压缩机防喘振阀工作原理
离心式压缩机防喘振控制

离⼼式压缩机防喘振控制离⼼式压缩机防喘振控制的探讨The research of anti-surge control forcentrifugal compressor杨宝星中国⽯油辽阳⽯化分公司芳烃⼚仪表车间摘要:对离⼼式压缩机喘振产⽣的原因进⾏了分析,总结了防⽌离⼼压缩机喘振的控制⽅法。
重点阐述了本⼚压缩机防喘振的控制⽅法及实际操作中应该注意的问题。
关键词:离⼼式压缩机;喘振;防喘振控制Abstract: This paper analyzes the reasons that surge occurs on centrifugal compressor and summarizes the control method of anti-surge control from centrifugal compressor. It especially illustrates the control method of anti-surge control from our plant’s compressor and discusses the problems in real operation. Keywords: Centrifugal compressor; surge; anti-surge control1、引⾔离⼼式压缩机具有体积⼩、流量⼤、重量轻、运⾏效率⾼、易损件少、输送⽓体⽆油⽓污染、供⽓均匀、运转平稳、经济性好等⼀系列优点。
因此,离⼼式压缩机在⽯油化⼯⽣产中得到了⼴泛的应⽤,但是它在⼀些特定⼯况下会发⽣喘振使压缩机不能正常⼯作,稍有失误就会造成严重的事故。
因此,压缩机不允许在喘振状态下运⾏只能采取相应的防喘振控制。
1.1 离⼼式压缩机喘振产⽣的原因离⼼式压缩机在运⾏过程中,负荷下降到⼀定数值时,⽓体的排送会出现强烈的振荡,机⾝亦随之发⽣剧烈振动,这些现象被称为喘振。
其产⽣的原因是压缩机⼯作流量⼩于最⼩流量时,⽓流在离⼼式压缩机叶⽚进⼝处与叶⽚发⽣冲击,使叶⽚⼀侧⽓流边界层严重分离,出现漩涡区,从⽽形成旋转脱离或旋转失速。
压缩机的喘振现象及控制调节

压缩机的喘振现象及控制调节杨鹏新疆大学摘要:离心压缩机具有处理量大、体积小、结构简单、运转平稳、维修量小以及压缩气体不受油污的特点。
近几年在石油化工、冶金、机械等行业广泛运用,比如在西气东输工程中全线选用的是离心压缩机。
但是它在一些特定工况下会发生喘振,使压缩机不能正常工作,稍有失误就会造成严重的事故。
因此,压缩机不允许在喘振状态下进行只能采取相应的防喘振控制方案。
本文介绍了离心压缩机工作过程中喘振产生的机理、喘振的控制原理、喘振的危害及常用的判断方法。
分析喘振发生的主要因素,并且对喘振控制方法进行比较和分析。
关键词:离心压缩机;喘振;控制一、概述离心压缩机是透平式压缩机的一种,具有处理量大、体积小、结构简单、运转平稳、维修量小以及压缩气体不受油污的特点。
近几年在石油化工、冶金、机械等行业广泛运用,比如在西气东输工程中全线选用的是离心压缩机。
离心压缩机的安全可靠运行对工业生产有着非常重要的意义。
然而,离心压缩机对气体压力、流量、温度变化较敏感,易发生喘振。
在1945年英国首先发现了离心压缩机的喘振现象并引起人们注意。
喘振是离心压缩机的一种固有现象,具有较大的危害性,是压缩机损坏的主要原因之一。
如果能有效避免发生喘振,离心压缩机的维修量非常小;而发生喘振往往造成设备叶轮、主轴、轴承、导叶等重要部件损坏,有时甚至导致整个机组报废。
因此,应当结合生产实践,逐步掌握喘振的机理,掌握喘振的影响因素,采取有效的防喘振控制措施,提高压缩机的抗喘振性能和运行可能性。
二、喘振及相关名词(一) 喘振离心压缩机在运行过程中,当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象叫做压缩机的“喘振”。
(二)特性曲线压缩机出口绝压Pd与入口绝压Ps之比(或称压缩比)和入口体积流量的关系曲线(见图1)。
(三)喘振极限线将不同转速下的压缩机特性曲线最高点连接起来所得的一条曲线,即为压缩机喘振极限线(见图2)。
压缩机防喘振资料整理

