不可逆过程热力学

合集下载

热力学-6.热力学第二定律

热力学-6.热力学第二定律

证明
A
U T p p V T T V
pV
T
B
F
D
气体内能随体积的变化可 通过物态方程求得。
V T E C
H
G
V
例 已知范德瓦尔斯气体的物态方程,求其内能。
U V
T

T

p
T
V

p

v2a V2
U v2a f (T ) C V
T
v2a
T0 CV dT V U0
例 已知光子气的物态方程 p 1 aT 4 ,求其内能
密度u。
3
u aT 4 斯特藩-玻尔兹曼定律
二、表面张力随温度的变化
单位面积表面内能 u T d
dT
例 某一理想电池,10℃时的电动势为12V,11 ℃ 时的电动势为12.01V,若在10 ℃时充电50Ah, 试计算在此过程中交换的热量。
自克劳修斯提出熵这一概念后,一百多年来,熵的讨 论已波及到信息论、控制论、概率论、数论、天体物理、 宇宙论和生命及社会等多个不同领域。
1923年,德国科学家普朗克来中国讲学用到 entropy这个词,胡刚复教授翻译时灵机一动 ,把“商”字加火旁来意译entropy这个字, 创造了“熵”字,发音同“商”。
热源间的一切热机,其循环热效率均相等。 气体经一个正循环后,系统本身没有变化。 气体经一个正循环后,系统和外界都没有变
化。 气体经一个正循环后,再沿相反方向进行一
逆循环,则系统和外界都没有任何变化。
某人声称开发出电阻加热器每消耗 1kwh电力就给房间供热1.2kwh。
这合理吗?是永动机吗?为什么?

