高中等差数列的教学设计
《等差数列》第一课时教学设计

《等差数列》第一课时教学设计【摘要】本文主要介绍了《等差数列》第一课时的教学设计。
在阐述了课时主题和目标。
在正文中,包括了教学内容、教学重点、教学方法、教学步骤和教学资源等内容。
具体来说,教学内容包括等差数列的定义和性质,教学重点在于引导学生理解等差数列的概念和解题方法,教学方法主要以示例引导学生学习,教学步骤分为引入、讲解、练习和总结等环节,教学资源则是指教材、教具等教学辅助工具。
在进行了课时总结和教学反思,帮助教师总结教学经验和改进教学策略。
通过本文的介绍,有助于教师更好地设计和完成《等差数列》第一课时的教学任务。
【关键词】等差数列、第一课时、教学设计、目标、教学内容、教学重点、教学方法、教学步骤、教学资源、课时总结、教学反思1. 引言1.1 课时主题:《等差数列》第一课时教学设计《等差数列》是高中数学中非常重要的一个概念,它在数学和其他学科中都有广泛的应用。
第一课时的教学设计是为了帮助学生建立对等差数列的基本概念和认识,为后续学习打下坚实的基础。
本课时的主题是《等差数列》第一课时教学设计,旨在引导学生了解等差数列的定义、性质和相关计算方法,培养学生的数学思维和分析能力。
通过本课时的学习,学生将能够掌握等差数列的基本概念,理解等差数列的规律,掌握等差数列的通项公式和前n项和公式,培养学生的数学建模能力和解决问题的能力。
希望通过本课时的设计,能够激发学生对数学的兴趣,提高他们的学习成绩,为他们的未来学习和生活打下坚实的数学基础。
1.2 课时目标1. 理解等差数列的定义和性质,能够判断一个数列是否为等差数列;2. 能够求解等差数列的通项公式和前n项和公式;3. 能够应用等差数列的性质和公式解决实际问题;4. 培养学生的逻辑思维能力和数学推理能力;5. 激发学生对数学的兴趣,提高数学学习的积极性。
2. 正文2.1 1. 教学内容本课时的教学内容主要包括等差数列的定义、求公差、求首项、求项数以及等差数列的性质和应用。
高中数学等差数列教案2篇

高中数学等差数列教案2篇高中数学等差数列教案一“等差数列”教学设计一、教学内容分析等差数列是《普通高中课程标准实验教科书数学》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
二、教学目标1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。
2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。
3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
三、教学重难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①理解等差数列“等差”的特点及通项公式的含义。
②理解等差数列是一种函数模型。
四、学习者分析普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。
他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。
但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
五、教学策略选择与设计结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。
等差数列教学设计一等奖

等差数列教学设计一等奖一、引言在数学学科中,等差数列是指数列中的相邻两项之差都相等的数列。
它具有简单的规律和易于计算的特点,广泛应用于各种实际问题的解决中。
因此,掌握等差数列的概念和性质对学生的数学学习至关重要。
二、教学目标1. 知道等差数列的定义和性质。
2. 掌握等差数列的通项公式和求和公式。
3. 能够应用等差数列解决实际问题。
三、教学内容1. 等差数列的定义和性质(1)引导学生观察等差数列的规律,并引入等差数列的定义:相邻两项之差相等。
(2)通过例题和练习,让学生巩固等差数列的定义,并探究等差数列的性质:前n项和与项数n成正比,差等于项数减一乘以公差。
(3)提供一些实际问题,让学生应用等差数列的性质解决问题,如求某个等差数列的第几项是多少。
2. 等差数列的通项公式和求和公式(1)介绍等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
(2)通过例题和练习,让学生掌握等差数列的通项公式的应用,如求某个等差数列的第n项是多少。
(3)介绍等差数列的求和公式:Sn = (a1 + an) * n / 2,其中Sn表示前n项和。
(4)通过例题和练习,让学生掌握等差数列的求和公式的应用,如求某个等差数列的前n项和是多少。
3. 实际问题的应用(1)提供一些实际问题,让学生应用等差数列的知识解决问题,如求等差数列中第几项是某个给定的数。
(2)通过解决实际问题,让学生加深对等差数列的理解,并培养解决实际问题的能力。
四、教学方法1. 教师讲解法:通过板书和讲解,向学生介绍等差数列的定义、性质、通项公式和求和公式。
2. 示例法:通过例题演示,让学生掌握等差数列的应用方法。
3. 互动讨论法:引导学生通过互动讨论,探究等差数列的规律和性质。
五、教学步骤1. 引入:通过一个实际问题,引导学生思考等差数列的规律。
2. 讲解等差数列的定义和性质,并让学生通过练习巩固。
3. 讲解等差数列的通项公式,并通过例题演示应用。
等差数列教学设计一等奖

