浙江省嘉兴市、舟山市中考数学试题分类解析 专题09 三角形
【中考12年】浙江省台州市2002-中考数学试题分类解析 专题09 三角形

台州市2002-2013年中考数学试题分类解析 专题09:三角形一、选择题1. (2002年浙江台州4分)如果两个相似三角形的周长之比为1:2,那么这两个三角形的面积之比为【 】(A)1 (B) 1:2(C)1:4 (D)1:8【答案】C 。
【考点】相似三角形的性质。
【分析】∵两个相似三角形的周长比等于相似比,面积比等于相似比的平方,而周长之比为1:2,∴这两个三角形的面积之比为1:4。
故选C 。
2. (2003年浙江台州4分)如图,在Rt△ABC 中,AC =m ,∠A=α,那么BC 等于【 】A 、m sin αB 、m cos αC 、m tan αD 、m tan α。
3. (2004年浙江温州、台州4分)如图,△ABC 中,∠C=90°,AB=5,BC=3,CA=4,那么sinA 等于【 】 (A) 43 (B) 34 (C) 53 (D)54 【答案】C 。
【考点】锐角三角函数定义,【分析】根据正弦函数定义,得sinA=BC 3AB 5=。
故选C 。
4. (2006年浙江台州4分)如图,圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的高线长为【 】(A) 4cm (B) 5cm (C) 3cm (D) 8cm【答案】A。
【考点】勾股定理。
【分析】∵圆锥的底面半径、母线和高线构成直角三角形,且圆锥的母线长为5cm,底面半径为3cm,∴根据勾股定理,得此圆锥的高线长为4cm。
故选A。
5. (2006年浙江台州4分)数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果把小敏画的三角形的面积记作S△ABC,小颖画的三角形的面积记作S△DEF ,那么你认为【】(A)S△ABC>S△DEF(B)S△ABC<S△DEF(C)S△ABC= S△DEF(D)不能确定在Rt△ABG中,AG=ABsinB=5×sin50°=5sin 50°,在Rt△DHE中,∠DEH=180°-130°=50°,DH=DEsin∠DEH=5sin50°,∴AG=DH。
浙江省舟山市2018年中考数学真题试题(含解析)(1)

浙江省舟山市2018年中考数学真题试题一、选择题目1.下列几何体中,俯视图为三角形的是()A. B.C. D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。
则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C. D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二、填空题目11.分解因式m2-3m=________。
2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]
![2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]](https://img.taocdn.com/s3/m/202572d233d4b14e852468ab.png)
2009年中考试题专题之16-三角形与全等三角形试题及答案一、选择题 1.(2009年江苏省)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°3. (2009年义乌)如图,在ABC 中,90C ∠=。
,EF//AB,150∠=。
,则B ∠的度数为A .50。
B. 60。
C.30。
D. 40。
【关键词】三角形内角度数【答案】D4.(2009年济宁市)如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于A. 100°B. 120°C. 130°D. 150°A BD5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点6、(2009年海南省中考卷第5题)已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 7、(2009 黑龙江大兴安岭)如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 B .10米 C . 15米 D .20米8、(2009年崇左)一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或12 9、(2009年湖北十堰市)下列命题中,错误的是( ). A .三角形两边之和大于第三边 B .三角形的外角和等于360° C .三角形的一条中线能将三角形面积分成相等的两部分 D .等边三角形既是轴对称图形,又是中心对称图形10、(09湖南怀化)如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A .30 B .40 C .50 D .6011、(2009年清远)如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°A DB12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形ADO13、(2009年甘肃定西)如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C.D.14、(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACBABCD15、(2009肇庆)如图,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( ) A .35° B .45° C .55° D .65°CDB AEF12A B E21CDBA16、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.180017、(2009年湘西自治州)一个角是80°,它的余角是( )A .10°B .100°C .80°D .120°18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC= E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .19、(2009柳州)如图所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个20、(2009年牡丹江)如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤ACBD AC CD =·· A .1 B .2 C .3 D .4 【21、(2009桂林百色)如图所示,在方格纸上建立的平面直角坐标系中, 将△ABO 绕点O 按顺时针方向旋转90°, 得A B O ''△ ,则点A '的坐标为( ).A .(3,1)B .(3,2)C .(2,3)D .(1,3)22、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm 23、(2009年湖南长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长1C ACFAEC D BA可能是( ) A .4cm B .5cm C .6cm D .13cm24、(2009陕西省太原市)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35°D .40°25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A .4B .4.5C .5D .5.526、(2009年牡丹江)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS27、(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS123C AB B 'A '【29、(2009年包头)已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .34【30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。
2022年浙江省舟山市中考数学试卷(解析版)

2022年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)若收入3元记为3+,则支出2元记为()A .1B .1-C .2D .2-【分析】根据正负数的意义可得收入为正,支出为负解答即可.【解答】解:若收入3元记为3+,则支出2元记为2-,故选:D .2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A .B .C .D .【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看底层是三个正方形,上层左边是一个正方形.故选:B .3.(3分)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A .82.5110⨯B .72.5110⨯C .725.110⨯D .90.25110⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:8251000000 2.5110=⨯.故选:A .4.(3分)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.【分析】根据各个选项中的作图,可以判断哪个选项符合题意.【解答】解:由图可知,选项A、B、C中的线都可以作为角平分线;选项D中的图作出的是平行四边形,不能保证角中间的线是角平分线,故选:D.5.(3的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【分析】根据无理数的估算分析解题.【解答】解:469,<<∴<<,∴<<,23故选:C.6.(3分)如图,在ABCAB AC==.点E,F,G分别在边AB,BC,AC上,∆中,8GF AB,则四边形AEFG的周长是()EF AC,////A.32B.24C.16D.8【分析】根据//∠=∠,GF AB,可以得到四边形AEFG是平行四边形,B GFC EF AC,//==和等量代换,即可求得四边形AEFG的周长.AB ACC EFB∠=∠,再根据8【解答】解://GF AB,,//EF AC∴四边形AEFG 是平行四边形,B GFC ∠=∠,C EFB ∠=∠,AB AC = ,B C ∴∠=∠,B EFB ∴∠=∠,GFC C ∠=∠,EB EF ∴=,FG GC =,四边形AEFG 的周长是AE EF FG AG +++,∴四边形AEFG 的周长是AE EB GC AG AB AC +++=+,8AB AC == ,∴四边形AEFG 的周长是8816AG AC +=+=,故选:C.7.(3分)A ,B 两名射击运动员进行了相同次数的射击.下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是()A .AB x x >且22A B S S >B .A B x x >且22A B S S <C .A B x x <且22AB S S >D .A B x x <且22AB S S <【分析】根据平均数及方差的意义直接求解即可.【解答】解:A ,B 两名射击运动员进行了相同次数的射击,当A 的平均数大于B ,且方差比B 小时,能说明A 成绩较好且更稳定.故选:B .8.(3分)上学期某班的学生都是双人桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x 人,女生y 人,根据题意可得方程组为()A .445x y x y+=⎧⎪⎨=⎪⎩B .454x yx y+=⎧⎪⎨=⎪⎩C .445x yx y-=⎧⎪⎨=⎪⎩D .454x yx y-=⎧⎪⎨=⎪⎩【分析】根据14男生与女生同桌,这些女生占全班女生的15,可以得到1145x y =,根据本学期该班新转入4个男生后,男女生刚好一样多,可得4x y +=,从而可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,41145x yx y +=⎧⎪⎨=⎪⎩,故选:A .9.