平面连杆机构的原理
《机械原理》第四章 平面连杆机构及其设计

2. 急回特性和行程速比系数
判断下列机构是否具有急回特性:
双曲柄机构和对心曲柄滑块机构适 当组合后,也可能产生急回特性。
机械原理
小结:
第四章 平面连杆机构及其设计
2. 急回特性和行程速比系数
1)急回特性的作用:节省空回行程的时间,提高劳动生产 率。 2)急回特性具有方向性,当原动件的回转方向改变时,急 回的行程也跟着改变。 3)对于有急回运动要求的机械,先确定K,再求θ。
∆DB1C1 中 : a + d ≤ b + c ∆DB2C 2 中 : b ≤ (d-a ) + c
(a ) 即 a+b≤c+d 即 a+c ≤ b+d
c ≤ (d-a ) + b (a ) + (b ),得 a ≤ c (a ) + (c ),得 a ≤ b
(b ) + (c ),得 a ≤ d
手摇唧筒
固定滑块3成为唧筒外壳,导杆4的下端固结着汲水活塞,在 唧筒3的内部上下移动,实现汲水的目的。
机械原理
2 . 平面四杆机构的演化形式 ( ) 运动副元素的逆换 4
第四章 平面连杆机构及其设计
将移动副两元素的包容关系进行逆换,并不影响两构件 之间的相对运动,但却能演化成不同的机构。
构件2 包容 构件3 导杆机构
4-2
平面四杆机构的类型和应用
1. 平面四杆机构的基本形式 2. 平面四杆机构的演化形式
机械原理
第四章 平面连杆机构及其设计
铰链四杆机构 1. 平面四杆机构的基本形式:
机架:固定不动的构件,如AD 杆 连杆:不直接与机架相连的构件,如BC杆 连架杆:直接与机架相连的构件,如AB、CD 杆 曲柄:能作整周转动的连架杆,如AB 杆 摇杆:不能作整周转动的连架杆,如CD 杆
平面连杆机构

平面连杆机构第一节概述一、基本概念全部用低副联接而组成的机构称为连杆机构。
各构件间的相对运动均在同一平面或平行平面内运动的连杆机构称为平面连杆机构。
其中,做平面运动的构件称为连杆。
由前述可知,三构件用转动副联接起来,不能成为机构。
故含转动副的平面连杆机构至少由四杆组成。
全部是转动副联接而组成的平面四杆机构称为全铰链四杆机构。
连杆机构中的构件常称为杆。
工程中应用最广泛的是平面四连杆机构。
许多平面多杆机构均是在此基础上,通过添加一些杆件系统而构成。
本章主要讨论平面四连杆机构。
二、平面连杆机构的特点及应用1. 平面连杆机构的特点1)寿命较长由于平面连杆机构的构件间用低副连接,接触表面为平面或圆柱面,因而压强小,便于润滑,磨损较小,寿命较长,适合传递较大动力;2)易于制造结构简单,加工方便,易于获得较高的运动精度;3)可实现较远距离的操纵控制因连杆易于做成较长的构件;4)可实现预定的运动轨迹和运动规律因为连杆机构中存在作平面运动的构件,其上各点的轨迹和运动规律多样化,所以连杆机构常用来作为实现预定的运动轨迹或运动规律的机构;5)要求精确实现运动规律时设计复杂,且往往难于实现。
2.平面连杆机构的应用平面连杆机构由于具有以上特点,广泛应用于各种机械和仪表中,如内燃机、冲压机、牛头刨床的主运动等都是平面连杆机构;再如雷达天线俯仰角的调整机构(图5.1.1);摄影车的升降机构(图5.1.2)以及缝纫机、港口起重机等设备中的传动、操纵机构等都是采用平面连杆机构。
图5.1.1 调整机构图5.1.2 升降机构第二节铰链四杆机构基本型式及曲柄存在条件一、铰链四杆机构的基本型式铰链四杆机构是平面四杆机构的基本型式。
如图5.2.1所示。
其中固定不动的杆4称为机架;与机架相连的杆1、杆3称为连架杆;连接两连架杆的杆2称为连杆。
两连架杆中,能做整周回转的连架杆称为曲柄;只能做一定角度摆动的连架杆称为摇杆。
根据两连架杆运动形式的不同,铰链四杆机构又可分为曲柄摇杆机构、双曲柄机构和双摇杆机构三种基本型式。
连杆机构的工作原理