等差数列教学设计一等奖一、等差数列的基本概念等差数列是指数列中的相邻两项之差相等的数列。
其中,首项为a,公差为d。
等差数列可以用通项公式来表示,即An = a + (n-1)d。
二、等差数列的性质1. 公差d表示了等差数列中每一项之间的差值相等。
通过公差可以确定等差数列的发展规律。
2. 等差数列的第n项An可以通过通项公式计算得到。
3. 等差数列的前n项和Sn可以通过求和公式计算得到,即Sn = (n/2)(a + An)。
三、等差数列的教学设计1. 教学目标通过本节课的学习,学生应该能够:- 理解等差数列的基本概念和性质;- 掌握等差数列的通项公式和求和公式;- 能够应用等差数列解决实际问题。
2. 教学重点- 掌握等差数列的基本概念和性质;- 熟练运用等差数列的通项公式和求和公式。
3. 教学过程(1) 导入通过一个生活中的例子引入等差数列的概念,如每天增加固定的步数。
让学生思考这种增长方式是否满足等差数列的定义。
(2) 概念讲解解释等差数列的定义和相关术语,如首项、公差、通项公式和求和公式。
通过具体的数列例子,让学生理解等差数列的特点。
(3) 公式推导推导等差数列的通项公式和求和公式,引导学生思考公式的由来和推导过程。
通过实例演示和讲解,让学生明白公式的应用方法和计算步骤。
(4) 练习与巩固设计一些练习题目,让学生运用所学知识解决实际问题。
可以包括计算等差数列的第n项、前n项和等内容。
通过练习巩固学生的掌握程度。
(5) 拓展应用引导学生思考等差数列在实际生活中的应用场景,如金融领域中的利息计算、物理学中的等加速度运动等。
让学生发现数学在实际生活中的重要性和应用价值。
四、教学评价通过课堂练习和作业的评价,可以评估学生对等差数列的理解和掌握程度。
可以设计一些开放性问题,让学生展示自己的思考和解决问题的能力。
五、教学总结通过本节课的学习,学生对等差数列有了更深入的理解,掌握了等差数列的基本概念和性质,熟练运用了等差数列的通项公式和求和公式。
高中二年级下学期数学《等差数列的性质及应用(3)》教学设计

1、等差数列 中, , 若 ,则
特别地,当 ,则 。
2、用定义判断一个新数列是否为等差数列,是最基本也是最重要的思想方法,有助于培
养学生逻辑推理的核心素养。
四、布置作业
1、已知 数列都是等差数列,公差分别为 数列 满足 .
①数列 是等差数列吗?若是,首项与公差分别是多少?
②数列 是否是等差数列?若是,证明你的结论;若不是,请说明理由。
教学设计
课程基本信息
学科
数学
年级
高二
学期
春季
课题
《等差数列的性质及应用(3)》
教科书
书 名:《普通高中教科书·数学》(人教A版2017课标版)选择性必修第二册
出版社:人民教育出版社
教学目标
1.掌握等差数列的有关性质(重点、易错点).
2.能灵活运用等差数列的性质解决问题(难点).
教学内容
1、通过等差数列性质的学习,体现了数学运算素养.
2.利用已知的等差数列构造了一个新数列,然后利用原数列的性质,从定义出发,判断新数列是否为等差数列,从而研究新数列的相关性质
教学辅助手段
多媒体.
教学过程
学流程图
复习回顾→例题引入→探究新知→例题解析→归纳总结→布置作业
一、回顾旧知
1、从函数与方程的角度,对通项公式进行了更深的理解,并解决了一些生活中的实际问题。
图中所给的问题只是一种特殊情况,若 中可能有若干个是负数,就不方便用梯形中位线来解释了?
启发学生考虑将 中的每一项都加上同一个适当的正常数 ,这就相当于把它们所在的直线向上平移一段距离,使 都变为正数,这样一来图象中的情形就不失一般性了。
2、利用已知的等差数列构造了一个新数列,然后利用原数列的性质,从定义出发,判断新数列是否为等差数列,从而研究新数列的相关性质。
高中教案《等差数列》

