最新整理基于82527的can总线智能传感器节点设计.doc

最新整理基于82527的can总线智能传感器节点设计.doc
最新整理基于82527的can总线智能传感器节点设计.doc

基于82527的CAN总线智能传感器节点设计

摘要:介绍一种以8051微控制器和82527独立CAN总线控制器为核心组成的CAN 总线智能传感器节点的设计方法,并给出其硬件原理图和初始化程序。

关键词:CAN总线 82527 单片机数据采集智能节点

引言

CAN(Controller Area Network,控制局域网)属于工业现场总线,是德国Bosch公司20世纪80年代初作为解决现代汽车中众多的控制与测试仪器间的数据交换而开发的一种通信协议。20xx年11月,ISO正式颁布了高速通信控制局域网(CAN)的国际标准(ISO11898)。CAN总线系统中现场数据的采集由传感器完成,目前,带有CAN总线接口的传感器种类还不多,价格也较贵。本文给出一种由8051单片机和82527独立CAN总线控制器为核心构成的智能节点电路,在普通传感器基础上形成可接收8路模拟量输入和智能传感器节点。

1 独立CAN总线控制器82527介绍

82527是Intel公司生产的独立CAN总线控制器,可通过并行总线与Intel 和Motrorola的控制器接口;支持CAN规程2.0B标准,具有接收和发送功能并可完成报文滤波。82527采用CHMOS 5V工艺制造,44脚PLCC封装,使用温度为-44~+125℃,其引脚的排列和定义参见参考文献[1]。

(1)82527的时钟信号

82527的运行由2种时钟控制:系统时钟SCLK和寄存器时钟MCLK。SCLK 由外部晶振获得,MCLK对SCLK分频获得。CAN总线的位定时依据SCLK的频率,而MCLK为寄存器操作提供时钟。SCLK频率可以等于外部晶振XTAL,也可以是其

频率的1/2;MCLK的频率可以等于SCLK或是其频率的1/2。系统复位后的默认设置是SCLK=XTAL/2,MCLK=SCLK/2。

(2)82527的工作模式

82527有5种工作模式:Intel方式8位分时复用模式;Intel方式16位分时复用模式;串行接口模式;非Intel方式8位分时复用模式;8位非分时复用模式。本文应用Intel方式8位分时复用模式,此时82527的30和44脚接地。

(3)82527的寄存器结构[2]

82527的寄存器地址为00~FFH.下面根据需要对寄存器给予介绍。

①控制寄存器(00H):

CCE——改变配置允许位,高电平有效。该位有效时允许CPU对配置寄存器1FH、2FH、3FH、4FH、9FH、AFH写操作。

EIE——错误中断允许位,高电平有效。该位一般置1,当总线上产生异常数量的错误时中断CPU。

SIE——状态改变中断允许位,高电平有效。该位一般置0。

IE——中断允许位,高电平有效。

INIT——软件初始化允许位,高电平有效。该位有效时,CAN停止收发报文,TX0和TX1为隐性电平1。在硬件复位和总线关闭时该位被置位。

②CPU接口寄存器(02H):

RSTST——硬件复位状态位。该位由82527写入,为1时硬件复位激活,不允许对82527xxx;为0时允许对82527xxx。

DSC——SCLK分频位。该位为1,SCLK=XTAL/2;为0,SCLK=XTAL。

DMC——MCLK分频位。该位为1,MCLK=SCLK/2;为0,MCLK=SCLK。

PWD——掉电模式使能位,高电平有效。

SLEEP——睡眠模式使能位,高电平有效。

MUX——低速物理层复用标志位。该位为1,ISO低速物理层激活,PIN24=VCC/2,PIN11=INT#(#表示取反);该位为0,PIN24=INT#,PIN11=P2.6。

CEN——时钟输出允许位,高电平有效。

③标准全局屏蔽寄存器(06~07H)。该寄存器用于具有标准标识符的报文,或XTD置0的报文寄存器。该方式称为报文接收滤波。当某位为1时,报文标识符的相应位必须匹配;为0时,不必匹配。

④扩展全局屏蔽寄存器(08~0BH)。该寄存器用于扩展报文格式,或XTD 置1的报文寄存器,其作用与③相同。

⑤总线配置寄存器(2FH):

COBY——旁路输入比较器标志位,高电平有效。

POL——极性标志位。为1,如果旁路输入比较器,RX0的输入逻辑1为显性,逻辑0为隐性;为0,则反之。

DCT1——TX1输出切断控制位。为1,TX1输出不被驱动,该模式用于1根总线的情况,2根差分导线短路;为0,TX1输出被驱动。

DCR1——RX1输入切断控制位。为1,RX1与输入比较器的反相端断开,接至VCC/2;为0,RX1接至输入比较器反相端。

DCR0——RX0输入切断控制位。作用与DCR1相同,此时RX0接至比较器同相端。

⑥位定时寄存器0(3FH);

SJW——同步跳转宽度位场,编程值1~3。

BRP——波特率分频位场,编程值0~63。

⑦位定时寄存器1(4FH):

SPL——采样模式标志位。1表示每位采样3次;0表示每位采样1次。

TSEG1——时间段1位场,编程值2~15。

TSEG1——时间段2位场,编程值1~7。

波特率=XTAL/[(DSC+1)*(BRP+1)*(3+TSEG1+TSEG2)]

⑧报文寄存器(把每个寄存器的第1字节地址作为基址BASE)。

◇控制寄存器0,1(BASE+0,BASET+1)

MSGVAL——报文寄存器有效标志位,高电平有效。10置位,01复位。

TXIE——发送中断允许标志位,高电平有效。10置位,01复位。

RXIE——接收中断允许标志位,高电平有效,10置位,01复位。

INTPND——中断申请标志位,高电平有效。10置位,01复位。

RMTPND——远程帧申请标志位,高电平有效。10置位,01复位。

TXRQST——请求发送标志位,高电平有效。10置位,01复位。

MSGLST——报文丢失标志位,只用于接收报文寄存器。10表示未读报文被新报文覆盖,01表示未覆盖。

CPUUPD——CPU更新标志位,只用于发送报文寄存器。10报文不被发送,01报文可发送。

NEWDAT——新数据标志位。10表示向寄存器写入了新数据,01表示无新数据写入。

◇仲裁寄存器0,1,2,3(BASE+2-BASE+5)

存储报文标识符。

◇报文配置寄存器(BASE+6)

DLC——数据长度编码,编程值0~8。

DIR——方向标志位。1发送,0接收。

XTD——标准/扩展标识符标志位。1扩展标识符,0标准标识符。

◇数据寄存器(BASE+7-BASE+14)

82527存储报文时,8个数据字节均被写入,未用到的字节数据是随机的。

2 硬件电路设计

智能节点的电路如图1所示(图中6264略去)。

在硬件设计中,由ADC0809完成对8路模拟置的转换,与8051的信息交换采用查询方式,地址BFF8~BFFFH,其时钟可由ALE二分频获得;82527完成与CAN总线的信息交换。本设计中,旁路了输入比较器,与8051的信息交换采用中断方式,地址7F00~7FFFH,可以用82527的P1口和P2口对开关量采集或对继电器进行控制。82C250提供82527和物理总线间的接口,提高接收和发送能力。可根据需要扩展程序存储器。