可逆过程与不可逆过程

可逆过程与不可逆过程

可逆过程与不可逆过程可逆过程是指系统沿着一条连续的平衡状态路径从一个平衡状态到另一个平衡状态的过程。

该过程是无损耗的,物质的所有性质和状态都可以完全恢复。

不可逆过程是指系统从一个平衡状态到另一个平衡状态的过程中,无法通过任何方式使所有物质的性质和状态完全恢复原状的过程。

可逆过程满足热力学第一定律和第二定律的要求,而不可逆过程可能违反这些定律。

热力学第一定律,也称为能量守恒定律,指出能量是守恒的,能量不能被创建或销毁,只能从一种形式转化为另一种形式。

热力学第二定律,也称为熵增定律,指出孤立系统的熵将随时间增加,自然趋向于更加混乱的状态。

可逆过程与不可逆过程之间最大的区别在于能量和熵的改变。

可逆过程中,系统的能量改变等于传递给系统的热量减去系统对外做功所消耗的能量,熵保持不变。

而不可逆过程中,系统的能量改变小于传递给系统的热量和系统对外做功所消耗的能量之和,熵增加。

一个常见的例子是理想气体在等温膨胀和绝热膨胀两种过程中的行为。

在等温膨胀中,理想气体与热源保持恒温接触,气体按照等温膨胀的路径发生体积的变化。

这个过程是可逆的,因为系统的能量改变等于传递给系统的热量减去系统对外做功所消耗的能量,同时熵保持不变。

然而,在绝热膨胀中,理想气体与外界没有任何热交换,气体按照绝热膨胀的路径发生体积的变化。

这个过程是不可逆的,因为系统的能量改变小于传递给系统的热量和系统对外做功所消耗的能量之和,同时熵增加。

这两个过程的区别在于热量的流向。

在可逆过程中,热量是平衡地进入和离开系统,系统内部的每个点的温度都与热源相同。

而在不可逆过程中,热量的流动是不平衡的,系统内部的一些点的温度可能高于或低于热源。

可逆过程和不可逆过程在实际中都有广泛的应用。

例如,汽车引擎中的一些过程可以被视为可逆过程,例如理想的等温膨胀和等熵膨胀。

而摩擦、温度梯度和达到平衡所需的时间等因素使得其他过程变得不可逆。

在化学工程中,例如化学反应过程、质量传递过程和传热过程都是不可逆的。

可逆过程与不可逆过程

可逆过程与不可逆过程

T2 ∴ η = η′ = 1 − T1
卡诺定理的证明
(2)在温度为 T1 的高温热源和温度为 T2 的 (2)在温度为 低温热源之间工作的一切不可逆热机的效率 不可能大于可逆热机的效率。 不可能大于可逆热机的效率。
T2 η′′ ≤ 1 − T1
同上的方法, 同上的方法,用一不可逆热机 E′′代替 可逆热机 E′ 可证明: 可证明:
T2
卡诺定理的证明
用反证法, 用反证法,假设 得到
η′ > η
A A > ′ Q1 Q1
′ Q1 < Q1 ′ ∴ Q2 < Q2
′ ′ Q Q1 − Q2 = Q1 − Q2
两部热机一起工作,成为一部复合机, 两部热机一起工作,成为一部复合机,结果外界不对 复合机作功, 复合机作功,而复合机却将热量 Q′ − Q′ = Q − Q 1 2 1 2 从低温热源送到高温热源,违反热力学第二定律。 从低温热源送到高温热源,违反热力学第二定律。 不可能, 所以η′ > η 不可能,即 η′ ≤ η 不可能, 反之可证 η > η′ 不可能,即 η ≤ η′
η ≥ η′′
卡诺定理的证明
(2)在温度为 T1 的高温热源和温度为 T2 的 (2)在温度为 低温热源之间工作的一切不可逆热机的效率 不可能大于可逆热机的效率。 不可能大于可逆热机的效率。
T2 η′′ ≤ 1 − T1
同上的方法, 同上的方法,用一不可逆热机 E′′代替 可逆热机 E′ 可证明: 可证明:
可逆过程与不可逆过程
讨论: 讨论: a.自然界中一切自发过程都是不可逆过程。 自然界中一切自发过程都是不可逆过程。 自然界中一切自发过程都是不可逆过程 b.不平衡和耗散等因素的存在,是导致过程不可 不平衡和耗散等因素的存在, 不平衡和耗散等因素的存在 逆的原因,只有当过程中的每一步, 逆的原因,只有当过程中的每一步,系统都无 限接近平衡态,而且没有摩擦等耗散因素时, 限接近平衡态,而且没有摩擦等耗散因素时, 过程才是可逆的。 过程才是可逆的。 c.不可逆过程并不是不能在反方向进行的过程, 不可逆过程并不是不能在反方向进行的过程, 不可逆过程并不是不能在反方向进行的过程 而是当逆过程完成后,对外界的影响不能消除。 而是当逆过程完成后,对外界的影响不能消除。

热力学第二定律 概念及公式总结

热力学第二定律 概念及公式总结

热力学第二定律一、自发反应—不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2。

热温商:热量与温度的商3。

熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。

大学物理6-5 可逆与不可逆过程 卡诺定理

大学物理6-5 可逆与不可逆过程 卡诺定理

由包含微观状态数目少的宏观状态向包含 微观状态数目多的宏观状态进行,这就是热力 学第二定律的统计意义.
6 – 5 可逆与不可逆过程 卡诺定理 四 卡诺定理
第六章 热力学基础
1) 在相同高温热源和低温热源之间工作的任
意工作物质的可逆机都具有相同的效率 .
2) 工作在相同的高温热源和低温热源之间的
一切不可逆机的效率都不可能大于可逆机的效率 .
热传导Байду номын сангаас
高温物体
低温物体
均匀、平衡
非均匀、非平衡
自发
6 – 5 可逆与不可逆过程 卡诺定理
第六章 热力学基础
*三
热力学第二定律的统计意义
气体膨胀的不可逆性,反映了系统内部发生的过程总 是由热力学概率小的宏观状态向热力学概率大的宏观状态 进行. 一个孤立的热力学系统内部总是从高度有序的状态向 比较无序的状态进.
反之则差.
卡诺热机 Q2 (1 )Q1 低温热源 T2
W Q1
6 – 5 可逆与不可逆过程 卡诺定理
第六章 热力学基础
以卡诺机为例,有
Q1 Q2 T1 T2 Q1 T1

( 不可逆机 )
(可逆机)
6 – 5 可逆与不可逆过程 卡诺定理 *五 能量品质
第六章 热力学基础
热力学第一定律 热力学第二定律 卡诺定理 可利用的能量越多,
能量转换和守恒定律 有用能是受到限制的 高温热源 T1 Q1
该能量品质越好,
6 – 5 可逆与不可逆过程 卡诺定理 一 可逆过程与不可逆过程
第六章 热力学基础
可逆过程 : 在系统状态变化过程中,如果逆过 程能重复正过程的每一状态, 而不引起其他变化, 这样的过程叫做可逆过程 .

热力学第二定律可逆与不可逆过程

热力学第二定律可逆与不可逆过程

3. 分析几个不可逆过程 (1) 气体的自由膨胀 气体可以向真空自由膨胀但却不能自动收缩。因为气体自由膨 胀的初始状态所对应的微观态数最少,最后的均匀分布状态对 应的微观态数最多。如果没有外界影响,相反的过程,实际上 是不可能发生的。 (2) 热传导
两物体接触时,能量从高温物体传向低温物体的概率,要比 反向传递的概率大得多!因此,热量会自动地从高温物体传 向低温物体,相反的过程实际上不可能自动发生。 (3) 功热转换 功转化为热就是有规律的宏观运动转变为分子的无序热运动, 这种转变的概率极大,可以自动发生。相反,热转化为功的 概率极小,因而实际上不可能自动发生。
ab cd c
bc ad d
cd ab 0
右半边
0
da bc
d
ac db
a
bd ac
b
a
c
b
bcd cda dab abc abcd
(微观态数24, 宏观态数5 , 每一种微观态概率(1 / 24) )
可以推知有 N 个分子时,分子的总微观态数2N ,总宏观
态数( N+1 ) ,每一种微观态概率 (1 / 24 )
无摩擦的准静态过程是可逆过程(是理想过程) 热力学第二定律的实质,就是揭示了自然界的一切自发 过程都是单方向进行的不可逆过程。
§7-9 热力学第二定律的统计意义
一. 热力学第二定律的统计意义
1. 气体分子位置的分布规律 3个分子的分配方式
左半边 右半边
a b c
气体的自由膨胀
abc
0
ab
§7-10 熵
一. 熵 熵增原理
1. 熵 引入熵的目的
·
孤立系统
状态(1)
能否自动进行? 判据是什么?