连杆机构的工作原理
连杆机构是一种将旋转运动转化为直线运动或者将直线运动转化为旋转运动的机械装置。
它由连杆、摇杆和活动副等组成。
连杆是连杆机构的核心部件,通常由一个或多个连接杆件组成。
连接杆件的一端通过铰链连接在固定点上,另一端通过铰链与摇杆连接。
摇杆是与封闭连杆交叉连接的杆件,它能够转动并且使连杆产生直线运动。
当摇杆旋转时,相应的连杆就会随之运动。
由于约束条件的存在,连杆只能沿着一条直线运动,这条直线就是由固定点和铰链所确定的。
通过合理的设计和调节,可以实现连杆的直线运动与摇杆的旋转运动之间的转换。
连杆机构的工作原理可以通过几何和力学的分析来解释。
在几何方面,连杆机构的工作原理是基于连杆的几何原理。
通过调节连杆的长度、角度和位置,可以使连杆产生不同的直线运动,满足实际应用的需求。
在力学方面,连杆机构的工作原理是基于连杆的力学框架。
当连杆运动时,所受到的力和力矩也会随之变化。
通过合理的力和力矩的平衡分析,可以确定系统中各个部件之间的相互作用,从而实现连杆机构的运动控制和力学效果。
总之,连杆机构利用摇杆和连杆之间的运动和力学关系,将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
通过合理的设计和调节,可以实现机械装置的特定功能和运动要求。
平面机构的结构分析

平面机构的结构分析
平面机构是一种由多个连接体组成的机械结构,可以用来传递力和运动。
平面机构通常由连杆、转动副和滑动副组成,可以用来实现直线运动、旋转运动等。
在平面机构中,连杆是连接各个连接体的基本元素,它们可以是刚性的,也可以是柔性的。
转动副和滑动副则是连接连杆的关节,用来传递运动或者力的。
转动副能够使连杆产生相对转动运动,滑动副则能使连杆产生相对滑动运动。
根据不同的传动方式,平面机构可以分为平行四杆机构、串联四杆机构、曲柄摇杆机构等。
平行四杆机构由四个长度相等、平行的连杆组成,可以实现直线运动。
串联四杆机构则由多个连杆相互连接组成,可以使得最后一个连杆产生复杂的轨迹运动。
曲柄摇杆机构由一个转动副和一个滑动副组成,可以实现旋转运动。
在设计和分析平面机构时,需要考虑到各个连接体之间的角度关系、长度关系以及运动规律。
通过运用静力学、运动学和动力学等原理,可以对平面机构进行有效地分析和设计,来确定各个连接体之间的关系和运动规律,以实现所需的运动或者力传递。
总之,平面机构是一种重要的机械结构,通过对其结构和运动规律的分析,可以有效地实现力和运动的传递,被广泛应用于各种机械设备和工程中。
第五章机构的组成及平面连杆机构

2
1
4
3
5
E
F
未去掉虚约束时
2 1
3
E 5
F 4
F3n2pLpH34260 ?
附加的构件5和其两端的转动副E、F提供的自由度
F3122 1 即引入了一个约束,但这个约束对机构的运动不起实际 约束作用,为虚约束。去掉虚约束后
F3n2pLpH33241
⑶ 联接构件与被联接构件上联接点的轨迹重合
B2
E
C
第五章 机构的组成及平面连杆
机构
平面机构运动简图 自由度 铰链四杆机构的基本形式 平面连杆机构曲面存在的条件 急回特性 死点 平面连杆机构的设计 三心定理及应用 平面机构的组成原理及结构分析
组成机构的所有构件都在一个或几个相 互平行平面中运动的机构称平面机构,否 则称空间机构。工程中常见的机构一般都 是平面机构。
31
2
4
1 2
3
1
2 3
两个转动副
4
两个转动副
两个转动副
平面机构自由度计算(4)
构件2、3、4在铰链 C处构成复合铰链, 组成两个同轴回转副 而不是一个回转副, 所以,总的回转副数 是PL=7,而不是PL=6,
F 35 27 0 1
(2) 局部自由度
定义:
不影响整个机构运动的局部独立运动。 对整个机构其他构件运动无关的自由度。
D4 E
B3
1
2
5 F
6
7 G
8 K 9
A C
H
I
局部自由度
D4 E
B3
1
2
5 F
6
7 G
A C
H
I
复合铰链
平面连杆机构