3 软件设计

本设计软件采用MCS-51汇编语言编写,程序框图如图2所示。

82527的初始化程序如下:

INT:MOV DPTR,#0FF02H

MOV A,#00H

MOVX @DPTR,A ;SCLK=XTAL

;MCLK=SCLK,CLKOUT无效

MOV DPTR,#0FF00H

MOV A,#41H

MOVX @DPTR,A ;置位CCE,INIT

MOV DPTR,#0FF2FH

MOV A,#48H

MOVX @DPTR,A ;旁路输入比较器设置1位隐性,0为显性,RX1无效MOV DPTR,#0FF3FH;

MOV A,#43H;

MOVX @DPTR,A ;SJW=2,BRP=3

MOV DPTR,#0FF4FH

MOV A,#0EAH

MOVX @DPTR,A ;SPL=1,TSEG1=7,TSEG2=6此时波特率为100Kbps MOV DPTR,#0FF00H;

MOV A,#01H

MOVX @DPTR,A ;禁止对配置寄存器的xxx

MOV DPTR,#0FF10H;

MOV A,#55H;

MOVX @DPTR,A;

INC DPTR;

MOVX @DPTR,A;

·

·

·

MOV DPTR,#0FFF0H;

MOV A,#55H;

MOVX @DPTR,A

INC DPTR;

MOVX @DPTR,A ;报文寄存器控制位初始化

MOV R0,#06H;

MOV DPTR,#0FF06H;

MOV A,#0FFH;

L1:MOVX @DPTR,A ;报文标识符需全部匹配

INC DPTR

DJNZ R0,L1;

MOV DPTR,#0FF16H;

MOV A,#8CH ;报文寄存器1可发送8个字节扩展报文MOVX @DPTR,A;

MOV DPTR,#0FF26H;

MOV A,#84H;

MOVX @DPTR,A ;报文寄存器2可接收8个字节扩展报文

MOV DPTR,#0FF00H;

MOV A,#00H;

MOVX @DPTR,A ;初始化结束

RET

Lonworks现场总线由美国Echelon公司于20xx年推出,由于其开放的网络操作系统、标准的网络通信协议、丰富的介质接口模板、支持多种介质之间相互通信等特点,在工业控制领域得到了广泛响应。目前已有多种支持Lonworks 技术的芯片,Echelon公司的神经元芯片NeuronC31是一种集3个8位CPU及网络通信协议(LonTalk协议)为一体的芯片。采用该芯片构成的智能节点在Lonworks现场总线控制网络中起着举足轻重的作用,它能使现场设备之间相互通信,快速地交换信息,以满足系统实时监控的要求。但由于3150神经元芯片只提供11个通用I/O口,不能满足采集量和控制量要求较多的现场设备的要求,因此研究和开发基于神经元芯片的多点I/O的智能节点,是一项有意义的工作。

1 NeuronC3150神经元芯片的特点

NeuronC芯片既是Lonworks技术的核心也是智能节点的核心,目前由Toshiba和Motorola两家公司生产,主要包括NeuronC3150和NeuronC3120两种系列。3150芯片中包括E2PROM和RAM存储器,同3120芯片区别在于它无内部ROM,但具有xxx外部存储器的接口,寻址空间可达64Kbyte。从这一点来说,3150比3120在节点开发上具有更好的灵活性。3150芯片内部带有3个8位微处理器:一个用于链路层的控制,另一个用于网络层的控制,第三个用于执行用户的应用程序。该芯片还包含11个I/O口和完整的LonTalk通信协议,它同时具有通信和控制功能。

2 基于神经元芯片智能节点的开发方法

基于神经元芯片开发的智能节点具有结构简单、成本低等优势,其开发方法可分为两种:(1)基于控制模块的硬件设计方法。采用这一方法的优势是可缩短产品的开发周期,因为控制模块通常都集成了神经元芯片、Flash程序存储器、收发器以及RAM等,用户只需设计自己的应用电路即可完成节点开发。(2)基于收发器的硬件电路设计方法。采用这一方法可以降低节点成本,提高节点的市场竞争力,但是这一方法需要在考虑应用电路设计的同时考虑神经元芯片与Flash 存储器及RAM的接口电路,这对于电路板的设计加工及生产工艺的要求都较高。

3 智能节点的电路设计

节点采用主、背板结构。主板上集成有控制电路、通信电路和其他附加电路,其结构图如图1。背板设计为两种多点I/O模块(包括多点数字I/O模块和

多点模拟I/O模块)。主、背板之间采用统一标准的20针接口。采用主、背板结构设计法,使得此智能节点的应用领域更为广泛,适应性、通用性和功能都大大增强,对于节点应用程序的开发也更为灵活。

3.1 主板电路设计

3.1.1 控制电路

控制电路主要由神经元芯片,主背板接口电路和片外存储器等组成。各元器件功能如下:

(1)神经元芯片采用Toshiba公司生产的3150芯片,它主要用于提供对节点的控制、实施与Lon网的通信、支持对现场信息的输入输出等应用服务。

(2)片外存储器采用Atmel公司生产的AT29C256(FLASH存储器)。AT29C256共有32K字节的地址空间,其中低16K字节空间用来存放神经元芯片的固件(包括LonTalk协议等)。高16字节空间作为节点应用程序的存储区。采用ISSI公司生产的IS61C256作为神经元芯片的外部RAM.。

(3)主、背板接口电路用于主板与多点I/O模块的电气连接。

3.1.2 通信电路

通信电路的核心——收发器是智能节点与Lon网之间的接口。目前,Echelon公司和其他开发商均提供了用于多种通信介质的收发器模块。本智能节点采用Echelon公司生产的适用于双绞线传输介质的FTT-10A收发器模块。

3.1.3 附加电路

附加电路主要包括晶振电路、复位电路和Service电路等。

晶振电路为3150神经元芯片提供工作时钟。

复位电路用于在智能节点上电时产生复位操作。另外,节点还将一个低压中断设备与3150的Reset管脚相连,构成对神经元芯片的低压保护设计,提高节点的可靠性和稳定性。

Service电路是专为下载应用程序的电路,Service指示灯对诊断神经元芯片固件状态有指示作用。

3.2 I/O扩展电路设计

3150神经元芯片包含11个通用口,用户可根据不同的需求进行灵活配置,以便于同外部设备进行接口。对于输入和输出(I/O)数量需求较大的外围设备,11个I/O口显然不能满足。虽然可以依靠增加节点数量来满足外围要求,但是这样做不仅成本价格高而且增加了安装的工作量,维护也不方便。因此,通过增加外围电路实现I/O扩展,成为多点I/O智能节点开发的重要部分。I/O扩展设计包括多点模拟模块设计和多点数字模块设计。

3.2.1 多点模块模块设计

多点模拟模块主电路图如图2。TLC2543是支持SPI串行总线的11路模拟通道的12位逐次逼近型模/数转换器。CS(Pin 15)片选信号端接IO0;DATA INPUT (Pin 17)为串行数据输入,其中四位串行地址用来选择下一个被转换的模拟通