(3分)如图,在Rt ABC ∆和Rt BDE ∆中,90ABC BDE ∠=∠=︒,点A 在边DE 的中点上,若AB BC =,2DB DE ==,连结CE ,则CE 的长为()ABC .4D【分析】根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB 和BC 的长,根据等面积法可以求得EG 的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可.【解答】解:作EF CB ⊥交CB 的延长线于点F ,作EG BA ⊥交BA 的延长线于点G ,2DB DE == ,90BDE ∠=︒,点A 是DE的中点,BE ∴===1DA EA ==,AB ∴==,AB BC =,BC ∴=, 22AE BD AB EG⋅⋅=,∴12522EG⨯=,解得5EG =,EG BG ⊥ ,EF BF ⊥,90ABF ∠=︒,∴四边形EFBG 是矩形,255EG BF ∴==,BE = ,255BF =,655EF ∴===,55CF BF BC =+=+,90EFC ∠=︒ ,EC ∴===,故选:D .10.(3分)已知点(,)A a b ,(4,)B c 在直线3(y kx k =+为常数,0)k ≠上,若ab 的最大值为9,则c 的值为()A .52B .2C .32D .1【分析】由点(,)A a b ,(4,)B c 在直线3y kx =+上,可得343ak b k c +=⎧⎨+=⎩①②,即得2239(3)3()24ab a ak ka a k a k k =+=+=+-,根据ab 的最大值为9,得14k =-,即可求出2c =.【解答】解: 点(,)A a b ,(4,)B c 在直线3y kx =+上,∴343ak b k c +=⎧⎨+=⎩①②,由①可得:2239(3)3()24ab a ak ka a k a k k=+=+=+-,ab 的最大值为9,0k ∴<,994k-=,解得14k =-,把14k =-代入②得:14()34c ⨯-+=,2c ∴=,故选:B .二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:2m m +=(1)m m +.【分析】根据多项式的特征选择提取公因式法进行因式分解.【解答】解:2(1)m m m m +=+.故答案为:(1)m m +.12.(4分)正八边形一个内角的度数为135︒.【分析】首先根据多边形内角和定理:(2)180(3n n -⋅︒,且n 为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(82)1801080-⨯︒=︒,每一个内角的度数为110801358⨯︒=︒.故答案为:135︒.13.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是25.【分析】直接根据概率公式可求解.【解答】解: 盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是25;故答案为:25.14.(4分)如图,在直角坐标系中,ABC ∆的顶点C 与原点O 重合,点A 在反比例函数(0,0)ky k x x=>>的图象上,点B 的坐标为(4,3),AB 与y 轴平行,若AB BC =,则k =32.【分析】由点B 的坐标为(4,3)求出5BC =,又AB BC =,AB 与y 轴平行,可得(4,8)A ,用待定系数法即得答案.【解答】解: 点B 的坐标为(4,3),(0,0)C ,5BC ∴==,5AB BC ∴==,AB 与y 轴平行,(4,8)A ∴,把(4,8)A 代入ky x=得:84k =,解得32k =,故答案为:32.15.(4分)某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为()k N .若铁笼固定不动,移动弹簧秤使BP 扩大到原来的(1)n n >倍,且钢梁保持水平,则弹簧秤读数为kn()N (用含n ,k 的代数式表示).【分析】根据“动力⨯动力臂=阻力⨯阻力臂”分别列式,从而代入计算.【解答】解:如图,设装有大象的铁笼重力为a N ,将弹簧秤移动到B '的位置时,弹簧秤的度数为k ',由题意可得BP k PA a ⋅=⋅,B P k PA a '⋅'=⋅,BP k B P k ∴⋅='⋅',又B P nBP '= ,BP k BP k kk B P nBP n⋅⋅∴'===',故答案为:kn.16.(4分)如图,在扇形AOB 中,点C ,D 在 AB 上,将 CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则 EF的度数为60︒,折痕CD 的长为.【分析】设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,可得OO CD '⊥,CH DH =,6O C OA '==,根据切线的性质开证明60EOF ∠=︒,则可得 EF 的度数;然后根据垂径定理和勾股定理即可解决问题.【解答】解:如图,设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,OO CD ∴'⊥,CH DH =,6O C OA '==,将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .90O EO O FO ∴∠'=∠'=︒,120AOB ∠=︒ ,60EO F ∴∠'=︒,则 EF的度数为60︒;120AOB ∠=︒ ,60O OF ∴∠'=︒,O F OB '⊥ ,6O E O F O C '='='=,sin 6032O F OO '∴'===︒,O H ∴'=CH ∴===,2CD CH ∴==.故答案为:60︒,.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(101)-.(2)解不等式:841x x +<-.【分析】(1)根据立方根和零指数幂可以解答本题;(2)根据解一元一次不等式的方法可以解答本题.【解答】解:(1)01)--21=-1=;(2)841x x +<-移项及合并同类项,得:39x -<-,系数化为1,得:3x >.18.(6分)小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =.求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:AC BD ⊥,OB OD =,AC ∴垂直平分BD .AB AD ∴=,CB CD =,∴四边形ABCD 是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.【解答】解:赞成小洁的说法,补充条件:OA OC =,证明如下:OA OC = ,OB OD =,∴四边形ABCD 是平行四边形,又AC BD ⊥ ,∴平行四边形ABCD 是菱形.19.(6分)观察下面的等式:111236=+,1113412=+,1114520=+,⋯⋯(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数).(2)请运用分式的有关知识,推理说明这个结论是正确的.【分析】(1)观察已知等式,可得规律,用含n 的等式表达即可;(2)先通分,计算同分母分式相加,再约分,即可得到(1)中的等式.【解答】解:(1)观察规律可得:1111(1)n n n n =+++;(2) 111(1)n n n +++1(1)(1)n n n n n =+++1(1)n n n +=+1n=,∴1111(1) n n n n=+++.20.(8分)6月13日,某港口的湖水高度()y cm和时间()x h的部分数据及函数图象如下:()x h⋯1112131415161718⋯()y cm⋯18913710380101133202260⋯(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x=时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【分析】(1)①先描点,然后画出函数图象;②利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围.【解答】解:(1)①如图:②通过观察函数图象,当4x =时,200y =,当y 值最大时,21x =;(2)该函数的两条性质如下(答案不唯一):①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值为80;(3)由图象,当260y =时,5x =或10x =或18x =或23x =,∴当510x <<或1823x <<时,260y >,即当510x <<或1823x <<时,货轮进出此港口.21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知10AD BE cm ==,5CD CE cm ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.(结果精确到0.1cm .参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84)︒≈【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得20DCF ∠=︒,利用锐角三角函数即可解决问题;(2)根据横截面是一个轴对称图形,延长CF 交AD 、BE 延长线于点G ,连接AB ,所以//DE AB ,根据直角三角形两个锐角互余可得20A GDE ∠=∠=︒,然后利用锐角三角函数即可解决问题.【解答】解:(1)如图,过点C 作CF DE ⊥于点F ,5CD CE cm == ,40DCE ∠=︒.20DCF ∴∠=︒,sin 2050.34 1.7()DF CD cm ∴=⋅︒≈⨯≈,2 3.4DE DF cm ∴=≈,∴线段DE 的长约为3.4cm ;(2) 横截面是一个轴对称图形,∴延长CF 交AD 、BE 延长线于点G ,连接AB ,//DE AB ∴,A GDE ∴∠=∠,AD CD ⊥ ,BE CE ⊥,90GDF FDC ∴∠+∠=︒,90DCF FDC ∠+∠=︒ ,20GDF DCF ∴∠=∠=︒,20A ∴∠=︒, 1.71.8()cos 200.94DF DG cm ∴=≈≈︒,10 1.811.8()AG AD DG cm ∴=+=+=,2cos 20211.80.9422.2()AB AG cm ∴=⋅︒≈⨯⨯≈.∴点A ,B 之间的距离22.2cm .22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间()x<,第二组(0.51)x<,x h分为5组:第一组(00.5)第三组(1 1.5)x.x<,第五组(2)x<,第四组(1.52)根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第二组;(2)(1200200)(18.7%43.2%30.6%)175-⨯---=(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).23.(10分)已知抛物线21:(1)4(0)L y a x a =+-≠经过点(1,0)A .(1)求抛物线1L 的函数表达式.(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.【分析】(1)把(1,0)A 代入2(1)4y a x =+-即可解得抛物线1L 的函数表达式为223y x x =+-;(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,顶点为(1,4)m --+,关于原点的对称点为(1,4)m -,代入223y x x =+-可解得m 的值为4;(3)把抛物线1L 向右平移(0)n n >个单位得抛物线3L 为2(1)4y x n =-+-,根据点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,当6t >时,s r >,可得22[(9)4][(3)4]0t n t n ------->,即可解得n 的取值范围是3n >.