据我公司与陕鼓技术协议,压缩机流量调节方式为回流调节+变频调速,收集相关资料整理如下:回流调节+变频调速在离心压缩机喘振控制中的应用1 喘振1.1 喘振现象当压缩机在运转过程中,流量减小到一定程度时,就会在压缩机流道中出现严重的旋转脱离,流动严重恶化,使压缩机出口压力突然严重下降。
由于压缩机总是和管网系统联合工作的,这时管网中的压力并不马上减低,这时管网中的气体压力就反大于压缩机出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降至低于压缩机出口压力为止,这时倒流停止,压缩机又开始向管网供气,压缩机的流量又增大,压缩机又恢复正常工作。
但是当管网中的压力也恢复到原来的压力时,压缩机的流量又减小,系统中气体又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。
上图中n为压缩机的转速,在每种转速下都有一个p2/p1值最高的点(驼峰点),将不同转速下的各个驼峰点连接起来就可以得到一条所谓的喘振边界线(上图中实线所示)。
边界线左侧部分为不稳定的喘振区,边界右侧部分则是安全运行区。
在喘振区,压缩比p2/p1随着Q的增大而增大,即出口压力p2增大,到大于管道阻力时,就会使压缩机排出量增大,并恢复到稳定的值QA。
假如流量继续下降到小于驼峰值QB,这时压缩比不仅不会增大,反而下降,即p2下降,就会出现恶性循环:压缩机排出量会继续减小,而出口压力p2会继续下降,当p2下降到低于管网压力时,瞬间将会出现气体的倒流;随着倒流的产生,管网压力下降,当管网压力下降到与压缩机出口压力相等时倒流停止;然而压缩机仍在运转,于是压缩机又将倒流回来的气体重新压回去;此后又引起p2/p1下降,被压出的气体又倒流回来。
这种现象将重复产生,这就是所谓的喘振。
1.2 产生喘振的先决条件从喘振现象可知,影响喘振的因素有:(1) 流量;(2) 转速;(3) 管网特性。
(1)流量是导致喘振的先决条件,因为当压缩机越过最小流量值时,就会在流道中产生严重的旋转脱流和脱流区急剧扩大的情况,进而发展到喘振状态。
防喘振功能详解

喘振检测功能块(Surge_Detect_02)
在本程序中,我们使用的是压比aPRATIO102J1 对流量差压rHX102J1(Pd/Ps 对h/ Ps)的算法。 在完全手动状态下gMANUAL 置1,输出阀位由操作员在HMI“手动输出”上给 出,当在半自动状态下,手动控制时,喘振控制优先。 本程序喘振控制模式采用压比rPRATIO(Pd/Ps 纵坐标)对能力rHX(h/ Ps 横 坐标)组成的坐标曲线,选压比算法时kSUMOD 设置为1,入口流量选择带温 度补偿即HXTYPE 设置为2,机组效率EFF=0.85, 热容比K=1,入口压力单元 (表压刻度)X=5(模块内有压力补偿101.3KPa),出口压力单元(表压刻度) Y=5(模块内有压力补偿101.3KPa),温度单元Z=2(摄氏度)。 压缩机基准温度Tb(40.0℃),孔板基准温度Tbo(40.0℃),基准压力Pb ( 70.0KPa),孔板 基准压力Pbo ( 70.0KPa), 安全裕度偏置KEBIAS=10, 比例安全裕度即安全裕度线修正置KEPROP=7,喘振线裕度rADMARC1。 喘振点为rSULIN,压比为rPRATIO(Pd/Ps),能力为rHX(H/Ps)
60
4 6 .2 ,6 2 .2 (x 2 ,y 2 ) 4 0 .5 ,4 4 .9 (x 1 ,y 1 )
40
20 0 0 20 40 60 80 100
h O rific e D iffe re n tia l %
安全裕度重校: 安全裕度重校:
如果系统检测到工作点越过喘振线,表示喘振已发生,喘振控制线将被自动调节 到右方,而加大安全余量。 可能导致喘振的条件有: 因压缩机磨损导致喘振线移位 变送器调校不准确 安全裕度不足 过程条件突变 喘振线设置错误 每当如前述喘振被检测到,安全裕度增加(控制线右移)一个校准量。输入一个 裕度新值可使瞬态计数器归零,且使重校后的裕度等于输入值。系统可组态为每 次增加一个固定量(如2%),或一个累加量(如1,2,4,8%等)。重校发生 的最大次数亦可组态。 系统可显示如下量: 喘振发生次数(校准次数) 初始安全裕度 当前重校后的安全裕度
喘振阀工作原理

喘振阀工作原理
1.喘振阀是一种调节阀门,在管道系统中主要用于调节流量,当管道中的流量不能满足设备运行要求时,它能自动地开启或关闭,以保持管道内气体流动的平稳,使设备安全运行。
2.喘振是一种紧急情况,当管道中流量突然减少到某一限度以下时,就会发生管道过流部件的强烈振动,导致设备损坏甚至发生事故。
因此,在管路系统中设置喘振阀是十分必要的。
3.喘振的产生主要有三种原因:
(1)当输送介质温度升高时,介质的热胀冷缩程度超过了管道材料的允许伸缩变形量。
(2)输送介质中含有固体颗粒、粘度过大或过小的固体杂质。
(3)输送介质中有较高的压力差。
在这三种原因中,前两种情况是主要原因,后一种情况主要是次要原因。
对于前两种情况来说,可根据实际情况采用适当的保护措施,如安装消音器、过滤器等;对于后一种情况来说,则应选择性能好、安装方便且经济合理的喘振阀。
—— 1 —1 —。
循环气压缩机防喘振控制

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载循环气压缩机防喘振控制地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容循环气压缩机防喘振控制摘要:本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。
重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。
关键词定义:喘振机理喘振线防喘振控制安全裕量盘旋设定点1、前言:大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。
但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。
喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。
本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。
2、离心式压缩机喘振机理:离心式压缩机的特性曲线与喘振离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示:图2.1 离心式压缩机喘振曲线由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。
如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。
所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。
实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。
防喘振原理