不可逆绝热循环过程的熵变

不可逆绝热循环过程的熵变

不可逆绝热循环过程的熵变
不可逆绝热循环过程是指系统在绝热条件下进行的循环过程,其中存在不可逆性质。

这种过程的熵变是一个重要的热力学量,它描述了系统在不可逆绝热循环过程中的熵变量。

在不可逆绝热循环过程中,系统的熵变可以表示为:
ΔS = ΔQ/T
其中,ΔS是系统的熵变,ΔQ是系统所吸收或放出的热量,T
是系统的温度。

由此可以看出,在不可逆绝热循环过程中,系统的熵变取决于系统所吸收或放出的热量和系统的温度。

另外,熵是一个不可逆量,也就是说,系统的熵总是增加。

因此,在不可逆绝热循环过程中,系统的熵变也总是正值,即ΔS>0。

总之,不可逆绝热循环过程的熵变是一种重要的热力学量,它描述了系统在不可逆绝热循环过程中的熵变量。

在实际应用中,我们需要了解和计算系统的熵变,以便更好地理解和控制系统的热力学性质。

- 1 -。

不可逆过程和环境的熵变计算举例

不可逆过程和环境的熵变计算举例

对于不行逆过程熵变的计算规律的商讨在多年的热力学统计物理的教课中,发现相关不行逆过程的熵变的计算一直是学生感觉比较难以接受的知识点,自己经过学习发现不行逆过程熵变的计算有必定的规律性,就把其进行了概括,希望能被初学者借鉴。

对于孤立系统熵变的一般计算方法:按定义,只有沿着可逆过程的热温熵总和才等于系统的熵变。

当过程为不行逆时,则依据熵为一状态函数,系统熵变只取决于始态与终态而与过程所取门路没关;可想法绕道,找出一条或一组一直态与之相同的可逆过程,由它们的熵变间接地计算出来。

孤立系统的选择方法,假如非关闭系统,能够将环境和物体共同当作关闭系统。

不一样的详细过程有不一样的规律,大概分为:1、绝热孤立系统内物体间的热传达过程的熵变⑴温度为0o C的1kg水与温度为100o C 的恒温热源接触后,水温达到100o C。

试分别求水和热源的熵变以及整个系统的总熵变。

欲使整个系统的熵保持不变,应怎样使水温从0o C升至100o C已知水的比热容为4.18J g1K1.【答:S水=K1,S热源=JK1,S总=184J K1.】解:题中的热传导过程是不行逆过程,要计算水和热源的熵变,则必须假想一个初态和终态分别与题中所设过程相同的可逆过程来进行计算。

要计算水从0o C 吸热升温至100oC 时的熵变,我们假想一个可逆 的等压过程:373mC 水dTmC 水ln373 1S 水=273T273对于热源的放热过程,能够假想一个可逆的等温过程:Q 放(373273) 1S 热源 T 373S 总=S 水S 热源=184JK 1在0oC 和100oC 之间取相互温度差为无量小的无穷多个热源,令水挨次与这些温度递加的无穷多个热源接触,由0oC 吸热升温至100oC ,这是一个可逆过程,能够证明S 热源=S 水,故 S 总= S 水S 热源=02〕试计算热量Q 自一高温热源T 2直接传达至另一低温热源T1所惹起的熵变。

〔解〕从题意能够看出这是一不行逆热传达过程,应假想另一组一直态相同的可逆过程代替它,才能由它们的热温商计算系统的熵变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不可逆过程热力学
不可逆过程热力学是研究不可逆过程中热力学现象的宏观理论。

它主要用于描述在不可逆过程中,物理系统的热力学现象和相关的能量转化过程。

这个理论主要关注的是系统在经历一个过程后,如何借助外界的帮助才能回到原来状态从而留下痕迹,这样的过程被称为不可逆过程。

具体来说,不可逆过程热力学涉及到的内容包括:
1.热力学第二定律指出,自然界中一切与热现象有关的宏观过程都是不可逆的。

这意味着,例如水不可能自发的从低处往高处流,必须借助帮助例如抽水机,但却消耗了电能,给外界留下了痕迹。

2.在不可逆过程中,系统会经历一种方向性,这种方向性是由系统的内在性质和外部环境共同决定的。

3.不可逆过程热力学还关注如何借助外界的帮助实现这个过程,但要引起外界的变化。

例如,热量从高温向低温传递时,必须借助外界的帮助如热机,但在这个过程中,热量转化为机械能并对外界做功,使得系统的熵(代表无序度的物理量)增加。

需要注意的是,不可逆过程热力学是一种宏观理论,对于非平衡态现象的解释终究是有限度的。

对于更深入的理论,需要借助非平衡态统计物理学等更微观的理论来完成。

相关文档
最新文档