【解答】解:(1)把(1,0)A 代入2(1)4y a x =+-得:2(11)40a +-=,解得1a =,22(1)423y x x x ∴=+-=+-;答:抛物线1L 的函数表达式为223y x x =+-;(2)抛物线21:(1)4L y x =+-的顶点为(1,4)--,将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,则抛物线2L 的顶点为(1,4)m --+,而(1,4)m --+关于原点的对称点为(1,4)m -,把(1,4)m -代入223y x x =+-得:212134m +⨯-=-,解得4m =,答:m 的值为4;(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,抛物线3L 解析式为2(1)4y x n =-+-,点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,22(81)4(9)4s t n t n ∴=--+-=---,22(41)4(3)4r t n t n =--+-=---,当6t >时,s r >,0s r ∴->,22[(9)4][(3)4]0t n t n ∴------->,整理变形得:22(9)(3)0t n t n ----->,(93)(93)0t n t n t n t n --+-----++>,(62)(122)0n t -->,6t > ,1220t ∴-<,620n ∴-<,解得3n >,n ∴的取值范围是3n >.24.(12分)如图1,在正方形ABCD 中,点F ,H 分别在边AD ,AB 上,连结AC ,FH 交于点E ,已知CF CH =.(1)线段AC 与FH 垂直吗?请说明理由.(2)如图2,过点A ,H ,F 的圆交CF 于点P ,连结PH 交AC 于点K .求证:KH AK CH AC=.(3)如图3,在(2)的条件下,当点K 是线段AC 的中点时,求CPPF的值.【分析】(1)通过证明Rt DCF Rt BCH ∆≅∆,结合正方形和等腰三角形的性质进行推理证明;(2)过点K 作KM AH ⊥,交AH 于点M ,通过证明KMH CBH ∆∆∽,//KM BC ,从而利用相似三角形的性质分析推理;(3)设圆的半径为r ,FHP α∠=,在(2)的条件下,根据线段中点的概念结合解直角三角形求得cos CP CK α=⋅,2sin PF r α=⋅,从而进行分析计算.【解答】(1)解:线段AC 与FH 垂直,理由如下:在正方形ABCD 中,CD CB =,90D B ∠=∠=︒,45DCA BCA ∠=∠=︒,在Rt DCF ∆和Rt BCH ∆中CD CBCF CH =⎧⎨=⎩,Rt DCF Rt BCH(HL)∴∆≅∆,DCF BCH ∴∠=∠,FCA HCA ∴∠=∠,又CF CH = ,AC FH ∴⊥;(2)证明:90DAB ∠=︒ ,FH ∴为圆的直径,90FPH ∴∠=︒,又CF CH = ,AC FH ⊥,∴点E 为FH 的中点,CFD KHA ∴∠=∠,又Rt DCF Rt BCH ∆≅∆ ,CFD CHB ∴∠=∠,KHA CHB ∴∠=∠,过点K 作KM AH ⊥,交AH 于点M ,90KMH B ∴∠=∠=︒,KMH CBH ∴∆∆∽,//KM BC ,∴KH KM CH BC =,KM AKBC AC =,∴KH AKCH AC =.(3)K 为AC 中点,∴12KH AK CH AC ==,设MH a =,则2BH a =,3KM AM a ==,6AB CB a ∴==,4AH a =,在Rt BCH ∆中,CH CF ===,在Rt AFH ∆中,FH ==,EH ∴=,180EPH FAH ∠+∠=︒ ,90EPH CEH ∴∠=∠=︒,又CHE PFH ∠=∠ ,FPH HEC ∴∆∆∽,∴PF FHEH CH=,4105PF ∴=,5CP CF PF ∴=-=,∴32CF PF =.。
2022年浙江省嘉兴市中考数学试卷含答案解析

2022年浙江省嘉兴市中考数学试卷及答案解析一、选择题(本题有10小题,每题3分,共30分.)1.(3分)若收入3元记为3+,则支出2元记为()A.2-B.1-C.1D.22.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.a a⋅)3.(3分)计算2(A.a B.3a C.22a D.3a4.(3分)如图,在O中,130∠的度数为()∠=︒,点A在BAC上,则BACBOCA.55︒B.65︒C.75︒D.130︒5.(3分)不等式312x x+<的解集在数轴上表示正确的是()A.B.C.D.6.(3分)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形'''',形成一个“方胜”图案,则点D,B'之间的距离为()A B C D-A.1cm B.2cm C.(21)cm D.(221)cm7.(3分)A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A .AB x x >且22A B S S >B .A B x x <且22A B S S >C .A B x x >且22A B S S < D .A B x x <且22A B S S <8.(3分)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( ) A .7317x y x y +=⎧⎨+=⎩B .9317x y x y +=⎧⎨+=⎩C .7317x y x y +=⎧⎨+=⎩D .9317x y x y +=⎧⎨+=⎩9.(3分)如图,在ABC ∆中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,//EF AC ,//GF AB ,则四边形AEFG 的周长是( )A .8B .16C .24D .3210.(3分)已知点(,)A a b ,(4,)B c 在直线3(y kx k =+为常数,0)k ≠上,若ab 的最大值为9,则c 的值为( ) A .1B .32C .2D .52二、填空题(本题有6小题,每题4分,共24分) 11.(4分)分解因式:21m -= .12.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是 .13.(4分)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件 .14.(4分)如图,在ABC ∆中,90ABC ∠=︒,60A ∠=︒,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为 .15.(4分)某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为()k N .若铁笼固定不动,移动弹簧秤使BP 扩大到原来的(1)n n >倍,且钢梁保持水平,则弹簧秤读数为 ()N (用含n ,k 的代数式表示).16.(4分)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为 ,折痕CD 的长为 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(6分)(1)计算:03(18)4--. (2)解方程:3121x x -=-. 18.(6分)小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =.求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流. 小惠:证明:AC BD ⊥,OB OD =,AC ∴垂直平分BD .AB AD ∴=,CB CD =,∴四边形ABCD 是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.19.(6分)设5a 是一个两位数,其中a 是十位上的数字(19)a .例如,当4a =时,5a 表示的两位数是45. (1)尝试:①当1a =时,2152251210025==⨯⨯+; ②当2a =时,2256252310025==⨯⨯+; ③当3a =时,2351225== ;⋯⋯(2)归纳:25a 与100(1)25a a ++有怎样的大小关系?试说明理由.(3)运用:若25a与100a的差为2525,求a的值.20.(8分)6月13日,某港口的湖水高度()x h的部分数据及函数图象如下:y cm和时间()x h⋯1112131415161718⋯()()y cm⋯18913710380101133202260⋯(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x=时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知10AD BE cm⊥,==,AD CD⊥,BE CECD CE cm==,5∠=︒.40DCE(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin200.34︒≈,︒≈,sin400.64︒≈,tan200.36︒≈,cos200.94︒≈cos400.77︒≈,tan400.84)22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间()x h分为5组:第一组(00.5)x<,第二组(0.51)x<,第三组(1 1.5)x<,第五组(2)x.x<,第四组(1.52)根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.23.(10分)已知抛物线21:(1)4(0)L y a x a =+-≠经过点(1,0)A . (1)求抛物线1L 的函数表达式.(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,若点1(1,)B y ,2(3,)C y 在抛物线3L 上,且12y y >,求n 的取值范围.24.(12分)小东在做九上课本123页习题:“1:2也是一个很有趣的比.已知线段AB (如图1),用直尺和圆规作AB 上的一点P ,使:1:2AP AB =.”小东的作法是:如图2,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点.小东称点P 为线段AB 的“趣点”. (1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造DPE ∆,使得DPE CPB ∆∆∽.①如图3,当点D 运动到点A 时,求CPE ∠的度数.②如图4,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时()CD AD <,猜想:点N 是否为线段ME 的“趣点”?并说明理由.2022年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.) 1.(3分)若收入3元记为3+,则支出2元记为( ) A .2-B .1-C .1D .2【分析】根据正负数的概念得出结论即可.【解答】解:由题意知,收入3元记为3+,则支出2元记为2-, 故选:A .2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .【分析】根据主视方向判断出主视图即可. 【解答】解:由图可知主视图为:故选:C .3.(3分)计算2(a a ⋅ ) A .aB .3aC .22aD .3a【分析】根据同底数幂相乘,底数不变,指数相加,即可解决问题. 【解答】解:原式123a a +==. 故选:D .4.(3分)如图,在O 中,130BOC ∠=︒,点A 在BAC 上,则BAC ∠的度数为( )A .55︒B .65︒C .75︒D .130︒【分析】根据同弧所对的圆周角等于圆心角的一半即可得出BAC ∠的度数. 【解答】解:130BOC ∠=︒,点A 在BAC 上, 111306522BAC BOC ∴∠=∠=⨯︒=︒,故选:B .5.(3分)不等式312x x +<的解集在数轴上表示正确的是( ) A . B .C .D .【分析】根据解不等式的方法可以解答本题. 【解答】解:312x x +<, 移项,得:321x x -<-, 合并同类项,得:1x <-, 其解集在数轴上表示如下: ,故选:B .6.(3分)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B '之间的距离为( )A .1cmB .2cmC .(21)cmD .(221)cm -【分析】根据正方形的性质、勾股定理求出BD ,根据平移的概念求出BB ',计算即可. 【解答】解:四边形ABCD 为边长为2cm 的正方形, 222222()BD cm ∴=+,由平移的性质可知,1BB cm '=,1)B D cm ∴'=,故选:D .7.(3分)A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A .AB x x >且22A B S S >B .A B x x <且22A B S S >C .A B x x >且22A B S S < D .A B x x <且22A B S S <【分析】根据平均数及方差的意义直接求解即可.