道或测试电压寄存器;DATA OUTPUT(Pin 16)输出模/数转换的结果;CLK是维持模/数转换正常工作的时钟。值得注意的是,时钟信号频率较高,任何一点干扰都可能影响模块的正常工作。在CLK上串联或并联一支电阻可以起到明显的抗干扰效果,保证模/数模块的稳定。(本模块中,CLK接IO8,DATA INPUT接IO9,DATA OUTPUT接IO10)。TLC2543还有一个特点:IO9输入数据的同时,IO10输出的是上一次模/数转换的值,因此在编写NeuronC源程序时要注意模/数转换的时序。选通两支旁路电路:一支47μF电解电容,对低频起滤波作用;另一支为0.1μF,对高频起滤波作用。此模/数模块没有选用电压基准,故在模/数芯片的参考电压边上接了一支0.1μF电容,用以去除高频干扰。

3.2.2 多点数字模块设计

多点数字模块主要包括:输入部分、输出部分、双向I/O三部分。通过扩展,模块具16路数字输入通道、15路数字输出通道和3路双向I/O通道。

(1)输入部分采用两片8选1数据选择器74LS151级联,并将NeuronC3150的IO0~IO3定义为Nibble Output方式,即半字节输出方式;IO4定义为Bit Input方式,即位输入方式。IO0~IO3作为16路输入通道的地址选通信号,与74LS151的地址输入端(E、A、B、C管脚)相连。IO4作为数字信号入口,与74LS151的输出端连接。(具体电路如图3)下面的NeuronC源程序可完成对16路数字通道的定时扫描,定时时间为1s:

IO_0 output nibble io_mselect://定义半字节输出IO

IO_4 input bit io_tmp; //定义位输入IO

Stimer repeating t_circle=1 ;//定义并初始化定时器

When (timer_expires(t_circle))

{int i ;bit I_num,temp[15];//定义循环变量通道状态数组初始化通道号for(i=0;i<16;i++)

{io_out(io_mselect,I_num) //写通道号

temp[i]=(io_in(io_tmp)= =ON)?1:0)}} //读通道状态并存入状态数组

(2)输出部分如图4,输出部分由两片8位移位寄存器74LS164和两片74LS373锁存器组成。164的功能是将NeuronC I/O口的15位串行帧输出转化为15路并行信号输出。373锁存器的作用是使164的15路输出在电平转换后加以保持,直到下一次电平转换。为了满足15路并行输出的要求,在时序上需要使两片373严格同步。因此在硬件上增加了非门和RC电路,对两片373的使能信号加以协调。通过实验,证明此电路能够完全满足设计要求。在NeuronC源程序中将IO8、IO9定义为Serial Output方式,即中行输出方式。其中IO8输出时钟信号,IO9输出串行数据。IO7定义为Bit Output方式,即位输出方式,作为164的清零端。

(3)双向I/O部分为了使用户对此智能节点的二次开发更为灵活、方便,我们在多点数字模块上设计了三个双向I/O口(IO5、IO6、IO10)。用户

可根据自己需要,利用模块上的拨动开关进行输入、输出切换。

需要注意的是,为了提高智能节点的抗干扰能力,在输入、输出电路中均采用了光电耦合器进行电气隔离。特别在输出端加入了三极管功率放大电路以便驱动外部继电器。

水电厂中的水利机组控制系统中有众多参量需要测量和控制(包括模拟和数字量),如调速器开关、灭磁信号、主阀开关、冷却水泵、励磁投入信号、锁锭控制等。因此,系统对I/O口的需求量较大,传统的智能节点远远不能满足要求。而我们通过对多点I/O智能节点的开发,成功地研制出WSTA20xx小型水利机组综合自动化装置。此装置已在水电厂中投入使用,运行情况良好。

A题_无线运动传感器节点设计

2020年TI杯大学生电子设计竞赛 无线运动传感器节点设计(A题) 1. 任务 基于TI模拟前端芯片ADS1292和温度传感器LMT70设计制作无线运动传感器节点,节点采用电池供电,要求能稳定采集和记录使用者的心电信息、体表温度和运动信息。 2. 要求 (1)基于ADS1292模拟前端芯片设计心电检测电路,完成使用者的心电信号实时测量,要求:(30分) ①实时采集和记录使用者的心电信号,实现动态心电图的测试与显示; ②分析计算使用者的心率,心率测量相对误差不大于5%。 (2)基于LMT70温度传感器测量使用者体表温度,要求:(20分) ①实时采集和记录使用者的体表温度,温度采样率不低于10次/分钟; ②体表温度测量误差绝对值不大于2℃。 (3)基于加速度计等传感器检测使用者运动信息,实现运动步数和运动距离的统计分析,要求:(20分) ①运动距离记录相对误差不大于10%; ②运动步数记录相对误差不大于5%。 (4)无线运动传感器节点能通过无线上传使用者的基本心电信号、体表温度和运动信息,并在服务器(手机)端实时显示动态心电图、体表温度和运动信息,要求传输时延不大于1秒。(25分) (5)其他。(5分) (6)设计报告。(20分)

3. 说明 (1)作品进行心电信号测试时,可以通过直接输入心电信号模拟器进行校准,在确认作品达到题目要求的测量精度后,再对具体的使用者进行心电信号测试。目前市面上有多种心电信号模拟器产品,各赛区可以自行选择心电信号模拟器作为标准信号,对作品进行测试。 (2)作品设计中进行体表温度测量的温度传感器LMT70,需要使用引线连接并裸露在外,便于测试。在进行测试校验和实测时,可以通过使用标准体温计来测量使用者掌心温度,与本作品测量使用者掌心温度来进行比对。 (3)本作品测量的使用者运动信息,可以通过使用者在标定5米长的直线上来回运动进行测试,统计运动步数和运动距离。 (4)本作品的无线运动传感器节点需要实现无线上网、上传节点传感数据到服务器中,然后在服务器中实现数据管理和数据显示。参赛者可以使用手机或笔记本电脑作为服务器端。如果使用笔记本电脑作为服务器端,则必须将电脑作为本作品的组成部分,在作品封存时一并封存。

智能家具环境下的传感器的设计说明

1.绪论 1.1研究背景 随着人们对居住条件、生活质量、信息获取的需求越来越迫切,社会信息化脚步的进一步加快,家居信息化成为建设社会信息化过程的一个很重要环节。家庭是社会的细胞,唯有家庭实现了信息化,才可能真正实现社会的信息化。对智能家居系统的研究及开发是实现家庭信息化得必经之路。但目前国的研究尚未建立一个完整的理论体系,对智能家居的理解也存在着种种差异;当前国的智能家居产品大都功能贫乏,系统设计不规、扩展性差,对当前的发展形式较难适应,同时智能家居技术在我国处于起步阶段,许多技术标准都未标准化,还有很多工作需要做。因此加强智能家居应用方面的研究,通过选取合适的技术,设计合理的方案,组建一种符合我国国情的、具有自主知识产权的智能家居系统己成为当前智能家居研究领域中极富挑战的课题。 1.1.1智能家居控制系统的应用需求 随着人们生活水平的提高,智能化需求日益旺盛。智能控制器作为智能产品的核心器件应该享有更为旷阔的发展空间,未来成长较好。中国智能控制产品规模与全球智能控制产品规模的增长率走势相接近,但是整体增长速度超过全球增长速度。全球智能控制产品市场规模,逐年稳步增长。 国智能家居产品多集中在别墅和复式住宅等高端家庭,高端智能化产品在智能家居销售份额中占很大的比重,中低端产品市场普及率较低。并且各地区间发展不平衡,主要集中于东部沿海发达城市,而中西部城市智能家居市场相对空白。另外,的智能家居市场的需求量较其他城市需求量大,主要原因就是的经济发展更好一些。 智能家居发展初期始于安防控制,家庭用户主要采用环境监测、煤气探测、

