(A+B)=__________________.4.在每一次试验中,相互对立的事件A和事件A______同时发生,并且一定______.5.P(A)=______________.6.一般地,如果随机事件A1,A2,…A n中任意两个是互斥事件,那么有P(A1+A2+…+A n)=______________________.一、选择题1.把语文、数学、物理、化学四本书随机地分给甲、乙、丙、丁四位同学.每人一本,则事件“甲同学分得语文书”与事件“乙同学分得语文书”是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对2.现有2008年奥运会志愿者7名,其中4名为男性,3名为女性,从中任选2名志愿者为游客做向导,其中下列事件:①恰有1名女性与恰有2名女性;②至少有1名女性与全是女性;③至少有1名男性与至少有1名女性;④至少有1名女性与全是男性.是互斥事件的组数有()A.1组B.2组C.3组D.4组3.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述几对事件中是对立事件的是()A.①B.②④C.③D.①③4.下列四种说法:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P(A +B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A ,B 是对立事件.其中错误的个数是( )A .0B .1C .2D .35.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85]g 范围内的概率是( )A .0.62B .0.38C .0.02D .0.686.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A .15B .25C .35D .45题 号1 2 3 4 5 6 答 案二、填空题7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是________.8.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲队胜的概率是________.9.同时抛掷两枚骰子,没有5点或6点的概率为49,则至少有一个5点或6点的概率是________.三、解答题10.某射手射击一次射中10环,9环,8环,7环的概率分别是0.24,0.28,0.19,0.16,计算这名射手射击一次.(1)射中10环或9环的概率;(2)至少射中7环的概率.11.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?能力提升12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具的概率为0.5,请问他有可能乘哪种交通工具?13.在某一时期内,一条河流某处的年最高水位在各个范围内的概率如下表:年最高水位[8,10) [10,12) [12,14) [14,16) [16,18) (单位:m)概率0.1 0.28 0.38 0.16 0.08计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:(1)[10,16)(m);(2)[8,12)(m);(3)水位不低于12 m.1.互斥事件与对立事件的判定(1)利用基本概念:①互斥事件不可能同时发生;②对立事件首先是互斥事件,且必须有一个要发生.(2)利用集合的观点来判断:设事件A与B所含的结果组成的集合分别是A、B.①事件A与B互斥,即集合A∩B=∅;②事件A与B对立,即集合A∩B=∅,且A∪B=I,也即A=∁I B或B=∁I A;③对互斥事件A与B的和A+B,可理解为集合A∪B.2.运用互斥事件的概率加法公式解题时,首先要分清事件之间是否互斥,同时要学会把一个事件分拆为几个互斥事件,做到不重不漏,分别求出各个事件的概率然后用加法公式求出结果.3.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再运用公式求解.如果采用方法一,一定要将事件分拆成若干互斥的事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.2.3 互斥事件知识梳理1.一次试验下不能同时发生 2.事件A 和事件B 至少有一个发生 3.P(A)+P(B) 4.不会 有一个发生 5.1-P(A) 6.P(A 1)+P(A 2)+…+P(A n )作业设计1.C 2.B3.C [从1,2,…,9中任取两个数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.①中“恰有一个偶数”和“恰有一个奇数”是同一个事件,因此不互斥也不对立;②中“至少有一个奇数”包括“两个都是奇数”这个事件,可以同时发生,因此不互斥也不对立;④中“至少有一个奇数”和“至少有一个偶数”,可以同时发生,因此不互斥也不对立;③中是对立事件,故应选C .]4.D [对立事件一定是互斥事件,故①对;只有A 、B 为互斥事件时才有P(A +B)=P(A)+P(B),故②错;因A ,B ,C 并不是随机试验中的全部基本事件,故P(A)+P(B)+P(C)并不一定等于1,故③错;若A 、B 不互斥,尽管P(A)+P(B)=1,但A ,B 不是对立事件,故④错.]5.C [设“质量小于4.8 g ”为事件A ,“质量小于4.85 g ”为事件B ,“质量在[4.8,4.85]g ”为事件C ,则A +C =B ,且A 、C 为互斥事件,所以P(B)=P(A +C)=P(A)+P(C),则P(C)=P(B)-P(A)=0.32-0.3=0.02.]6.C [记录取到语文、数学、英语、物理、化学书分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 互斥,取到理科书的概率为事件B 、D 、E 概率的和.∴P(B +D +E)=P(B)+P(D)+P(E)=15+15+15=35.] 7.0.30解析 P =1-0.42-0.28=0.30.8.512解析 设甲队胜为事件A ,则P(A)=1-14-13=512. 9.59解析 没有5点或6点的事件为A ,则P(A)=49,至少有一个5点或6点的事件为B. 则A 与B 是对立事件,则P(B)=1-P(A)=1-49=59. 故至少有一个5点或6点的概率为59. 10.解 设“射中10环”,“射中9环”,“射中8环”,“射中7环”的事件分别为A 、B 、C 、D ,则A 、B 、C 、D 是互斥事件,(1)P(A +B)=P(A)+P(B)=0.24+0.28=0.52;(2)P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87.答射中10环或9环的概率是0.52,至少射中7环的概率为0.87.11.解记“响第1声时被接”为事件A,“响第2声时被接”为事件B,“响第3声时被接”为事件C,“响第4声时被接”为事件D.“响前4声内被接”为事件E,则易知A、B、C、D互斥,且E=A+B+C+D,所以由互斥事件的概率的加法公式得P(E)=P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.1+0.3+0.4+0.1=0.9.12.解(1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥.故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.所以他乘火车或乘飞机去的概率为0.7.(2)设他不乘轮船去的概率为P,则P=1-P(A2)=1-0.2=0.8,所以他不乘轮船去的概率为0.8.(3)由于P(A)+P(B)=0.3+0.2=0.5,P(C)+P(D)=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.13.解设水位在[a,b)范围的概率为P([a,b)).由于水位在各范围内对应的事件是互斥的,由概率加法公式得:(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))=0.28+0.38+0.16=0.82.(2)P([8,12))=P([8,10))+P([10,12))=0.1+0.28=0.38.(3)记“水位不低于12 m”为事件A,P(A)=1-P([8,12))=1-0.38=0.62.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 互斥事件
1.了解互斥事件的概念及概率加法公式.
2.理解互斥事件和对立事件的区别和联系.
3.掌握对立事件的概率及概率的计算公式.(难点)
4.能利用互斥事件、对立事件的概率计算公式解决复杂的古典概率的计算
问题.(难点)