【解答】解:A ,B 两名射击运动员进行了相同次数的射击,当A 的平均数大于B ,且方差比B 小时,能说明A 成绩较好且更稳定. 故选:C .8.(3分)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( ) A .7317x y x y +=⎧⎨+=⎩B .9317x y x y +=⎧⎨+=⎩C .7317x y x y +=⎧⎨+=⎩D .9317x y x y +=⎧⎨+=⎩【分析】由题意:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.列出二元一次方程组即可. 【解答】解:根据题意得:92317x y x y +=-⎧⎨+=⎩,即7317x y x y +=⎧⎨+=⎩,故选:A .9.(3分)如图,在ABC ∆中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,//EF AC ,//GF AB ,则四边形AEFG 的周长是( )A .8B .16C .24D .32【分析】由//EF AC ,//GF AB ,得四边形AEFG 是平行四边形,B GFC ∠=∠,C EFB ∠=∠,再由8AB AC ==和等量代换,即可求得四边形AEFG 的周长.【解答】解://EF AC ,//GF AB ,∴四边形AEFG 是平行四边形,B GFC ∠=∠,C EFB ∠=∠,AB AC =, B C ∴∠=∠,B EFB ∴∠=∠,GFC C ∠=∠,EB EF ∴=,FG GC =,四边形AEFG 的周长AE EF FG AG =+++,∴四边形AEFG 的周长AE EB GC AG AB AC =+++=+,8AB AC ==,∴四边形AEFG 的周长8816AB AC =+=+=,故选:B .10.(3分)已知点(,)A a b ,(4,)B c 在直线3(y kx k =+为常数,0)k ≠上,若ab 的最大值为9,则c 的值为( ) A .1B .32C .2D .52【分析】由点(,)A a b ,(4,)B c 在直线3y kx =+上,可得343ak b k c +=⎧⎨+=⎩①②,即得2239(3)3()24ab a ak ka a k a k k =+=+=+-,根据ab 的最大值为9,得14k =-,即可求出2c =. 【解答】解:点(,)A a b ,(4,)B c 在直线3y kx =+上,∴343ak b k c +=⎧⎨+=⎩①②,由①可得:2239(3)3()24ab a ak ka a k a k k=+=+=+-, ab 的最大值为9, 0k ∴<,994k-=, 解得14k =-,把14k =-代入②得:14()34c ⨯-+=,2c ∴=,故选:C .二、填空题(本题有6小题,每题4分,共24分) 11.(4分)分解因式:21m -= (1)(1)m m +- .【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:22()()a b a b a b -=+-.【解答】解:21(1)(1)m m m -=+-.12.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是 25. 【分析】直接根据概率公式可求解.【解答】解:盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是25; 故答案为:25. 13.(4分)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件 60B ∠=︒ .【分析】根据等边三角形的判定定理填空即可.【解答】解:有一个角是60︒的等腰三角形是等边三角形, 故答案为:60B ∠=︒.14.(4分)如图,在ABC ∆中,90ABC ∠=︒,60A ∠=︒,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为233.【分析】根据正切的定义求出AB ,证明ADE ABC ∆∆∽,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】解:由题意得,1DE =,3BC =, 在Rt ABC ∆中,60A ∠=︒, 则3tan 3BC AB A == //DE BC , ADE ABC ∴∆∆∽,∴DE ADBC AB =,即1333BD -= 解得:23BD , 2315.(4分)某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为()k N .若铁笼固定不动,移动弹簧秤使BP 扩大到原来的(1)n n >倍,且钢梁保持水平,则弹簧秤读数为 kn()N (用含n ,k 的代数式表示).【分析】根据“动力⨯动力臂=阻力⨯阻力臂”分别列式,从而代入计算.【解答】解:如图,设装有大象的铁笼重力为a N ,将弹簧秤移动到B '的位置时,弹簧秤的度数为k ',由题意可得BP k PA a ⋅=⋅,B P k PA a '⋅'=⋅, BP k B P k ∴⋅='⋅',又B P nBP '=, BP k BP k kk B P nBP n⋅⋅∴'===', 故答案为:kn. 16.(4分)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为 60︒ ,折痕CD 的长为 .【分析】设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,可得OO CD '⊥,CH DH =,6O C OA '==,根据切线的性质开证明60EOF ∠=︒,则可得EF 的度数;然后根据垂径定理和勾股定理即可解决问题.【解答】解:如图,设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,OO CD ∴'⊥,CH DH =,6O C OA '==,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . 90O EO O FO ∴∠'=∠'=︒, 120AOB ∠=︒, 60EO F ∴∠'=︒,则EF 的度数为60︒; 120AOB ∠=︒, 60O OF ∴∠'=︒,O F OB '⊥,6O E O F O C '='='=, 43sin 603O F OO '∴'===︒ 23O H ∴'=22361226CH O C O H ∴='-'- 246CD CH ∴==.故答案为:60︒,46.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(6分)(1)计算:03(18)4--. (2)解方程:3121x x -=-. 【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解; (2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根. 【解答】解:(1)原式121=-=-; (2)去分母得321x x -=-, 31x ∴-=-, 2x ∴=-,经检验2x =-是分式方程的解,∴原方程的解为:2x =-.18.(6分)小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =.求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流. 小惠:证明:AC BD ⊥,OB OD =,AC ∴垂直平分BD .AB AD ∴=,CB CD =,∴四边形ABCD 是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理. 【解答】解:赞成小洁的说法,补充条件:OA OC =,证明如下: OA OC =,OB OD =,∴四边形ABCD 是平行四边形,又AC BD ⊥,∴平行四边形ABCD 是菱形.19.(6分)设5a 是一个两位数,其中a 是十位上的数字(19)a .例如,当4a =时,5a 表示的两位数是45. (1)尝试:①当1a =时,2152251210025==⨯⨯+; ②当2a =时,2256252310025==⨯⨯+; ③当3a =时,2351225== 3410025⨯⨯+ ;⋯⋯(2)归纳:25a 与100(1)25a a ++有怎样的大小关系?试说明理由. (3)运用:若25a 与100a 的差为2525,求a 的值. 【分析】(1)根据规律直接得出结论即可;(2)根据225(105)(105)10010025100(1)25a a a a a a a =++=++=++即可得出结论; (3)根据题意列出方程求解即可. 【解答】解:(1)①当1a =时,2152251210025==⨯⨯+;②当2a =时,2256252310025==⨯⨯+;∴③当3a =时,23512253410025==⨯⨯+,故答案为:3410025⨯⨯+;(2)25100(1)25a a a =++,理由如下:225(105)(105)10010025100(1)25a a a a a a a =++=++=++;(3)由题知,251002525a a -=, 即2100100251002525a a a ++-=, 解得5a =或5-(舍去), a ∴的值为5.20.(8分)6月13日,某港口的湖水高度()y cm 和时间()x h 的部分数据及函数图象如下:()y cm⋯18913710380101133202260⋯(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x=时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【分析】(1)①先描点,然后画出函数图象;②利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围.【解答】解:(1)①如图:②通过观察函数图象,当4x =时,200y =,当y 值最大时,21x =; (2)该函数的两条性质如下(答案不唯一): ①当27x 时,y 随x 的增大而增大; ②当14x =时,y 有最小值为80;(3)由图象,当260y =时,5x =或10x =或18x =或23x =,∴当510x <<或1823x <<时,260y >,即当510x <<或1823x <<时,货轮进出此港口.21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知10AD BE cm ==,5CD CE cm ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(1)连结DE ,求线段DE 的长. (2)求点A ,B 之间的距离.(结果精确到0.1cm .参考数据:sin200.34︒≈,cos200.94︒≈,tan200.36︒≈,sin400.64︒≈,cos400.77︒≈,tan 400.84)︒≈【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得20DCF ∠=︒,利用锐角三角函数即可解决问题;(2)根据横截面是一个轴对称图形,延长CF 交AD 、BE 延长线于点G ,连接AB ,所以//DE AB ,根据直角三角形两个锐角互余可得20A GDE ∠=∠=︒,然后利用锐角三角函数即可解决问题.【解答】解:(1)如图,过点C 作CF DE ⊥于点F ,5CD CE cm ==,40DCE ∠=︒. 20DCF ∴∠=︒,sin 2050.34 1.7()DF CD cm ∴=⋅︒≈⨯≈, 2 3.4DE DF cm ∴=≈,∴线段DE 的长约为3.4cm ;(2)横截面是一个轴对称图形,∴延长CF 交AD 、BE 延长线于点G ,连接AB , //DE AB ∴, A GDE ∴∠=∠, AD CD ⊥,BE CE ⊥, 90GDF FDC ∴∠+∠=︒, 90DCF FDC ∠+∠=︒, 20GDF DCF ∴∠=∠=︒, 20A ∴∠=︒, 1.71.8()cos200.94DF DG cm ∴=≈≈︒,10 1.811.8()AG AD DG cm ∴=+=+=, 2cos20211.80.9422.2()AB AG cm ∴=⋅︒≈⨯⨯≈.