高中教案《等差数列》高中教案《等差数列》1一、教材分析1、教材的地位和作用数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种非常的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好预备。
而等差数列是在同学学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标依据教学大纲的要求和同学的实际水平,确定了本次课的教学目标a在知识上:理解并掌控等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在技能上:培育同学观测、分析、归纳、推理的技能;在领悟函数与数列关系的前提下,把讨论函数的方法迁移来讨论数列,培育同学的知识、方法迁移技能;通过阶梯性练习,提高同学分析问题和解决问题的技能。
c在情感上:通过对等差数列的讨论,培育同学主动探究、勇于发觉的求知精神;养成细心观测、仔细分析、擅长总结的良好思维习惯。
3、教学重点和难点依据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于同学第一次接触不完全归纳法,对此并不熟识因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,同学对“数学建模”的思想方法较为生疏,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一同学,知识阅历已较为丰富,他们的智力进展已到了形式运演阶段,具备了教强的抽象思维技能和演绎推理技能,所以我在授课时着重引导、启发、讨论和探讨以符合这类同学的心理进展特点,从而促进思维技能的进一步进展。
二、教法分析针对高中生这一思维特点和心理特征,本节课我采纳启发式、争论式以及讲练结合的教学方法,通过问题激发同学求知欲,使同学主动参加数学实践活动,以独立思索和相互沟通的形式,在老师的指导下发觉、分析和解决问题。
2023最新-2023高中数学等差数列教案【优秀4篇】

2023高中数学等差数列教案【优秀4篇】很多同学总是抱怨数学学不好,其实是因为试题没有做到位,数学需要大量的练习来帮助同学们理解知识点。
下面是小编辛苦为朋友们带来的4篇2023高中数学等差数列教案,希望能为您的思路提供一些参考。
小学数学等差数列教案篇一1、知识与技能(1)初步掌握一些特殊数列求其前n项和的常用方法。
(2)通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,转化的数学思想以及数学运算能力。
2、过程与方法培养学生分析解决问题的能力,归纳总结能力,以及数学运算的能力。
3、情感,态度,价值观通过教学,让学生认识到事物是普遍联系,发展变化的。
把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和:寻找适当的变换方法,达到化归的目的复习引入:(1)1+2+3+ (100)(2) 1+3+5+……+2n-1=(3) 1+2+4+……+2《数列求和》教学设计及反思=(4) 《数列求和》教学设计及反思=设计意图:让学生回顾旧知,由此导入新课。
[教师过渡]:今天我们学习《数列求和》第二课时,课标要求和学习内容如下:(多媒体课件展示)导入新课:[情境创设] (课件展示):例1:求数列《数列求和》教学设计及反思,…的前《数列求和》教学设计及反思项和分析:将各项分母通分,显然是行不通的,启发学生能否通过通项的特点,将每一项拆成两项的差,使它们之间能互相抵消很多项。
[问题生成]:请同学们观察否是等差数列或等比数列?设问:既然不是等差数列,也不是等比数列,那么就不能直接用等差,等比数列的求和公式,请同学们仔细观察一下此数列有何特征[教师过渡]:对于通项形如《数列求和》教学设计及反思(其中数列《数列求和》教学设计及反思为等差数列)求和时,我们采取裂项相消求和方法[特别警示] 利用裂项相消求和方法时,抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,才能使裂开的两项差与原通项公式相等。
【教案】人教版高一数学§2.2.1《等差数列》教学设计