1.3 铰链四杆机构的演化
转动副向移动副的演化
1.3 铰链四杆机构的演化
在曲柄滑块机构[图1(a)] 中,取不同杆作为机架可得到导杆机构[图1(b)]、 摇块机构[图1(c)]和定块机构[图1(d)]。图2为摇块机构的应用实例、图3为定 块机构的应用实例。
图1 曲柄滑块机构的演化
1.3 铰链四杆机构的演化
平行四边形机构
1.1 铰链四杆机构的基本形式和特性
机车驱动轮联动机构
1.1 铰链四杆机构的基本形式和特性
1.1.3 双摇杆机构
两连架杆均为摇杆的铰链四杆机构 称为双摇杆机构。
图所示为飞机起落架机构的运动简 图。飞机着陆前,操作系统控制主动件 AB摆动,通过连杆使从动摇杆放下或收 回着陆轮,收回着陆轮后,整个双摇杆 机构可藏于机翼内。
铰链四杆机构
1.1 铰链四杆机构的基本形式和特性
1.1.1 曲柄摇杆机构
在铰链四杆机构中,若有两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链四杆 机构称为曲柄摇杆机构。通常曲柄1为原动 件,并做匀速转动;而摇杆3为从动件,做 变速往复运动。图为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢做匀速转动,通 过连杆2,使摇杆3在一定角度范围内摆动, 从而调整天线俯仰角的大小。
曲柄摇杆急回特性
1.1 铰链四杆机构的基本形式和特性
第五章平面连杆机构

=arctg
a sin d a cos
+
arccosa2 b2 c2 d 2 2ad cos
2c a2 d 2 2ad cos
传动比:
i= w2 w1
=
a2
d
2
a 2ad
cos
[dcos
-
a
-
d sin (a 2 b2 c2 d 2 2ad cos)
件和几个基本概念
一 .曲柄存在的条件
设铰链四杆机构各杆长 分别为a、b、c、d, 若连架杆AB能作整周 运动,则AB能通过与 机架AD的两个共线位 置。设a<d可得
a d b c a c b d a b c d
a b
a
c
a d
• 同理设 d<a 可得
• 应用
1)飞机起落架机构
2)鹤式起重机
3)汽车前轮转向机构
二.铰链四杆机构的演化
(一)曲柄滑块机构 1.演化过程
将曲柄摇杆机构中摇杆与机架的转动副转 化成移动副。
当摇杆无限长时,摇杆转化为滑块,摇杆 与机架的转动副转化为移动副。
演化过程:
2.曲柄滑块机构型式: 对心曲柄滑块机构 偏置曲柄滑块机构
• 如果机构传动特性是线性的,其特性线为
直线AB。实际机构是非线性的,特性线
为曲线
ab
。由图b)可知机构在切点c处没
有误差,而在其他位置均有误差。
• 在工作的两极限位置误差最大,需验算
• 设计时:切点C对应工作的中点,此时机构 两连架杆与连杆垂直,切点C对应的 c为此
时主动杆与机架的夹角,仪表指针应处于 标尺刻度的中间位置。
0 第2章 (1-6) 平面连杆机构