∴点A ,B 之间的距离22.2cm .22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间()x h分为5组:第一组(00.5)x<,x<,第二组(0.51)第三组(1 1.5)x<,第四组(1.52)x.x<,第五组(2)根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第二组;(2)(1200200)(18.7%43.2%30.6%)175-⨯---=(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).23.(10分)已知抛物线21:(1)4(0)L y a x a =+-≠经过点(1,0)A . (1)求抛物线1L 的函数表达式.(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,若点1(1,)B y ,2(3,)C y 在抛物线3L 上,且12y y >,求n 的取值范围.【分析】(1)把(1,0)代入抛物线的解析式求出a 即可;(2)求出平移后抛物线的顶点关于原点对称点的坐标,利用待定系数法求解即可; (3)抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,的解析式为2(1)4y x n =-+-,根据12y y >,构建不等式求解即可. 【解答】解:(1)2(1)4(0)y a x a =+-≠经过点(1,0)A ,440a ∴-=, 1a ∴=,∴抛物线1L 的函数表达式为223y x x =+-;(2)2(1)4y x =+-,∴抛物线的顶点(1,4)--,将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点(1,4)m --+, 而(1,4)m --+关于原点的对称点为(1,4)m -, 把(1,4)m -代入223y x x =+-得到,1234m +-=-,4m ∴=;(3)抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,的解析式为2(1)4y x n =-+-, 点1(1,)B y ,2(3,)C y 在抛物线3L 上,21(2)4y n ∴=--,22(4)4y n =--, 12y y >,22(2)4(4)4n n ∴-->--, 解得3n >,n ∴的取值范围为3n >.24.(12分)小东在做九上课本123页习题:“1:2也是一个很有趣的比.已知线段AB (如图1),用直尺和圆规作AB 上的一点P ,使:1:2AP AB =.”小东的作法是:如图2,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点.小东称点P 为线段AB 的“趣点”. (1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造DPE ∆,使得DPE CPB ∆∆∽.①如图3,当点D 运动到点A 时,求CPE ∠的度数.②如图4,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时()CD AD <,猜想:点N 是否为线段ME 的“趣点”?并说明理由.【分析】(1)利用等腰三角形的性质证明2AC AB =,再利用AC AP =,即可得出结论; (2)①由题意可得:45CAB B ∠=∠=︒,90ACB ∠=︒,AC AP BC ==,再求解67.5ACP APC ∠=∠=︒,112.5CPB ∠=︒,证明112.5DPE CPB ∠=∠=︒,从而可得答案;②先证明ADP ACB ∆∆∽,可得45APD ∠=︒,//DP CB ,再证明MP MD MC MN ===,45EMP ∠=︒,90MPE ∠=︒,从而可得出结论.【解答】解:(1)赞同,理由如下: ABC ∆是等腰直角三角形, AC BC ∴=,45A B ∠=∠=︒,cos 45AC AB ∴︒===, AC AP =,∴AP AB =, ∴点P 为线段AB 的“趣点”.(2)①由题意得:45CAB B ∠=∠=︒, 90ACB ∠=︒,AC AP BC ==,∴1(18045)67.52ACP APC ∠=∠=⨯︒-︒=︒, 9067.522.5BCP ∴∠=︒-︒=︒, 1804522.5112.5CPB ∴∠=︒-︒-︒=︒, DPE CPB ∆∆∽,D ,A 重合, 112.5DPE CPB ∴∠=∠=︒,18045CPE DPE CPB ∴∠=∠+∠-︒=︒;②点N 是线段ME 的趣点,理由如下: 当点D 为线段AC 的趣点时()CD AD <,∴AD AC =, AC AP =,∴ADAP =,ACAB=,A A ∠=∠,ADP ACB ∴∆∆∽, 90ADP ACB ∴∠=∠=︒, 45APD ∴∠=︒,//DP CB , 22.5DPC PCB PDE ∴∠=∠=︒=∠,DM PM ∴=,9022.567.5MDC MCD ∴∠=∠=︒-︒=︒, MD MC ∴=,同理可得MC MN =, MP MD MC MN ∴===,22.5MDP MPD ∠=∠=︒,45E B ∠=∠=︒, 45EMP ∴∠=︒,90MPE ∠=︒,∴MP MNME ME=, ∴点N 是线段ME 的“趣点”。
2021年浙江省嘉兴市中考数学试卷(解析版)

2021年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分,请选出各题中唯一的正确选项,不选、多选错选,均不得分)1.(3分)2021年5月22日,我国自主研发的“祝融号”火星车成功到达火星表面.已知火星与地球的最近距离约为55000000千米,数据55000000用科学记数法表示为()A.55×106B.5.5×107C.5.5×108D.0.55×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值≥10时,n是正数.【解答】解:55000000=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形,右齐.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A.x=﹣1B.x=+1C.x=3D.x=﹣【分析】根据题意,只要x2是有理数,即求出各个选项中x2的值,再判断即可.【解答】解:(﹣1)2=3﹣2,是无理数,不符合题意;(+1)2=3+2,是无理数,不符合题意;(3)2=18,是有理数,符合题意;(﹣)2=5﹣2,是无理数,不符合题意;故选:C.【点评】本题考查了命题,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.(3分)已知三个点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=的图象上,其中x1<x2<0<x3,下列结论中正确的是()A.y2<y1<0<y3B.y1<y2<0<y3C.y3<0<y2<y1D.y3<0<y1<y2【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=中,k=2>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小.∵x1<x2<0<x3,∴点(x1,y1),(x2,y2)两点在第三象限,点(x3,y3)在第一象限,∴y2<y1<0<y3.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.(3分)将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是()A.等腰三角形B.直角三角形C.矩形D.菱形【分析】对折是轴对称得到的图形,根据最后得到的图形可得是沿对角线折叠2次后,剪去一个三角形得到的,按原图返回即可.【解答】解:如图,由题意可知,剪下的图形是四边形BACD,由折叠可知CA=AB,∴△ABC是等腰三角形,又△ABC和△BCD关于直线BC对称,∴四边形BACD是菱形,故选:D.【点评】本题主要考查折叠的性质及学生动手操作能力:逆向思维也是常用的一种数学思维方式.6.(3分)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33℃B.众数是33℃C.平均数是℃D.4日至5日最高气温下降幅度较大【分析】分别确定7个数据的中位数、众数及平均数后即可确定正确的选项.【解答】解:A、7个数排序后为23,25,26,27,30,33,33,位于中间位置的数为27,所以中位数为27℃,故A错误,符合题意;B、7个数据中出现次数最多的为33,所以众数为33℃,正确,不符合题意;C、平均数为(23+25+26+27+30+33+33)=,正确,不符合题意;D、观察统计表知:4日至5日最高气温下降幅度较大,正确,不符合题意,故选:A.【点评】考查了统计的知识,解题的关键是了解如何确定一组数据的中位数、众数及平均数,难度不大.7.(3分)已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为()A.相离B.相交C.相切D.相交或相切【分析】根据直线上点与圆的位置关系的判定得出直线与圆的位置关系.【解答】解:⊙O的半径为2cm,线段OA=3cm,OB=2cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外,点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.【点评】本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.8.(3分)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.9.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连结DE,点F,G分别是BC和DE的中点,连结AG,FG,当AG =FG时,线段DE长为()A.B.C.D.4【分析】分别过点G,F作AB的垂线,垂足为M,N,过点G作GP⊥FN于点P,由中位线定理及勾股定理可分别表示出线段AG和FG的长,建立等式可求出结论.【解答】解:法一、如图,分别过点G,F作AB的垂线,垂足为M,N,过点G作GP ⊥FN于点P,∴四边形GMNP是矩形,∴GM=PN,GP=MN,∵∠BAC=90°,AB=AC=5,∴CA⊥AB,又∵点G和点F分别是线段DE和BC的中点,∴GM和FN分别是△ADE和△ABC的中位线,∴GM==1,AM=AE,FN=AC=,AN=AB=,∴MN=AN﹣AM=﹣AE,∴PN=1,FP=,设AE=m,∴AM=m,GP=MN=﹣m,在Rt△AGM中,AG2=(m)2+12,在Rt△GPF中,GF2=(﹣m)2+()2,∵AG=GF,∴(m)2+12=(﹣m)2+()2,解得m=3,即AE=3,在Rt△ADE中,DE==.故选:A.法二、如图,连接DF,AF,EF,在△ABC中,AB=AC,∠CAB=90°,∴∠B=∠C=45°,∵点G是DE的中点,点F是BC的中点,∴AG=DG=EG,AF=BF,AF⊥BC,∠DAF=45°,∴∠DAF=∠B=45°,∵FG=AG,∴FG=DG=EG,∴△DFG是直角三角形,且∠DFE=90°,∵∠DF A+∠AFE=∠BF A+∠AFE=90°,∴∠DF A=∠EFB,在△AFD和△BFE中,∴△AFD≌△BFE(ASA),∴AD=BE=2,∴AE=3,在Rt△ADE中,DE==.故选:A.【点评】本题主要考查中位线定理,勾股定理,矩形的性质与判定,构造中位线是解题过程中常见思路.10.(3分)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是()A.≤B.≥C.≥D.≤【分析】结合选项可知,只需要判断出a和b的正负即可,点P(a,b)在直线y=﹣3x ﹣4上,代入可得关于a和b的等式,再代入不等式2a﹣5b≤0中,可判断出a与b正负,即可得出结论.【解答】解:∵点P(a,b)在直线y=﹣3x﹣4上,∴﹣3a﹣4=b,又2a﹣5b≤0,∴2a﹣5(﹣3a﹣4)≤0,解得a≤﹣<0,当a=﹣时,得b=﹣,∴b≥﹣,∵2a﹣5b≤0,∴2a≤5b,∴≤.故选:D.【点评】本题主要考查一次函数上点的坐标特征,不等式的基本性质等,判断出a与b 的正负是解题关键.二、填空题(本题有6小题,每题4分,共24分)11.(4分)已知二元一次方程x+3y=14,请写出该方程的一组整数解(答案不唯一).【分析】把y看做已知数求出x,确定出整数解即可.【解答】解:x+3y=14,x=14﹣3y,当y=1时,x=11,则方程的一组整数解为.故答案为:(答案不唯一).【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.(4分)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是(4,2).