§2.2.1《等差数列》一、基本说明1模块:高中数学2年级:高中一年级3所用教材版本:《普通高中课程标准实验教科书·数学5》(人教版)4所属的章节:第二章数列第二节等差数列第一课时。
5学时数: 40分钟二、教学设计1、教学目标:通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
在解决问题的过程中培养学生主动探索、勇于发现的求知精神;使学生认识事物的变化形态,养成细心观察、认真分析、善于总结的良好思维习惯。
并通过一定的实例激发同学们的民族自豪感和爱国热情。
2、内容分析:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
3、重难点分析:理解等差数列的概念,掌握等差数列的通项公式和等差中项的概念是本节的重点内容,而等差数列的通项公式的推导过程及思想方法是被本节的难点。
4、教学方法:教师启发讲授,学生探究学习。
5、教学手段:电脑辅助教学。
三、教学活动活动1 创设情境,引入课题1.复习:(1)数列的简单表示法——列举法、图象法、递推公式、通项公式.(2)数列作为一种特殊的函数,是反映自然规律的基本数学模型.数列可以看成以正整数集(或它的有限子集{1,2,3,…,n})为定义域的函数.〖设计意图〗强调数列作为一种特殊的函数,研究函数从特殊的函数入手,研究数列也从特殊的数列入手.2.实例背景:(1)姚明训练罚球得到数列:6000,6500,7000,7500,8000,8500,9000.(2)奥运会主办时间得到数列:1984,1988,1992,1996,2000, 2004,2008, 2012,2016, 2020 (3) 运动鞋的尺码得到数列25, 25.5, 26, 26.5, 27, 27.5,28, 28.5, …… (4) 从0开始,将5的倍数按从小到大的顺序排列,组成的数列为: 0,5,10,15,20,25,…….3.举例归纳: 观察归纳以上四组数列的共同特征,继而请学生自己举例. 预案:(5)写一个公差为负数的等差数列;(6)写一个公差为无理数的等差数列; (7)写一个公差为0的等差数列;〖设计意图〗让学生通过观察归纳再到举例说明,深化理解,加深认识,同时教师在学生举例的过程中附加条件与要求,丰富学生对等差数列的认识. 活动2 等差数列的概念1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.将文字语言转化为符号语言:1--n n a a =d (d 是常数,n ≥2,n ∈N*)或n n a a -+1 =d ( d 是常数, n ∈N*)深化理解:(1) “从第二项起” ——这是为了使每一项与它的前一项都存在.(2)“同一个常数”——揭示了等差数列本质就是等差.2.巩固练习:例1、判断下列数列是否是等差数列? 如果是等差数列,说出公差是多少? (1)1,2,4,6,8 (2)2,4,6,8(3)1,-1,1,-1 (4)0, 0, 0, 0,…(5)1,1/2,1/3,1/4 (6)-5,-4,-3 (7),...,12,3,2〖设计意图〗让学生由特殊到一般,再由一般回到特殊,在归纳出等差数列的定义后,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第二次认识.活动3 等差数列的通项公式:1.运用两种方法研究通项公式:已知等差数列{}a的首项是1a,公差是dn〖设计意图〗当我们得到等差数列的定义后,就要站在函数的高度,去研究项与项数之间的关系,这是数列的核心.让学生尝试用归纳法找到通项公式的同时,强调定义式这一递推关系,也可以用迭加法求出通项公式.教学中鼓励学生从不同侧面展开对某一问题的研究,让学生感受从多角度、多层次地分析问题的方式.2.深化对通项公式的认识:(1)方程的角度:四个量:n a , 1a , n ,d 知三求一.(2)函数的角度: 通项公式是关于正整数n 的一次函数(本节选讲). 例2:已知等差数列的首项 1a =3 ,公差 d =2,求它的通项公式n a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中等差数列的教学设计高中等差数列的教学设计(精选10篇)等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
以下是店铺给大家带来的高中等差数列的教学设计,欢迎阅读,希望对你有帮助!高中等差数列的教学设计篇1【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【学情分析】我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
【教学过程】一:创设情境,引入新课1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。
活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?教师:以上三个问题中的数蕴涵着三列数.学生:1:0,5,10,15,20,25,….2:18,15.5,13,10.5,8,5.5.3:10072,10144,10216,10288,10360.(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。
通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。
二:观察归纳,形成定义①0,5,10,15,20,25,….②18,15.5,13,10.5,8,5.5.③10072,10144,10216,10288,10360.思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。
)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d。
(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,-1,-2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题。
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。
(设计意图:强化学生对等差数列“等差”特征的理解和应用)。
2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。
根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法。
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力。
学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。
鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an。
3求等差数列 3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况。
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系。
初步认识“基本量法”求解等差数列问题。
)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。
)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。
在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。
本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。
高中等差数列的教学设计篇2一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项。
二、过程与方法1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识。
教学过程导入新课师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5,10,15,20,25,…;(2)48,53,58,63,…;(3)18,15.5,13,10.5,8,5.5…;(4)10 072,10 144,10 216,10 288,10 366,….请你们来写出上述四个数列的第7项.生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510。
师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说。
生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78。
师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征。
生:1每相邻两项的差相等,都等于同一个常数。
师:作差是否有顺序,谁与谁相减?生:1作差的顺序是后项减前项,不能颠倒。
师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容。
推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)生:从“第二项起”和“同一个常数”.师::很好!师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,….师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?生:a2-a1=d,即a2=a1+d.师:对,继续说下去!生:a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;……师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的.通项公式吗?生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.[教师:精讲]由上述关系还可得:am=a1+(m-1)d,即a1=am-(m-1)d.则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)由此我们还可以得到.[例题剖析]【例1】(1)求等差数列8,5,2,…的第20项;(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.师:好!下面我们来看看第(2)小题怎么做.生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?生:只要看差an-an-1(n≥2)是不是一个与n无关的常数.师:说得对,请你来求解.生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p.师:这里要重点说明的是:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3,7,11,…的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,…的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.评述:要求学生:注意解题步骤的规范性与准确性.(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0,,-7,…的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).高中等差数列的教学设计篇3一、教材分析1、教学目标:A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。