温湿度调节、防火报警等功能保障财产安全。目前,由于城市的安全环境越来越好,人们更注重的则是家居的舒适和便利,而安防的侧重点将会越来越少。为此环境控制和娱乐服务控制日渐成为更多智能家居市场更大的需求点。 1.1.2智能家居控制系统的研究及应用现状 随着近年来科学技术的迅速发展和普及,我们的工作、生活观念也发生了巨大的改变,现代家庭生活追求的新方向—智能化生活已经悄然走进我们的生活,“智能家居”已成为家庭信息化和智能化必不可少的需求。智能家居是指在小区部宽带网络己经普及的基础上利用小区部的网络环境搭建的以家庭为单位的控制系统。首先,在一个家居中建立一个通讯网络,为家庭信息提供必要的通路,在家庭网络的操作系统的控制下,通过相应的硬件和执行机构,实现对所有家庭网络上的家电和设备的控制和监测。其次,通过一定的媒介,构成与外界的通讯通道,以实现与家庭以外的世界沟通信息,满足远程控制/监测和交换信息的需求。最后,智能家居的最终实现目的都是为满足人们对安全、舒适、方便和符合绿色环境保护的需求。智能家居从功能上来说,主要分为家庭安防功能、家庭数据采集功能、家电及家庭电子设备控制、家庭信息管理平台和家庭能源控制功能等五大功能。 现在,世界各国都在跻身于网络信息服务技术的家庭应用,硅谷目前的投资和研发热点就是这方面的应用。圣保罗风险资本公司、Flatiron合伙公司和松下电子公司已经拨款1.4亿美元,投资于支持智能家居的信息家电公司。诺基亚、摩托罗拉和至少另外五家制造商正在开发网络。而惠普、IBM、太阳微系统和索尼等公司正准备推出大量新发明的小玩意儿。从巴掌大小的扫描仪到赋予这些装置动力的芯片和软件等不一而足。 当前,我国对智能家居的研究刚起步。1994年,国家科委立项资助重大科技项目“2002年小康型城乡住宅科技产业工程项目”其目标是以科技为先导。以示住宅小区建设为载体,推进我国住宅产业现代化,构建新一代住宅产业,在该项目中,把智能型住宅技术列为重中之重,开展技术、产品与工程的应用研究。2000年9月,长虹、海尔、春兰、TCL、小天鹅、上广电、厦新、电子三所、清

无线传感器网络的特点

无线传感器网络的特点 大规模网络 为了获取精确信息,在监测区域通常部署大量传感器节点,传感器节点数量可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在一个面积不是很大的空间内,密集部署了大量的传感器节点。 传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。 自组织网络在 传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方。传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。在传

感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,

从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。动态性网络传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点出现故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。 可靠的网络 传感器网络特别适合部署在恶劣环境或人类不宜到达的区域,传感器节点可能工作在露天环境中,遭受太阳的暴晒或风吹雨淋,甚至遭到无关人员或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。由于监测区域环境的限制以及传感器节点数目巨大,不可能人工“照顾每个传感器节点,网络的维护十分困难甚至不可维护。传感器网络的通信保密性和安全性也十分重要,要防止监测数据被盗取和获取伪造的监测信息。因此,传感器网络的软硬件必须具有鲁棒性和容错性。

无线传感器网络节点介绍

基于系统集成技术的节点类型和特点 在节点的功能设计和实现方面,目前常用的节点均为采用分立元器件的系统集成技术。已出现的多种节点的设计和平台套件,在体系结构上有相似性,主要区别在于采用了不同的微处理器,如AVR系列和MSP430系列等;或者采用了不同的射频芯片或通信协议,比如采用自定义协议、802.11协议、ZigBee[1]协议、蓝牙协议以及UWB通信方式等。典型的节点包括Berkeley Motes [2,3], Sensoria WINS[4], MIT μAMPs [5], Intel iMote [6], Intel XScale nodes [7], CSRIO研究室的CSRIO节点[8]、Tmote [9]、ShockFish公司的TinyNode[10]、耶鲁大学的XYZ节点[11] 、smart-its BTNodes[12]等。国内也出现诸多研究开发平台套件,包括中科院计算所的EASI系列[13-14],中科院软件所、清华大学、中科大、哈工大、大连海事大学等单位也都已经开发出了节点平台支持网络研究和应用开发。 这些由不同公司以及研究机构研制的无线节点在硬件结构上基本相同,包括处理器单元、存储器单元、射频单元,扩展接口单元、传感器以及电源模块。其中,核心部分为处理器模块以及射频通信模块。处理器决定了节点的数据处理能力和运行速度等,射频通信模块决定了节点的工作频率和无线传输距离,它们的选型能在很大程度上影响节点的功能、整体能耗和工作寿命。 目前问世的传感节点(负责通过传感器采集数据的节点)大多使用如下几种处理器:ATMEL公司AVR系列的ATMega128L处理器,TI公司生产的MSP430系列处理器,而汇聚节点(负责会聚数据的节点)则采用了功能强大的ARM处理器、8051内核处理器、ML67Q500x系列或PXA270处理器。这些处理器的性能综合比较见表1。 表1、无线传感器网络节点中采用的处理器性能比较