【分析】根据图示,对应点所在的直线都经过同一点,该点就是位似中心.【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).【点评】本题考查了位似的相关知识,位似是相似的特殊形式,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心.13.(4分)观察下列等式:1=12﹣02,3=22﹣12,5=32﹣22,…按此规律,则第n个等式为2n﹣1=n2﹣(n﹣1)2.【分析】根据题目中的式子可以发现:等号左边是一些连续的奇数,从1开始;等号右边第一个数是和左边是第几个奇数一样,第二个数比第一个数少1,然后即可写出第n 个等式.【解答】解:∵1=12﹣02,3=22﹣12,5=32﹣22,…,∴第n个等式为2n﹣1=n2﹣(n﹣1)2,故答案为:n2﹣(n﹣1)2.【点评】本题考查数字的变化类,发现式子的变化特点是解答本题的关键.14.(4分)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为.【分析】在Rt△ABC和Rt△OAB中,分别利用勾股定理可求出AC和OB的长,又AH ⊥OB,可利用等面积法求出AH的长.【解答】解:如图,∵AB⊥AC,AB=2,BC=2,∴AC==2,在▱ABCD中,OA=OC,OB=OD,∴OA=OC=,在Rt△OAB中,OB==,又AH⊥BD,∴OB•AH=OA•AB,即=,解得AH=.故答案为:.【点评】本题主要考查平行四边形的性质,勾股定理,等面积思想等,熟知等面积法是解题关键.15.(4分)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为.下等马中等马上等马马匹姓名齐王6810田忌579【分析】列表得出所有等可能的情况,田忌能赢得比赛的情况有1种,再由概率公式求解即可.【解答】解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为10,8,6时,田忌的马按5,9,7的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵情况如下:双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为.【点评】本题考查了利用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是;点P 到达点B时,线段A′P扫过的面积为(1+)π﹣1﹣.【分析】如图1中,过点B作BH⊥AC于H.解直角三角形求出CA,当CA′⊥AB时,点A′到直线AB的距离最大,求出CA′,CK.可得结论.如图2中,点P到达点B时,线段A′P扫过的面积=S扇形A′CA﹣2S△ABC,由此求解即可.【解答】解:如图1中,过点B作BH⊥AC于H.在Rt△ABH中,BH=AB•sin30°=1,AH=BH=,在Rt△BCH中,∠BCH=45°,∴CH=BH=1,∴AC=CA′=1+,当CA′⊥AB时,点A′到直线AB的距离最大,设CA′交AB的延长线于K.在Rt△ACK中,CK=AC•sin30°=,∴A′K=CA′﹣CK=1+﹣=.如图2中,点P到达点B时,线段A′P扫过的面积=S扇形A′CA﹣2S△ABC=﹣2××(1+)×1=(1+)π﹣1﹣.故答案为:,(1+)π﹣1﹣.【点评】本题考查轴对称的性质,翻折变换,解直角三角形,扇形的面积,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用分割法求面积,属于中考填空题中的压轴题.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(6分)(1)计算:2﹣1+﹣sin30°;(2)化简并求值:1﹣,其中a=﹣.【分析】(1)根据负整数指数幂、算术平方根、特殊角的三角函数值可以解答本题;(2)先通分,然后根据分式的减法法则即可化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1)2﹣1+﹣sin30°=+2﹣=2;(2)1﹣===,当a =﹣时,原式==2.【点评】本题考查分式的化简求值、实数的运算,解答本题的关键是明确分式化简求值的方法和实数运算的计算方法.18.(6分)小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.【分析】小敏:没有考虑x﹣3=0的情况;小霞:提取公因式时出现了错误.利用因式分解法解方程即可.【解答】解:小敏:×;小霞:×.正确的解答方法:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x+3)=0.则x﹣3=0或3﹣x+3=0,解得x1=3,x2=6.【点评】本题主要考查了一元二次方程的解法,解一元二次方程时可以采取公式法,因式分解法,配方法以及换元法等,至于选择哪一解题方法,需要根据方程的特点进行选择.19.(6分)如图,在7×7的正方形网格中,网格线的交点称为格点,点A,B在格点上,每一个小正方形的边长为1.(1)以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.【分析】(1)先以AB为边画出一个等腰三角形,再作对称即可;(2)根据菱形的面积等于对角线乘积的一半可求得.【解答】解:(1)如下图所示:四边形ABCD即为所画菱形,(答案不唯一,画出一个即可).(2)图1菱形面积S=×2×6=6,图2菱形面积S=×2×4=8,图3菱形面积S=()2=10.【点评】本题主要考查菱形的性质,由对称性得到菱形是解题的关键.20.(8分)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y(m/s)与路程x(m)之间的观测数据,绘制成曲线如图所示.(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.【分析】(1)根据函数的定义,可直接判断;(2)由图象可知,“加速期”结束时,即跑30米时,小斌的速度为10.4m/s.(3)答案不唯一.建议合理即可.【解答】解:(1)y是x的函数,在这个变化过程中,对于x的每一个确定的值,y都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m/s.(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.【点评】本题主要考查函数图象的应用,结合题干中“百米赛跑数学模型”读出图中的数据是解题关键.21.(8分)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据,制成如图统计图(不完整):青少年视力健康标准类别视力健康状况A视力≥5.0视力正常B 4.9轻度视力不良C 4.6≤视力≤4.8中度视力不良D视力≤4.5重度视力不良根据以上信息,请解答:(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别B)的扇形圆心角度数和2020年初视力正常(类别A)的人数.(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.【分析】(1)利用2021年初视力不良的百分比乘360°即可求解.(2)分别求出2021、2020年初视力正常的人数即可求解.(3)用1﹣31.25%即可得该市八年级学生2021年视力不良率,即可判断.【解答】解:(1)被抽查的400名学生2021年初轻度视力不良的扇形圆心角度数=360°×(1﹣31.25%﹣24.5%﹣32%)=44.1°.该批400名学生2020年初视力正常人数=400﹣48﹣91﹣148=113(人).(2)该市八年级学生2021年初视力正常人数=20000×31.25%=6250(人).这些学生2020年初视力正常的人数=(人).∴估计增加的人数=6250﹣5650=600(人).(3)该市八年级学生2021年视力不良率=1﹣31.25%=68.75%.∵68.75%<69%.∴该市八年级学生2021年初视力不良率符合要求.【点评】本题考查扇形统计图、统计表的知识,关键在于计算的准确性.22.(10分)一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cm,BE=4cm.当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【分析】(1)由BD'∥EF,求出∠D'BE=72°,可得∠DBD'=36°,根据弧长公式即可求出点D转动到点D′的路径长为=π;(2)过D作DG⊥BD'于G,过E作EH⊥BD'于H,Rt△BDG中,求出DG=BD•sin36°=3.54,Rt△BEH中,HE=3.80,故DG+HE≈7.3,即点D到直线EF的距离为7.3cm,【解答】解:∵BD'∥EF,∠BEF=108°,∴∠D'BE=180°﹣∠BEF=72°,∵∠DBE=108°,∴∠DBD'=∠DBE﹣∠D'BE=108°﹣72°=36°,∵BD=6,∴点D转动到点D′的路径长为=π(cm);(2)过D作DG⊥BD'于G,过E作EH⊥BD'于H,如图:Rt△BDG中,DG=BD•sin36°≈6×0.59=3.54(cm),Rt△BEH中,HE=BE•sin72°≈4×0.95=3.80(cm),∴DG+HE=3.54cm+3.80cm=7.34m≈7.3cm,∵BD'∥EF,∴点D到直线EF的距离约为7.3cm,答:点D到直线EF的距离约为7.3cm.【点评】本题考查圆的弧长及解直角三角形的应用,解题的关键是掌握弧长公式,熟练运用三角函数解直角三角形.23.(10分)已知二次函数y=﹣x2+6x﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x≤4时,函数的最大值和最小值分别为多少?(3)当t≤x≤t+3时,函数的最大值为m,最小值为n,若m﹣n=3,求t的值.【分析】(1)解析式化成顶点式即可求得;(2)根据二次函数图象上点的坐标特征即可求得最大值和最小值;(3)分三种情况讨论,根据二次函数的性质得到最大值m和最小值n,进而根据m﹣n =3得到关于t的方程,解方程即可.【解答】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点坐标为(3,4);(2)∵a=﹣1<0,∴抛物线开口向下,∵顶点坐标为(3,4),∴当x=3时,y最大值=4,∵当1≤x≤3时,y随着x的增大而增大,∴当x=1时,y最小值=0,∵当3<x≤4时,y随着x的增大而减小,∴当x=4时,y最小值=3.∴当1≤x≤4时,函数的最大值为4,最小值为0;(3)当t≤x≤t+3时,对t进行分类讨论,①当t+3<3时,即t<0,y随着x的增大而增大,当x=t+3时,m=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,当x=t时,n=﹣t2+6t﹣5,∴m﹣n=﹣=﹣t2+4﹣(﹣t2+6t﹣5)=﹣6t+9,∴﹣6t+9=3,解得t=1(不合题意,舍去),②当0≤t<3时,顶点的横坐标在取值范围内,∴m=4,i)当0≤t≤时,在x=t时,n=﹣t2+6t﹣5,∴m﹣n=4﹣(﹣t2+6t﹣5)=t2﹣6t+9,∴t2﹣6t+9=3,解得t1=3﹣,t2=3+(不合题意,舍去);ii)当<t<3时,在x=t+3时,n=﹣t2+4,∴m﹣n=4﹣(﹣t2+4)=t2,∴t2=3,解得t1=,t2=﹣(不合题意,舍去),③当t≥3时,y随着x的增大而减小,当x=t时,m=﹣t2+6t﹣5,当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,.m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,∴6t﹣9=3,解得t=2(不合题意,舍去),综上所述,t=3﹣或.【点评】本题考查了二次函数的性质,二次函数的最值,分类讨论是解题的关键.24.(12分)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.【分析】(1)如图1,设BC=x,由旋转的性质得出AD'=AD=BC=x,D'C=AB'=AB =1,证明△D'C'B∽△ADB,由相似三角形的性质得出,由比例线段得出方程,求出x的值即可得出答案;(2)连接DD',证明△AC'D'≌△DBA(SAS),由全等三角形的性质得出∠D'AC'=∠ADB,由等腰三角形的性质得出∠ADD'=∠AD'D,证出∠MDD'=∠MD'D,则可得出结论;(3)连接AM,证明△AD'M≌△ADM(SSS),由全等三角形的性质得出∠MAD'=∠MAD,得出MN=AN,证明△NP A∽△NAD,由相似三角形的性质得出,则可得出结论.【解答】解:(1)如图1,设BC=x,∵矩形ABCD绕点A顺时针旋转90°得到矩形AB′C′D′,∴点A,B,D’在一条线上,∴AD'=AD=BC=x,D'C'=AB'=AB=1,∴D'B=AD'﹣AB=x﹣1,∵∠BAD=∠D'=90°,∴D'C'∥DA,又∵点C'在DB的延长线上,∴△D'C'B∽△ADB,∴,∴,解得x1=,x2=(不合题意,舍去),∴BC=.(2)D'M=DM.证明:如图2,连接DD',∵D'M∥AC',∴∠AD'M=∠D'AC',∵AD'=AD,∠AD'C'=∠DAB=90°,D'C'=AB,∴△AC'D'≌△DBA(SAS),∴∠D'AC'=∠ADB,∴∠ADB=∠AD'M,∵AD'=AD,∴∠ADD'=∠AD'D,∴∠MDD'=∠MD'D,∴D'M=DM;(3)关系式为MN2=PN•DN.证明:如图3,连接AM,∵D'M=DM,AD'=AD,AM=AM,∴△AD'M≌△ADM(SSS),∴∠MAD'=∠MAD,∵∠AMN=∠MAD+∠NDA,∠NAM=∠MAD'+∠NAP,∴∠AMN=∠NAM,∴MN=AN,在△NAP和△NDA中,∠ANP=∠DNA,∠NAP=∠NDA,∴△NP A∽△NAD,∴,∴AN2=PN•DN,∴MN2=PN•DN.【点评】本题是四边形的综合题,考查了旋转的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质及相似三角形的判定与性质是解题的关键.。