平面四杆机构的基本特性 3. 度过死点位置的方法
采用错位排列地方式顺利地通过死点位置
增大从动件的质量、利用惯性度过死点位置
平面多杆机构简介
前面我们学了基本机构 ,可以根据基本机构的功能, 进行组合以及机构的演化及变异原理创新设计出丰富多彩 的多杆机构。 1. 扩大从动件的行程 冷床运输机就是一个六 杆机构。它用于把热轧 钢料在运输过程中冷却, 因此要求增大行程,该 机构由曲柄摇杆机构 ABCD和杆EF、滑块6所 组成。显然滑块6的行程 S比曲柄摇杆机构ABCD 中C点的行程要大的多。
铰链四杆机构的基本形式及其演化
2. 取不同的构件为机架
当以不同的构件作为机 架时,将得到不同类型 的机构。
以构件1为机架时, 为曲柄滑块机构。
以构件2为机架时, 为回转导杆机构。
以构件3为机架时, 为摇块机构。
以构件4为机架时, 为移动导杆机构。
铰链四杆机构的基本形式及其演化 手摇唧筒
铰链四杆机构的基本形式及其演化
➢ 本章主要介绍平面四杆机构的类型及应用、特性、设 计方法。
铰链四杆机构的基本形式及其演化
一、四杆机构的基本型式
根据连架杆运动形式的不同,可分为三种基本形式:
1. 曲柄摇杆机构—在两连架杆中,一个为曲柄,另一个为
摇杆。
➢ 运动特点:
一般曲柄主动,将连 续转动转换为摇杆的 摆动,也可摇杆主动, 曲柄从动。
铰链四杆机构的基本形式及其演化 平行双曲柄机构
应用:应用于从动件需要和主动件保持同步的场合。 举例:机车车轮的联动机构
机车车轮联动机构
铰链四杆机构的基本形式及其演化 3. 双摇杆机构—两连杆架均为摇杆的四杆机构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面连杆机构的原理
平面连杆机构是一种常见的机械结构,由多个连杆和铰链连接而成,可以用来将直线运动转换为旋转运动,或者将旋转运动转换为直线运动。
在许多机械设备中都有广泛应用,如发动机、车辆悬挂系统、机床等。
平面连杆机构的基本原理是将一个或多个连杆通过铰链连接,在固定中心的约束下,使得其中一个连杆能够做直线运动,同时通过其他连杆的传动,实现其他连杆的相应运动。
平面连杆机构主要有四个元素构成:铰链、连杆、零件和运动副。
铰链是连接连杆的重要部件,它能够实现连杆之间的转动。
连杆是平面连杆机构的主要承载部件,它通过铰链与其他连杆连接。
零件则是用来实现或限制机构特定运动的部件,如轴、轴承等。
而运动副是指由连杆和铰链组成的连接机构。
平面连杆机构的工作原理基于几何学和运动学原理。
在平面连杆机构中,每个连杆都有固定的约束方式,通过连接在一起的铰链,连杆的运动受到约束,从而实现机构的转动或平移运动。
根据不同的铰链连接方式和连杆排列,可以实现不同的运动形式。
平面连杆机构根据连杆的布置和铰链连接方式可以分为多种类型,如四杆机构、曲柄摇杆机构、双曲柄机构等。
其中,最简单的四杆机构由四个连杆和四个铰链组成,其中两个连杆平行排列,被称为基本杆件,另外两个连杆与基本杆件相交
连接。
这种结构能够实现连杆的平移和转动。
在四杆机构中,曲柄摇杆机构是应用最广泛的一种。
曲柄摇杆机构由三个连杆和一个铰链组成,其中一个连杆受到驱动力的作用,通过曲柄的旋转实现连杆的转动,从而将驱动力转化为所需的运动。
曲柄摇杆机构常用于内燃机中,通过曲柄的旋转将往复直线运动转化为旋转运动,使得发动机能够正常工作。
平面连杆机构还可以通过变动连杆的角度、长度和位置来调节机构的工作性能,如运动速度、运动轨迹和输出力。
通过改变连杆的设计参数,可以实现不同的机构运动特点,满足不同应用的需求。
总之,平面连杆机构是一种通过连杆和铰链连接的机械结构,可以将直线运动转换为旋转运动,或者将旋转运动转换为直线运动。
它的工作原理是基于几何学和运动学原理,通过连杆的约束和铰链的运动实现机构的转动和平移。
在实际应用中,平面连杆机构具有广泛的用途,可以通过调节连杆的参数来实现不同的运动特性。