智能光电传感器的设计

智能光电传感器的设计 大庆石油学院电子科学学院 苑永强 王立刚 [摘 要]智能传感器越来越得到重视,高精度、高智能化将是传感器发展的必然趋势。因此,我们设计了一种可靠性 高、稳定性好,而且具备数据处理能力,并能够自检、自校、自补偿等功能的智能光电传感器。[关键词]O PT 101 自补偿 D S 18B 20 1、引言 随着激光技术在医疗卫生、精细加工、科学研究等领域的广泛应用,对微弱的光信号进行高精度、高可靠性检测变得更加重要。为了能够实现要求,我们将结合现代智能传感器的发展,设计了一种智能光电传感器。从结构上来讲,智能传感器是由经典传感器和微处理器单元构成,下面给出了典型的智能传感器系统框图,其中有信号预处理和模数转换接口,微处理器以及D A 转换及驱动电路的输出接口。本设计系统将结合智能传感器的设计思想,设计了一种能实现零点校正、增益可调、增益自补偿等功能的光电传感器,同时本系统采用数字温度传感器D S 18B 20对温度进行测量,实现温度自补偿功能,通过软件设 计最终能够实现系统自检、自校正、线性补偿等功能。 2、电路设计 2.1前置光电探测器设计 光电二极管由于响应快、灵敏度高、性能稳定、测量线性好、噪声低而被广泛用于光电检测电路中,尤其在激光测量中,通常可以测量微瓦以下的光信号。在进行精密仪器测量时,如果考虑到测量时的线性度,必须保证负载电阻零,光电二极管一般运用于零偏压法,常用低噪声运算放大器构成电流电压转换器的办法来满足这一要求。如下图所示,由于负反馈放大器的等效输入 阻抗为R in =R f (1+A ),其中A 为运算放大器的开环增益,R f 为放大器的反馈电阻。一般而言运算放大器的开环增益 A >>1×106,则输入阻抗R in ≈0,一方面可提高光电二极管测 量的线性,另一方面光电二极管工作区域接近短路状态 ,电路可获得最小噪声系数[3]。 本文选用O PT 101芯片作为为光电二极管的前置放大电 路,片内光电二极管和互跨阻抗放大器在一个片上的集成和结 合能够消除了分立设计中通常出现的问题,如漏电流误差、噪声交叉干扰和由于杂散电容硬件的增益峰化,0.09×0.09inch 的光电二极管在光导方式下工作可得到极佳的线性度和很底的暗电流且输出的是电压信号。O PT 101的工作电源范围较宽(+217——+36V ),同时在R f =1M 时,带宽可达14KH Z ,足够满足大部分精密测量场合的应用。 从图中可知,电源引脚附近应接上稳压电容,输出的电压在无光时(暗电压)是7.5m v (直电流),并随着光亮度的增加而增加。光电二极管电流与照射在其上的光强成正比。在650NM 波长红光时,其响应度近似为0.45A W 。测量精度可以达到10-8A ,可满足高精度的测量要求。 2.2增益可调硬件电路设计 为了能够实现光电更精确的测量,本文将利用M U X (电子模拟开关),PGA (程控增益放大器),ADC (模数转换器), DA C (数模转换器)构成经典的程控数据采集系统。 M U X 可程控选择多种信号或内部标定的信号;PGA 对M U X 选择的信号进行程控放大,可将信号调整到适于ADC 采 集的范围,同时也可实现通道的自动调零。ADC 实现模数转换,DA C 用于提供各通道自标定信号和调零信号以及模拟信号输出,单片机是控制的核心,处理ADC 的输入信号和DA C 的输 — 87—

无线传感器网络节点硬件

1 系统结构概述 本文设计的WSN硬件平台,由若干传感器节点,具有无线接收功能的汇聚节点,以及一台PC机组成。 根据无线传感器网络的应用需求以及功能要求,节点的设计主要包括如下几个基本部分:传感器单元、处理器单元、A/D单元、射频单元、供电单元以及扩展接口单元。节点的硬件体系结构框架如图1-1 所示。 图1-1 传感器单元负责对所关心的物理量进行测量并采集数据,提供给处理器单元进行处理;处理器单元负责数据处理及控制整个节点的正常工作;射频天线单元负责与其他节点进行无线通信,交换控制信息和相关数据;供电单元负责为节点提供运行所需的能量;扩展接口可以实现节点平台的功能拓展,以适应不同的应用需求。 2 节点核心模块设计: 2-1电源模块设计: 电源是设计中的关键部分,电源稳定工作是整个节点正常工作的保证,设计合理的电源电路至关重要。节点包含模拟器件和数字器件,模拟器件的抗干扰能力较差,且数字器件常常为模拟器件的噪声源,故为了 图2-1-1 提高电路的抗干扰能力,模拟器件接模拟地并采用数字地与模拟地单点共地。电源可选用电池或干电池,电源芯片可选用XC6209、XC6221系列的LDO电源芯片,分别提供3.3V和1.8V的数字与模拟电压,电路如图2-1-1所示。 2-2传感器 模块设计: 温度传感器设 计:本设计采用 LM75DM-33R2串行 可编程温度传感 器,这种传感器在 环境温度超出用户 变成设置时通知主 控制器。滞后也是 可以编程解决。它 采用2线总线方式,允许读入当前温度,并可配置器件。它是数字型温度传感器,直接从

寄存器读出温度参数,并可实现编程设置INT/CMPTR输出极性。 图2-2-1是其功能图,因为设计中只是简单的监测环境的温度,故只需一片 LM75,所以地址线A0、A1、A2置地,INT/CMPTR悬空,设计的接口电路如图2-2-2所示。 图2-2-1 图2-2-2 因为cc2431本身带有A/D模块,也可采用温度传感器AD590测量温度,其接口电路如图2-2-3。

CAN总线智能传感器节点设计

基于82527的CAN总线智能传感器节点设计 摘要:介绍一种以8051微控制器和82527独立CAN总线控制器为核心组成的CAN 总线智能传感器节点的设计方法,并给出其硬件原理图和初始化程序。 关键词:CAN总线 82527 单片机数据采集智能节点 引言 CAN(Controller Area Network,控制局域网)属于工业现场总线,是德国Bosch公司20世纪80年代初作为解决现代汽车中众多的控制与测试仪器间的数据交换而开发的一种通信协议。1993年11月,ISO正式颁布了高速通信控制局域网(CAN)的国际标准(ISO11898)。CAN总线系统中现场数据的采集由传感器完成,目前,带有CAN总线接口的传感器种类还不多,价格也较贵。本文给出一种由8051单片机和82527独立CAN总线控制器为核心构成的智能节点电路,在普通传感器基础上形成可接收8路模拟量输入和智能传感器节点。

1 独立CAN总线控制器82527介绍 82527是Intel公司生产的独立CAN总线控制器,可通过并行总线与Intel 和Motrorola的控制器接口;支持CAN规程2.0B标准,具有接收和发送功能并可完成报文滤波。82527采用CHMOS 5V工艺制造,44脚PLCC封装,使用温度为-44~+125℃,其引脚的排列和定义参见参考文献[1]。 (1)82527的时钟信号 82527的运行由2种时钟控制:系统时钟SCLK和寄存器时钟MCLK。SCLK 由外部晶振获得,MCLK对SCLK分频获得。CAN总线的位定时依据SCLK的频率,而MCLK为寄存器操作提供时钟。SCLK频率可以等于外部晶振XTAL,也可以是其频率的1/2;MCLK的频率可以等于SCLK或是其频率的1/2。系统复位后的默认设置是SCLK=XTAL/2,MCLK=SCLK/2。 (2)82527的工作模式 82527有5种工作模式:Intel方式8位分时复用模式;Intel方式16位分时复用模式;串行接口模式;非Intel方式8位分时复用模式;8位非分时复用模式。本文应用Intel方式8位分时复用模式,此时82527的30和44脚接地。 (3)82527的寄存器结构[2]

无线传感器网络复习总结

复习 题型:共计38~39题,计算题较少,原理题很多 (1)选择题15’ (2)填空题10’ (3)名词解释3’x5 (4)作图题10’x1 (5)问答题20’x1(根据原理应用自主进行选择作答) 第1章 1.P3 图1.1无线网络的分类 2.无线传感器的定义P3 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户。 无线传感器网络的三个基本要素:传感器、感知对象、用户; 无线传感器网络的基本功能:协作式的感知、采集、处理和发布感知信息。

3.P4 图1.2现代信息技术与无线传感器网络之间的关系 无线传感器网络三个功能:数据采集、处理和传输; 对应的现代信息科技的三大基础技术:传感器技术、计算机技术和通信技术;对应的构成了信息系统的“感管”、“大脑”和“神经”。 4.P5P6 ★图1.3无线传感器网络的宏观架构 传感器网络网关原理是什么?