[基础·初探]
教材整理1 互斥事件
阅读教材P138~P140“例5”以上部分,完成下列问题.
1.互斥事件的定义
在一个随机试验中,我们把一次试验下不能同时发生的两个事件A和B称
作互斥事件.
2.事件A与B至少有一个发生
给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和
事件B至少有一个发生.
根据上述定义推广可得:事件A1+A2+„+An表示在一次随机试验中,事
件A1,事件A2,„,事件An中至少有一个发生.
3.互斥事件的概率加法公式
一般地,如果事件A,B互斥,那么事件A+B发生(即A,B中至少有一个
发生)的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这
个公式称为互斥事件的概率加法公式.
如果事件A1,A2,„,An彼此互斥,那么事件A1+A2+„+An发生(即A1,
A2,„,A n中至少有一个发生)的概率,等于这n个事件分别发生的概率的和,
即P(A1+A2+„+A_n)=P(A1)+P(A2)+„+P(An).
判断(正确的打“√”,错误的打“×”)
(1)已知事件A与B,则P(A+B)=P(A)+P(B).( )
(2)若三个事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1.( )
(3)袋子中装有白球3个,黑球4个,从中任取3个,“恰有一个白球”和
“全是白球”是互斥事件.( )
【解析】 (1)×,A与B互斥时P(A+B)=P(A)+P(B).
(2)×,P(A)+P(B)+P(C)的值不确定.
(3)√,恰有一个白球与全是白球是互斥事件.
【答案】 (1)× (2)× (3)√
教材整理2 对立事件及其概率的求法公式
阅读教材P140“例5”至P143“练习”以上部分,完成下列问题.
1.定义
在每一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发
生,那么事件A与B称作是对立事件,事件A的对立事件记为A.
2.性质
P(A)+P(A)=1,即P(A)=1-P(A).