2022年浙江省嘉兴市中考数学试卷(解析版)
2022年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.)1.(3分)若收入3元记为3+,则支出2元记为()A .2-B .1-C .1D .2【分析】根据正负数的概念得出结论即可.【解答】解:由题意知,收入3元记为3+,则支出2元记为2-,故选:A .2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A .B .C .D .【分析】根据主视方向判断出主视图即可.【解答】解:由图可知主视图为:故选:C .3.(3分)计算2(a a ⋅)A .aB .3aC .22aD .3a 【分析】根据同底数幂相乘,底数不变,指数相加,即可解决问题.【解答】解:原式123a a +==.故选:D .4.(3分)如图,在O 中,130BOC ∠=︒,点A 在 BAC上,则BAC ∠的度数为()A .55︒B .65︒C .75︒D .130︒【分析】根据同弧所对的圆周角等于圆心角的一半即可得出BAC ∠的度数.【解答】解:130BOC ∠=︒ ,点A 在 BAC 上,111306522BAC BOC ∴∠=∠=⨯︒=︒,故选:B .5.(3分)不等式312x x +<的解集在数轴上表示正确的是()A .B .C .D .【分析】根据解不等式的方法可以解答本题.【解答】解:312x x +<,移项,得:321x x -<-,合并同类项,得:1x <-,其解集在数轴上表示如下:,故选:B .6.(3分)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B '之间的距离为()A .1cmB .2cmC .(21)cm -D .(221)cm【分析】根据正方形的性质、勾股定理求出BD ,根据平移的概念求出BB ',计算即可.【解答】解: 四边形ABCD 为边长为2cm 的正方形,222222()BD cm ∴=+=,由平移的性质可知,1BB cm '=,1)B D cm ∴'=,故选:D .7.(3分)A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是()A .AB x x >且22A B S S >B .A B x x <且22A B S S >C .A B x x >且22AB S S <D .A B x x <且22AB S S <【分析】根据平均数及方差的意义直接求解即可.【解答】解:A ,B 两名射击运动员进行了相同次数的射击,当A 的平均数大于B ,且方差比B 小时,能说明A 成绩较好且更稳定.故选:C .8.(3分)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为()A .7317x y x y +=⎧⎨+=⎩B .9317x y x y +=⎧⎨+=⎩C .7317x y x y +=⎧⎨+=⎩D .9317x y x y +=⎧⎨+=⎩【分析】由题意:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.列出二元一次方程组即可.【解答】解:根据题意得:92317x y x y +=-⎧⎨+=⎩,即7317x y x y +=⎧⎨+=⎩,故选:A .9.(3分)如图,在ABC ∆中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,//EF AC ,//GF AB ,则四边形AEFG 的周长是()A .8B .16C .24D .32【分析】由//EF AC ,//GF AB ,得四边形AEFG 是平行四边形,B GFC ∠=∠,C EFB ∠=∠,再由8AB AC ==和等量代换,即可求得四边形AEFG 的周长.【解答】解://EF AC ,//GF AB ,∴四边形AEFG 是平行四边形,B GFC ∠=∠,C EFB ∠=∠,AB AC = ,B C ∴∠=∠,B EFB ∴∠=∠,GFC C ∠=∠,EB EF ∴=,FG GC =,四边形AEFG 的周长AE EF FG AG =+++,∴四边形AEFG 的周长AE EB GC AG AB AC =+++=+,8AB AC == ,∴四边形AEFG 的周长8816AB AC =+=+=,故选:B .10.(3分)已知点(,)A a b ,(4,)B c 在直线3(y kx k =+为常数,0)k ≠上,若ab 的最大值为9,则c 的值为()A .1B .32C .2D .52【分析】由点(,)A a b ,(4,)B c 在直线3y kx =+上,可得343ak b k c +=⎧⎨+=⎩①②,即得2239(3)3()24ab a ak ka a k a k k =+=+=+-,根据ab 的最大值为9,得14k =-,即可求出2c =.【解答】解: 点(,)A a b ,(4,)B c 在直线3y kx =+上,∴343ak b k c +=⎧⎨+=⎩①②,由①可得:2239(3)3()24ab a ak ka a k a k k=+=+=+-,ab 的最大值为9,0k ∴<,994k-=,解得14k =-,把14k =-代入②得:14()34c ⨯-+=,2c ∴=,故选:C .二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:21m -=(1)(1)m m +-.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:22()()a b a b a b -=+-.【解答】解:21(1)(1)m m m -=+-.12.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是25.【分析】直接根据概率公式可求解.【解答】解: 盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是25;故答案为:25.13.(4分)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件60B ∠=︒.【分析】根据等边三角形的判定定理填空即可.【解答】解:有一个角是60︒的等腰三角形是等边三角形,故答案为:60B ∠=︒.14.(4分)如图,在ABC ∆中,90ABC ∠=︒,60A ∠=︒,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为233.【分析】根据正切的定义求出AB ,证明ADE ABC ∆∆∽,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】解:由题意得,1DE =,3BC =,在Rt ABC ∆中,60A ∠=︒,则3tan 3BC AB A ===//DE BC ,ADE ABC ∴∆∆∽,∴DE ADBC AB =,即1333=解得:233BD =,故答案为:33.15.(4分)某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为()k N .若铁笼固定不动,移动弹簧秤使BP 扩大到原来的(1)n n >倍,且钢梁保持水平,则弹簧秤读数为kn()N (用含n ,k 的代数式表示).【分析】根据“动力⨯动力臂=阻力⨯阻力臂”分别列式,从而代入计算.【解答】解:如图,设装有大象的铁笼重力为a N ,将弹簧秤移动到B '的位置时,弹簧秤的度数为k ',由题意可得BP k PA a ⋅=⋅,B P k PA a '⋅'=⋅,BP k B P k ∴⋅='⋅',又B P nBP '= ,BP k BP k kk B P nBP n⋅⋅∴'===',故答案为:kn.16.(4分)如图,在扇形AOB 中,点C ,D 在 AB 上,将 CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则 EF的度数为60︒,折痕CD 的长为.【分析】设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,可得OO CD '⊥,CH DH =,6O C OA '==,根据切线的性质开证明60EOF ∠=︒,则可得 EF 的度数;然后根据垂径定理和勾股定理即可解决问题.【解答】解:如图,设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,OO CD ∴'⊥,CH DH =,6O C OA '==,将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .90O EO O FO ∴∠'=∠'=︒,120AOB ∠=︒ ,60EO F ∴∠'=︒,则 EF的度数为60︒;120AOB ∠=︒ ,60O OF ∴∠'=︒,O F OB '⊥ ,6O E O F O C '='='=,643sin 6032O F OO '∴'===︒,23O H ∴'=22361226CH O C O H ∴='-'=-=,246CD CH ∴==.故答案为:60︒,.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:0(1-.(2)解方程:3121x x -=-.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解;(2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根.【解答】解:(1)原式121=-=-;(2)去分母得321x x -=-,31x ∴-=-,2x ∴=-,经检验2x =-是分式方程的解,∴原方程的解为:2x =-.18.(6分)小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =.求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:AC BD ⊥,OB OD =,AC ∴垂直平分BD .AB AD ∴=,CB CD =,∴四边形ABCD 是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.【解答】解:赞成小洁的说法,补充条件:OA OC =,证明如下:OA OC = ,OB OD =,∴四边形ABCD 是平行四边形,又AC BD ⊥ ,∴平行四边形ABCD 是菱形.19.(6分)设5a 是一个两位数,其中a 是十位上的数字(19)a .例如,当4a =时,5a 表示的两位数是45.(1)尝试:①当1a =时,2152251210025==⨯⨯+;②当2a =时,2256252310025==⨯⨯+;③当3a =时,2351225==3410025⨯⨯+;⋯⋯(2)归纳:25a 与100(1)25a a ++有怎样的大小关系?试说明理由.(3)运用:若25a 与100a 的差为2525,求a 的值.【分析】(1)根据规律直接得出结论即可;(2)根据25(105)(105)10010025100(1)25a a a a a a a =++=++=++即可得出结论;(3)根据题意列出方程求解即可.