无线传感器通常包括传感器节点(sensor node),汇聚节点(sink node)和管理节点(manager node)。汇聚节点有时也称网关节点、信宿节点。 传感器节点见后2要点介绍。 Sink node:网关节点通过无线方式接收各传感器节点的数据并以互联网、移动通信网等有线的或无线的方式将数据传送给最终用户计算机。网关汇聚节点只需要具有处理器模块和射频模块、通过无线方式接收探测终端发送来的数据信息,再传输给有线网络的PC或服务器。汇聚节点通常具有较强的处理能力、存储能力和通信能力,它既可以是一个具有足够能量供给和更多内存资源与计算能力的增强型传感器节点,也可以是一个带有无线通信接口的特殊网关设备。汇聚节点连接传感器网络和外部网络。通过协议转换实现管理节点与传感器网络之间的通信,把收集到的数据信息转发到外部网络上,同时发布管理节点提交的任务。 5.传感器网络节点的组成P5 图1.4传感器网络节点的功能模块组成 传感器网络节点由哪些模块组成?---作图、简答 传感器模块负责探测目标的物理特征和现象,计算机模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发布和接受,电源模块负责节点供电,节点由嵌入式软件系统支撑,运行网络的五层协议。 6.传感器网络的协议分层P5 1.5传感器网络的协议分层 每一层的作用是什么?---作图、简单

无线传感器网络知识点归纳

一、无线传感器网络的概述 1、无线传感器网络定义,无线传感器网络三要素,无线传感器网络的任务,无线传感器网 络的体系结构示意图,组成部分(P1-2) 定义:无线传感器网络(wireless sensor network, WSN)是由部署在监测区域内大量的成本很低、微型传感器节点组成,通过无线通信方式形成的一种多跳自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖范围内感知对象的信息,并发送给观察者或者用户 另一种定义:无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 三要素:传感器,感知对象和观察者 任务:利用传感器节点来监测节点周围的环境,收集相关的数据,然后通过无线收发装置采用多跳路由的方式将数据发送给汇聚节点,再通过汇聚节点将数据传送到用户端,从而达到对目标区域的监测 体系结构示意图: 组成部分:传感器节点、汇聚节点、网关节点和基站 2、无线传感器网络的特点(P2-4) (1)大规模性且具有自适应性 (2)无中心和自组织 (3)网络动态性强 (4)以数据为中心的网络 (5)应用相关性 3、无线传感器网络节点的硬件组成结构(P4-6) 无线传感器节点的硬件部分一般由传感器模块、处理器模块、无线通信模块和能量供应模块4部分组成。

4、常见的无线传感器节点产品,几种Crossbow公司的Mica系列节点(Mica2、 Telosb) 的硬件组成(P6) 5、无线传感器网络的协议栈体系结构(P7) 1.各层协议的功能 应用层:主要任务是获取数据并进行初步处理,包括一系列基于监测任务的应用层软件 传输层:负责数据流的传输控制 网络层:主要负责路由生成与路由选择 数据链路层:负责数据成帧,帧检测,媒体访问和差错控制 物理层:实现信道的选择、无线信号的监测、信号的发送与接收等功能 2.管理平台的功能 (1)能量管理平台管理传感器节点如何使用能源。 (2)移动管理平台检测并注册传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪邻居的位置。 (3)任务管理平台在一个给定的区域内平衡和调度监测任务。 6、无线传感器网络的应用领域(P8-9) (1)军事应用 (2)智能农业和环境监测 (3)医疗健康 (4)紧急和临时场合 (5)家庭应用 (6)空间探索

智能传感器物联网综合实训平台的设计概要

第11卷第2期2011年6月 南京工业职业技术学院学报Jour nal o fNan ji n g Institute o f I ndustry Techno logy V o.l 11,N o .2J un .,2011 收稿日期:2011 04 14 基金项目:江苏智能传感器网络工程技术研究开发中心开放基金项目(编 号:ZK10 04 02 作者简介:戴娟(1966 ,女,江苏丹阳人,南京工业职业技术学院副教授,高级工程师;倪瑛(1979 ,女,江苏丹徒人,南京工业职业技术学院 讲师。 智能传感器物联网综合实训平台的设计 戴娟,倪瑛

(南京工业职业技术学院电气与电子工程学院,江苏南京 210046 摘要:提出了智能传感器物联网综合实训平台的设计方案。此方案的硬件结构是以先进的ARM 9系列的S3C2440为控制核心,通过增加外围模块来实现的。此综合实训平台解决了高职院校物联网专业实验、实训对象缺乏的问题, 弥补了相关操作及仪器设备的空缺。 关键词:智能传感器;物联网;综合实训平台;ARM 9 中图分类号:G642.44 文献标识码:A 文章编号:1671 4644(201102 0064 03 引言 物联网[1]是通过信息传感设备,按约定的协议实现人与人、人与物、物与物全面互联的网络,其主要特征是通过射频识别、传感器等方式获取物理世界的各种信息,结合互联网、移动通信网等网络进行信息的传送与交互,采用智能计算技术对信息进行分析处理,从而提高对物质世界的感知能力,实现智能化的决策和控制。在今年下半年,全国共22所高职院校将招收物联网专业的学生。高职院校的人才培养目标,一直是以就业为导向,培养高技能应用型人才。物联网本身是应用性很强的学科,仅仅传授基本概念和基础知识是不够的,要从实验和应用入手,切实培养出符合企业和社会需求的物联网实用人才。因此在高职院校物联网专业的课程体系中,每一学期都安排相应的综合实训课程或课程设计环节。综合实训的目的就是将学生学习的专业知识融合到实际的项目中,通过实训项目的实施,使学生进一步巩固专业知识,从而掌握专业的工作技能。在高职院校,正是通过综合实训来培养学生的综合素质,其中就包括工作技能的培养,因此综合实训的重要性不言而喻。传感网络作为物联网的重要组成也受到了越来越多的关注。传感网络是一种全新网络技术,它综合了传感器、通讯以及微机电等技术,可以预见,在不久的将来,传感网络将给我们的生活方式带来革命性的变化。 1 平台设计的基本原理

《无线传感器网络》选修课试题

一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ 14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为 28 μs 、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 μs 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 μs

基于的CAN总线智能传感器节点设计精修订

基于的C A N总线智能传感器节点设计 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

基于82527的CAN总线智能传感器节点设计 摘要:介绍一种以8051微控制器和82527独立CAN总线控制器为核心组成的CAN总线智能传感器节点的设计方法,并给出其硬件原理图和初始化程序。 关键词:CAN总线 82527 单片机数据采集智能节点 引言 CAN(Controller Area Network,控制局域网)属于工业现场总线,是德国Bosch公司20世纪80年代初作为解决现代汽车中众多的控制与测试仪器间的数据交换而开发的一种通信协议。1993年11月,ISO正式颁布了高速通信控制局域网(CAN)的国际标准(ISO11898)。CAN总线系统中现场数据的采集由传感器完成,目前,带有CAN总线接口的传感器种类还不多,价格也较贵。本文给出一种由8051单片机和82527独立CAN总线控制器为核心构成的智能节点电路,在普通传感器基础上形成可接收8路模拟量输入和智能传感器节点。