判断(正确的打“√”,错误的打“×”)
(1)事件A与事件B互斥,则事件A与B互为对立事件.( )
(2)事件A与B若满足P(A)+P(B)=1,则A,B是对立事件.( )
(3)若事件A与B互为对立事件,则A与B互斥.( )
【解析】 (1)×,A与B不一定对立.
(2)×,例如a,b,c,d四个球,选中每个球的概率相同,事件A为选中a,

b两个球,则P(A)=12;事件B为选中b,c两个球,则P(B)=12,则P(A)+P(B)
=1,但A,B不是对立事件.
(3)√,对立事件一定是互斥事件.
【答案】 (1)× (2)× (3)√
[小组合作型]
互斥事件与对立事件的判

某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛.判
断下列各对事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1)恰有1名男生与恰有2名男生;
(2)至少1名男生与全是男生;
(3)至少1名男生与全是女生.
【精彩点拨】 要判断两个事件是不是互斥事件,只需找出各个事件包含的
所有结果,看它们之间能不能同时发生.在互斥的前提下,看两个事件中是否必
有一个发生,可判断是否为对立事件.
【自主解答】 从3名男生和2名女生中任选2名同学有3类结果:两男或
两女或一男一女.
(1)因为恰有1名男生与恰有2名男生不可能同时发生,所以它们是互斥事
件但不是对立事件;
(2)当恰有2名男生时,至少1名男生与全是男生同时发生,所以它们不是
互斥事件.
(3)因为至少1名男生与全是女生不可能同时发生,所以它们是互斥事件,
由于它们必有一个发生,所以它们是对立事件.

1.判断两个事件是否为互斥事件,主要看它们能否同时发生.若能同时发
生,则这两个事件不是互斥事件;若不能同时发生,则这两个事件是互斥事件.
2.判断两个事件是否为对立事件,主要看是否同时满足两个条件:一是不
能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立
事件,只要有一个条件不成立,那么这两个事件就不是对立事件.

[再练一题]
1.判断下列给出的条件是否为互斥事件,是否为对立事件,并说明理由:
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中任取一张.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”.
【解】 (1)是互斥事件,不是对立事件.从40张扑克牌中任意抽取1张,
“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不
能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,
二者不是对立事件.
(2)既是互斥事件,又是对立事件.从40张扑克牌中,任意抽取1张,“抽
出红色牌”与“抽出黑色牌”,两个事件不可能同时发生,且其中必有一个发生,
所以它们既是互斥事件,又是对立事件.
(3)不是互斥事件,当然不可能是对立事件.从40张扑克牌中任意抽取1张,
“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”这两个事件可能同
时发生,如抽得点数为10,因此,二者不是互斥事件,当然不可能是对立事件.
互斥事件的概

袋中有12个相同的小球,分别为红球、黑球、黄球、绿球,
从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得

到黄球或绿球的概率也是512.
【导学号:63580039】
(1)求得到黑球、得到黄球及得到绿球的概率;
(2)求得到的小球既不是黑球也不是绿球的概率.
【精彩点拨】 从12球中任取一球,取到红球、黑球、白球互斥,所以可
用互斥事件概率的加法公式求解.
【自主解答】 (1)从袋中任取一球,记事件A为“得到红球”,B为“得
到黑球”,C为“得到黄球”,D为“得到绿球”,则事件A,B,C,D两两互
斥.
由已知P(A)=13,
P(B+C)=P(B)+P(C)=512,
P(C+D)=P(C)+P(D)=512,
∴P(B+C+D)=1-P(A)=1-13=23.
∵B与C+D,B+C与D也互斥,
∴P(B)=P(B+C+D)-P(C+D)=23-512=14,

P(D)=P(B+C+D)-P(B+C)=23-512=14,
P(C)=1-P(A+B+D)=1-(P(A)+P(B)+P(D))=1-



13+14+1

4

=1-56=16.
故得到黑球、得到黄球、得到绿球的概率分别是14,16,14.
(2)∵得到的球既不是黑球也不是绿球,
∴得到的球是红球或黄球,即事件A+C,

∴P(A+C)=P(A)+P(C)=13+16=12,

故得到的小球既不是黑球也不是绿球的概率为12.

1.解决本题的关键是明确取到不同颜色的球不可能同时发生,即互斥.由
此可知用概率加法公式求解.
2.若随机试验中,涉及多个事件,应先分析判断这几个事件是否互斥(或对
立),若是,可利用互斥事件概率的加法公式求解.当某一事件包含几个互斥的
事件时,求该事件发生的概率也用上述规律.

[再练一题]
2.向三个相邻的军火库投掷一颗炸弹,炸中第一个军火库的概率是0.025,

相关文档
最新文档