防喘振原理
防喘振是指在空气动力学中,由于流体在某些条件下受到激励而出现的振动现象。
在飞机、桥梁、建筑物等工程结构中,防喘振是一个非常重要的问题,因为它可能导致结构的破坏甚至崩溃。
因此,了解防喘振的原理对于工程设计和安全至关重要。
防喘振的原理可以通过空气动力学和结构动力学的角度来解释。
在空气动力学中,防喘振通常是由于空气流动引起的压力脉动而产生的。
当空气流体通过某些结构或设备时,会产生压力的波动,这种波动会对结构产生作用力,从而引起结构的振动。
而在结构动力学中,防喘振则是由于结构本身的固有频率与外部激励频率相吻合而产生的共振现象。
为了防止防喘振的发生,可以采取一系列措施。
首先,可以通过改变结构的形状或者表面的细节来改变空气流动的方式,从而减小压力脉动的产生。
其次,可以通过在结构上添加防喘振装置,如阻尼器或者质量块,来改变结构的固有频率,使其与外部激励频率不吻合,从而减小共振的可能性。
此外,还可以通过控制空气流动的速度和方向,来减小压力脉动的幅度,从而减小对结构的作用力。
总之,防喘振是一个复杂而重要的问题,需要结合空气动力学和结构动力学的知识来进行分析和解决。
只有深入了解防喘振的原理,才能有效地预防和控制这一现象,从而保障工程结构的安全和稳定。
离心式压缩机的喘振原因及预防14

离心式压缩机的喘振原因及预防]离心式压缩机的喘振原因及预防田立华(中石油前郭石化分公司)摘要离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。
因此,离心式压缩机严禁在喘振区域内运行。
本文针对喘振的原因和预防措施做了详细论述。
关键词离心式压缩机喘振喘振点性能曲线旋转脱离一、喘振机理喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。
当外界条件适合内在因素时,便发生喘振。
2.喘振与管网的关系离心压缩机的喘振是其本身的固有特性。
压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa+AQ2。
图2为离心压缩机和管网联合工作性能曲线。
交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管网特性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。
相反闸阀开大时,管道中的阻力系数A减小,管网特性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。
最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。
3.喘振的产生从图2可以看出:由于管网阻力的增加,管网特性曲线左移,致使压缩机工况点向小流量偏移。
压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。
发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。
这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压缩机防喘振阀工作原理
压缩机防喘振阀是一种用来防止压缩机工作时出现喘振现象的装置。
喘振是指机械系统在特定工况下产生的自激振动,它会导致设备的破坏和性能下降。
压缩机防喘振阀通过调节系统压力和流量,稳定系统运行,有效防止喘振的发生。
压缩机是一种将气体压缩成高密度的装置,常见于空调、冷冻设备、制冷设备等。
在压缩机工作时,气体会受到压力的作用而发生压缩,从而提高气体的密度和温度。
然而,当压缩机工作在某些特定工况下,比如在高负荷运行时或者在某些频率范围内,容易出现喘振现象。
喘振是由于系统的动态刚度和静态刚度之间的不匹配引起的。
动态刚度是指系统在动态条件下的刚度,而静态刚度是指系统在静态条件下的刚度。
当系统的动态刚度与静态刚度不匹配时,就容易出现喘振现象。
压缩机防喘振阀的工作原理就是通过调节系统的压力和流量来稳定系统运行,从而避免喘振的发生。
当系统运行在正常工况下时,阀门处于关闭状态,不会对系统产生影响。
但是当系统出现压力或流量突变时,阀门会自动打开或关闭,以稳定系统的运行。
具体来说,当系统压力或流量超过设定的阈值时,压缩机防喘振阀会自动打开,通过改变系统的压力和流量来减小系统的动态刚度,
从而稳定系统的运行。
当系统压力或流量下降到设定的阈值以下时,阀门会自动关闭,保持系统的稳定。
压缩机防喘振阀的工作原理可以通过以下步骤来解释:首先,阀门的位置由系统压力和流量传感器监测。
当系统压力或流量超过设定的阈值时,传感器会将信号传递给阀门控制器。
阀门控制器会根据传感器的信号来控制阀门的打开或关闭。
当阀门打开时,系统的压力和流量会发生变化,从而改变系统的动态刚度。
当系统压力或流量下降到设定的阈值以下时,阀门会自动关闭,保持系统的稳定。
压缩机防喘振阀的工作原理可以有效地防止喘振的发生,提高系统的稳定性和可靠性。
它在压缩机的工作过程中起到了重要的作用,保护了设备的安全运行。
总结起来,压缩机防喘振阀是一种通过调节系统压力和流量来稳定系统运行的装置。
它可以有效地防止压缩机在特定工况下出现喘振现象,保护设备的安全运行。
压缩机防喘振阀的工作原理是通过传感器监测系统压力和流量,控制阀门的打开和关闭,从而改变系统的动态刚度,稳定系统运行。
这种装置在压缩机工作中扮演着重要的角色,值得我们重视和研究。