1 独立CAN总线控制器82527介绍 82527是Intel公司生产的独立CAN总线控制器,可通过并行总线与Intel和Motrorola的控制器接口;支持CAN规程标准,具有接收和发送功能并可完成报文滤波。82527采用CHMOS 5V工艺制造,44脚PLCC封装,使用温度为-44~+125℃,其引脚的排列和定义参见参考文献[1]。 (1)82527的时钟信号 82527的运行由2种时钟控制:系统时钟SCLK和寄存器时钟MCLK。SCLK 由外部晶振获得,MCLK对SCLK分频获得。CAN总线的位定时依据SCLK的频率,而MCLK为寄存器操作提供时钟。SCLK频率可以等于外部晶振XTAL,也可以是其频率的1/2;MCLK的频率可以等于SCLK或是其频率的1/2。系统复位后的默认设置是SCLK=XTAL/2,MCLK=SCLK/2。 (2)82527的工作模式 82527有5种工作模式:Intel方式8位分时复用模式;Intel方式16位分时复用模式;串行接口模式;非Intel方式8位分时复用模式;8位非分时复用模式。本文应用Intel方式8位分时复用模式,此时82527的30和44脚接地。

传感器智能家居设计报告汇总

南通大学 传感器与检测课程设计报告书 学院:电气工程学院 班级:自143 姓名:钟明蕊 学号:1412011064

目录 1设计目的及要求 (1) 2总体设计方案 (2) 2.1智能家居——温度检测 2.1.1测温器件DS18B20的简介 (2) 2.1.2显示器件介绍 (3) 2.1.3硬件设计电路 (4) 2.1.4软件设计电路 (5) 2.2智能家居——气体泄漏/火灾检测 2.2.1 MQ-2/MQ-7气体传感器 (7) 2.2.2 A/D转换电路 (8) 2.2.3硬件设计电路 (8) 2.2.4软件设计电路 (9) 2.3 智能家居——外人闯入 2.3.1干簧管简介 (10) 2.3.2干簧管电路 (11) 2.3.3硬件设计电路 (11) 2.3.4软件设计电路 (12) 3各模块与TC35之间的通讯 (12) 4 TC35 GSM模块 (14) 参考文献 (15)

智能家居监控系统设计 1、设计目的及要求 1.1设计背景: 智能家居以住宅为平台,将建筑、网络通信、信息家电、管理融为一体的高效、舒适、安全、便利、环保的家居环境。智能家居是一个多功能的系统,包括家庭内部的安全防范、家居布线系统、家电控制、远程的视频监控系统等。家居智能化设计包括传感器的检测,信号的传递,结果处理等。但现在仍未普及,而且目前智能家居的国际标准未成热,因此智能家居监控系统仍然存在广阔的发展空间。 1.2设计目的: 利用所学的传感器与检测技术知识,实现家居温度、煤气泄漏、外人闯入、火灾(烟雾)的检测(以上检测项目必做。在此基础上增加检测项目并具有可行性,加分。除环境监测项目外,也可增加人体信号检测等。)。各检测节点可通过无线方式连接到主机,检测到危险信号后,主机可采用声光报警或远程报警。 1.3设计要求: (1)用Protel画出设计原理图; (2)采用Quaters II、Maxplus II、multisim(EWB)、pspice、Proteus中的一种或几种软件,完成系统电路图部分或全部仿真,在设计说明书 中体现仿真结果; (3)写设计说明书;

无线传感器网络试题库附答案

无线传感器网络试题库附答案 《无线传感器网络》 一、填空题(每题4分,共计60分) 1.传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2.传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息3、 3.无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4.无线通信物理层的主要技术包括:介质选择、频段选取、调制技术、扩频技术 5.扩频技术按照工作方式的不同,可以分为以下四种:直接序列扩频、跳频、跳时、宽带 线性调频扩频 6.定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7.无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、 应用相关的网络 8.无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、 数据融合及管理、网络安全、应用层技术

9.IEEE标准主要包括:物理层。介质访问控制层 10.简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理 引擎、图形用户界面和后台组件四个部分组成。 11.数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和 预测 12.无线传感器网络可以选择的频段有:_800MHz___915M__、、___5GHz 13.传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14.传感器网络的安全问题:(1)机密性问题。(2)点到点的消息认证问题。(3)完整 性鉴别问题。 15.规定三种帧间间隔:短帧间间隔SIFS,长度为28s a)、点协调功能帧间间隔PIFS长度是SIFS加一个时隙(slot)长度,即78s b)分布协调功能帧间间隔DIFS,DIFS长度=PIFS+1个时隙长度,DIFS的长度为128 s 16.任意相邻区域使用无频率交叉的频道是,如:1、6、11频道。 17.网络的基本元素SSID标示了一个无线服务,这个服务的内容

粮仓智能传感器设计

用于粮仓领域的智能温度传感器的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 系统以AT89C51 单片机为控制核心,利用新型一线制温度传感器DS18B20 测量温度值,实现粮仓环境温度的检测和报警。本文给出了由AT89C51 单片机和 DS18B20 构成的单总线温度测量系统的硬件电路及软件流程图。该系统具有测点多、精度高、速度快、稳定性好、报警及时等特点,也可应用于其它相关的温度控制系统,通用性较强。 关键词:一线总线;DS18B20;AT89C51;数字温度传感器 Abstract:The system for the control of the core is AT89C51,the temperature sensors DS18B20 is used to measure temperature and this system can realize ambient temperature measurement and alarm. This article introduces the hardware circuit which the software flow chart constitutes by AT89C51 monolithic integrated circuit and DS18B20. This system has many measuring point, high-precision, wide range of temperature monitoring, good stability and alarms timely, it may also be applied in other related temperature control system and the versatility is strong. Keywords:1-Wire TM;DS18B20;AT89C51;Digit Temperature Densor

无线传感器网络体系结构

无线传感器的网络体系结构 一个典型的无线传感器网络的系统架构包括分布式无线传感器节点(群)、接收发送器汇聚节点、互联网或通信卫星和任务管理节点等,如下图所示: 无线传感器网络系统架构 其中A—E则为分布式无线传感器节点群,这些节点群随机部署在监测区域内部或附近,能够通过自组织方式构成网络。这些节点通常是一个微型的嵌入式系统,它们的处理能力、存储能力和通信能力相对较弱,通过携带有限能量的电池供电。从功能上看这些节点,它们不仅要对本地收集的信息进行收集及处理,而且要对其他节点转发来的数据进行存储、管理和融合等处理,同时与其他节点协作完成一些特定的任务。 汇聚节点的各方面能力相对于上述节点群而言相对比较强,它连接传感器网络、Internet等外部网络,实现两种协议栈之间的通信协议转换,同时发布管理节点的监测任务,并把收集的数据转发到外部网络上。 当我们设计无线传感器网络体系结构时要注重以下几个方面: 1.节点资源的有效利用。由于大量低成本微型节点的资源有限,怎样有效地管 理和使用这些资源,并最大限度地延长网络寿命是WSN研究面临的一个关键技术挑战,需要在体系结构的层面上给予系统性的考虑。可供着手的方面有:○1选择低功耗的硬件设备,设计低功耗的MAC协议和路由协议。○2各功能模块间保持必要地同步,即同步休眠与唤醒。○3从系统的角度设计能耗均衡的路由协议,而不是一味的追求低功耗的路由协议,这就需要体系结构提供跨层设计的便利。○4由于节点上计算资源与存储资源有限,不适合进行复杂计算与大量数据的缓存,因此一些空间复杂度和时间复杂度高的协议与算法不适合于WSN的应用。○5随着无线通信技术的进步,带宽不断增加,例如超宽带(UWB)技术支持近百兆的带宽。WSN在不远的将来可以胜任视频音频传输,因此我们在体系结构上设计时需要考虑到这一趋势,不能仅仅

智能传感器模块设计

第三章 智能传感器模块硬件结构设计 3.1硬件系统结构 智能传感器模块(STIM)原理框图如图3-1所示,主要包括:变送器阵列模块、信号调理模块、多通道数据采集模块、TEDS模块及TII智能接口等部分。为了增强系统的集成度,设计采用了集成式的片上数据采集系统ADuC812。传感器的输出信号经调理模块放大调理,输入至 ADuC812片内的多通道ADC, ADC对相应通道模数转换后,存储于RAM中,然后通过TII智能接口将数据读入NCAP。为了方便TEDS内容的升级与更新,系统采用异步串行口来下载电子数据表格至ADuC812的片内Flash。此外,异步串行口还可用来下载和调试用户程序,方便系统开发。 图3-1智能传感器模块原理框图 STIM模块的传感器单元以温度传感器AD590为核心,从传感器出来的信号通过信号调理通道输入至ADuC812内部的多路ADC。系统硬件电路图如图3-2所示。

图3-2系统硬件电路图 3.2 片上系统ADuC812 3.2.1 ADuC812一般说明 ADuC812是全集成的高性能的12位数据采集系统,它在单个芯片内集成了高性能的自校准多通道ADC,两个12位ADC以及可编程的8位(与805l兼容)MCU。 片内8KB的闪速/电擦除(F1ash/EE)程序存储器,640字节的闪速/电擦除数据存储器以及256字节数据RAM,均由可编程内核控制。 另外MCU具有包括看门狗定时器、电源监视器和ADC DMA功能,为多处理器接口和I/O扩展提供了32条可编程的I/O线、I2C兼容的SPI和标准UART串行口I/O等。 MCU内核和模拟转换器二者均有正常、空闲和掉电工作模式,有适合于低功率应用的灵活电源管理方案。在工业温度范围内,有3V和5V两种规格电压工作器件可供选择。它有52条引脚,用扁平塑料四方形封装。ADuC812数据采集系统芯片功能框图见图3-3。

无线传感器网络节点技术

无线传感器网络的节点技术 赵泽 黄希 崔莉 中国科学院计算技术研究所 无线传感器网络的节点系统是构成无线传感器网络的基础,是承载无线传感器网络的信息感知、数据处理和网络功能的基本单元,所有与传感器网络相关的协议、机制、算法等都需要在节点上得以实现并加以优化才具有实际意义。 目前常用的节点均为采用分立元器件的系统集成技术,而面向下一代网络、采用片上系统集成技术的低功耗、低成本节点将能代表未来的发展趋势。本文将介绍传感器网络节点的体系结构及设计方法,比较几种具有代表性的节点性能,同时,介绍下一代片上节点系统的研究进展。 一、无线传感器网络节点的体系结构 根据无线传感器网络的应用需求以及功能要求,目前问世的由不同公司以及研究机构研制的无线节点在硬件结构上基本相同,只是在一些有特殊要求的地方存在细微的差别,无线节点包括如下几个基本单元:处理器单元、存储器单元、射频单元、扩展接口单元、传感器以及电源。节点的硬件体系结构框架如图1所示。 处理器Flash Ram A/D Timer 存储器传感器扩展接口射频 电 源无线传感器网络节点 图1 节点的硬件体系结构框架 二、节点设计技术要素 在节点的设计过程中,主要需要考虑以下几个因素: 1、 节点的硬件成本要低廉。无线传感器网络的规模一般比较大,在目标环境系统中,所布置的节点数量基本上在数百个到数千个以上,在如此大规模的布撒情况下,单个节点的成本问题就显得尤为突出。因此,要求在能够满足系统需求的条件下,将节点的硬件成本降低到足够低; 2、 节点具有足够的数据处理及存储能力。无线传感器网络节点主要担负两项功能,一是进行环境数据的采集,二是进行数据传输。数据采集过程一般由处理器

无线传感器网络节点设计

) 无线传感器网络节点设计 摘要:无线传感器网络是目前研究的热点,传感器节点是无线传感器网络的必要组成部分,高性能高稳定性的传感器节点成为研究的难点,文中首先阐述了无线传感器网络节点的体系结构,然后从无线传感器网络节点功能要求设计的原则出发,着重分析所提出的系统硬件电路的构成以及硬件电路核心部件设计的关键问题,并给出了具体的设计方案。 关键词:无线传感器网络 CC1100 MSP430 射频 0 引言 无线传感器网络是由大量微型传感器节点通过无线自组织方式构成的网络。它集成了传感器、微机电和无线通信三大技术,能够实时地感知、采集和处理网络覆盖范围内的对象信息,并发送给观察者;具有覆盖区域广、可远程监控、监测精度高、布网快速和成本低等优点,在军事、环保、医疗保健、空间探索、工业监控、精细农业等领域均有非常良好的应用前景。 1 无线传感器网络结构 { 一般来说,一个无线传感器网络包括传感器节点以及传感器网络网关节点,如图1所示。其中,传感器节点具有本地数据采集传输和转发邻节点数据的双重功能,可以在后台管理软件和传感器网络网关节点的控制下采集数据,并将数据经过多跳路由传输到传感器网络网关节点;传感器网络网关汇聚节点是网络的中心,具有协调器和网关的作用,负责网络的配置、管理和数据的汇集,并负责与用户PC机后台管理软件的通信。无线传感器网络通常具有两种应用模式:主动轮询模式、被动模式。主动模式要求网关节点对各个传感器节点进行主动的轮询以获得消息,而被动模式则要求在某个传感器节点事件发生时,网关节点能作出及时的响应。各个传感器节点得到的数据还能进行组合,这也很大地提高了传感器网络的效率。当然这也要求传感器节点要具有一定的计算能力。 GPRS或 Internet 图1 无线传感器网络结构 2 系统硬件设计 无线传感器网络节点的硬件一般包括处理单元、无线传输单元、传感采集单元、电源供应单元和其他扩展单元,如图2所示。其中,处理单元负责控制传感器节点的操作以及数据

相关文档
最新文档