【解答】解:(1) ①当1a =时,2152251210025==⨯⨯+;②当2a =时,2256252310025==⨯⨯+;∴③当3a =时,23512253410025==⨯⨯+,故答案为:3410025⨯⨯+;(2)25100(1)25a a a =++,理由如下:25(105)(105)10010025100(1)25a a a a a a a =++=++=++;(3)由题知,251002525a a -=,即2100100251002525a a a ++-=,解得5a =或5-(舍去),a ∴的值为5.20.(8分)6月13日,某港口的湖水高度()y cm 和时间()x h 的部分数据及函数图象如下:()x h ⋯1112131415161718⋯()y cm⋯18913710380101133202260⋯(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x=时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【分析】(1)①先描点,然后画出函数图象;②利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围.【解答】解:(1)①如图:②通过观察函数图象,当4x =时,200y =,当y 值最大时,21x =;(2)该函数的两条性质如下(答案不唯一):①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值为80;(3)由图象,当260y =时,5x =或10x =或18x =或23x =,∴当510x <<或1823x <<时,260y >,即当510x <<或1823x <<时,货轮进出此港口.21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知10AD BE cm ==,5CD CE cm ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.(结果精确到0.1cm .参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84)︒≈【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得20DCF ∠=︒,利用锐角三角函数即可解决问题;(2)根据横截面是一个轴对称图形,延长CF 交AD 、BE 延长线于点G ,连接AB ,所以//DE AB ,根据直角三角形两个锐角互余可得20A GDE ∠=∠=︒,然后利用锐角三角函数即可解决问题.【解答】解:(1)如图,过点C 作CF DE ⊥于点F ,5CD CE cm == ,40DCE ∠=︒.20DCF ∴∠=︒,sin 2050.34 1.7()DF CD cm ∴=⋅︒≈⨯≈,2 3.4DE DF cm ∴=≈,∴线段DE 的长约为3.4cm ;(2) 横截面是一个轴对称图形,∴延长CF 交AD 、BE 延长线于点G ,连接AB ,//DE AB ∴,A GDE ∴∠=∠,AD CD ⊥ ,BE CE ⊥,90GDF FDC ∴∠+∠=︒,90DCF FDC ∠+∠=︒ ,20GDF DCF ∴∠=∠=︒,20A ∴∠=︒,1.7 1.8()cos 200.94DF DG cm ∴=≈≈︒,10 1.811.8()AG AD DG cm ∴=+=+=,2cos 20211.80.9422.2()AB AG cm ∴=⋅︒≈⨯⨯≈.∴点A ,B 之间的距离22.2cm .22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间()x<,第二组(0.51)x<,x h分为5组:第一组(00.5)第三组(1 1.5)x.x<,第五组(2)x<,第四组(1.52)根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第二组;(2)(1200200)(18.7%43.2%30.6%)175-⨯---=(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).23.(10分)已知抛物线21:(1)4(0)L y a x a =+-≠经过点(1,0)A .(1)求抛物线1L 的函数表达式.(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,若点1(1,)B y ,2(3,)C y 在抛物线3L 上,且12y y >,求n 的取值范围.【分析】(1)把(1,0)代入抛物线的解析式求出a 即可;(2)求出平移后抛物线的顶点关于原点对称点的坐标,利用待定系数法求解即可;(3)抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,的解析式为2(1)4y x n =-+-,根据12y y >,构建不等式求解即可.【解答】解:(1)2(1)4(0)y a x a =+-≠ 经过点(1,0)A ,440a ∴-=,1a ∴=,∴抛物线1L 的函数表达式为223y x x =+-;(2)2(1)4y x =+- ,∴抛物线的顶点(1,4)--,将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点(1,4)m --+,而(1,4)m --+关于原点的对称点为(1,4)m -,把(1,4)m -代入223y x x =+-得到,1234m +-=-,4m ∴=;(3)抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,的解析式为2(1)4y x n =-+-, 点1(1,)B y ,2(3,)C y 在抛物线3L 上,21(2)4y n ∴=--,22(4)4y n =--,12y y > ,22(2)4(4)4n n ∴-->--,解得3n >,n ∴的取值范围为3n >.24.(12分)小东在做九上课本123页习题:“已知线段AB (如图1),用直尺和圆规作AB 上的一点P ,使:AP AB =.”小东的作法是:如图2,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点.小东称点P 为线段AB 的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造DPE ∆,使得DPE CPB ∆∆∽.①如图3,当点D 运动到点A 时,求CPE ∠的度数.②如图4,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时()CD AD <,猜想:点N 是否为线段ME 的“趣点”?并说明理由.【分析】(1)利用等腰三角形的性质证明AC AB ,再利用AC AP =,即可得出结论;(2)①由题意可得:45CAB B ∠=∠=︒,90ACB ∠=︒,AC AP BC ==,再求解67.5ACP APC ∠=∠=︒,112.5CPB ∠=︒,证明112.5DPE CPB ∠=∠=︒,从而可得答案;②先证明ADP ACB ∆∆∽,可得45APD ∠=︒,//DP CB ,再证明MP MD MC MN ===,45EMP ∠=︒,90MPE ∠=︒,从而可得出结论.【解答】解:(1)赞同,理由如下:ABC ∆ 是等腰直角三角形,AC BC ∴=,45A B ∠=∠=︒,2cos 452AC AB ∴︒===AC AP = ,∴AP AB =,∴点P 为线段AB 的“趣点”.(2)①由题意得:45CAB B ∠=∠=︒,90ACB ∠=︒,AC AP BC ==,∴1(18045)67.52ACP APC ∠=∠=⨯︒-︒=︒,9067.522.5BCP ∴∠=︒-︒=︒,1804522.5112.5CPB ∴∠=︒-︒-︒=︒,DPE CPB ∆∆ ∽,D ,A 重合,112.5DPE CPB ∴∠=∠=︒,18045CPE DPE CPB ∴∠=∠+∠-︒=︒;②点N 是线段ME 的趣点,理由如下:当点D 为线段AC 的趣点时()CD AD <,∴AD AC =,AC AP = ,∴AD AP =,AC AB =,A A ∠=∠,ADP ACB ∴∆∆∽,90ADP ACB ∴∠=∠=︒,45APD ∴∠=︒,//DP CB ,22.5DPC PCB PDE ∴∠=∠=︒=∠,DM PM ∴=,9022.567.5MDC MCD ∴∠=∠=︒-︒=︒,MD MC ∴=,同理可得MC MN =,MP MD MC MN ∴===,22.5MDP MPD ∠=∠=︒ ,45E B ∠=∠=︒,45EMP ∴∠=︒,90MPE ∠=︒,∴MP MN ME ME==,∴点N 是线段ME 的“趣点”.。
浙江省嘉兴市、舟山市2018-2019年中考数学试题分类解析【专题04】图形的变换(含答案)
(1)选择题1. (2002年浙江舟山、嘉兴4分)圆台的轴截面是一个上、下底边长分别为2cm,4cm,腰长为3cm的等腰梯形,这个圆台的侧面积是【】A.9πcm2B.18πcm2C.24πcm2D.36πcm2【答案】A。
【考点】圆台的计算。
2. (2003年浙江舟山、嘉兴4分)如果圆柱的轴截面是一个边长为4cm的正方形,那么圆柱的侧面积为【】A .16πcm2 B.18πcm2 C.20πcm2 D .24πcm2【答案】A。
【考点】圆柱的计算。
3. (2004年浙江舟山、嘉兴4分)已知圆锥底面半径为3,高为4,则圆锥侧面积为【】A.10πB.12πC.15πD.20π【答案】B。
【考点】圆锥和扇形的计算。
4. (2005年浙江舟山、嘉兴4分)圆锥的轴截面是【】A .等腰三角形 B.矩形 C .圆 D.弓形【答案】A。
【考点】圆锥的轴截面。
5. (2006年浙江舟山、嘉兴4分)已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为【】.A.15πcm2 B.20πcm2 C.12πcm2 D.30πcm2【答案】A。
【考点】圆锥和扇形的计算。
6. (2006年浙江舟山、嘉兴4分)假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法【】.A.7 B.8 C.9 D.10【答案】B。
【考点】探索规律题(图形的变化类),分类思想的应用。
7. (2019年浙江舟山、嘉兴4分)已知一个几何体的三视图如图所示,则该几何体是【】A.棱柱 B.圆柱 C.圆锥 D.球【答案】B。
【考点】由三视图判断几何体。
8. (2019年浙江舟山、嘉兴3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为【】(A)30°(B)45°(C)90°(D)135°【答案】C。
专题09 三角形(第04期)-2021年中考数学试题分项版解析汇编(解析版)
一、选择题1. (2021贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【答案】D.考点:平行线的性质..2. (2021贵州遵义第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【答案】A.考点:三角形中位线定理;三角形的面积.3. (2021贵州遵义第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【答案】C.【解析】试题分析:∵AD是∠BAC的平分线,AB=11,AC=15,∴1115 BD ABCD AC==,∵E是BC中点,∴11151321515 CECA+==,∵EF∥AD,.∴1315 CF CECA CD==,∴CF=1315CA=13.故选C.考点:平行线的性质;角平分线的性质..4. (2021湖南株洲第5题)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145°B.150°C.155°D.160°【答案】B.考点:三角形内角和定理.5. (2021湖南株洲第10题)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.2D.2【答案】D.【解析】试题分析:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF =∠3+∠DFQ =45°,∴∠QEF =∠DFQ ,∵∠2=∠3, ∴△DQF ∽△FQE ,∴12DQ FQ DF FQ QE EF ===, ∵DQ =1,∴FQ =2,EQ =2,∴EQ +FQ =2+2, 故选D. .考点:旋转的性质;平行线的判定与性质;等腰直角三角形.6. (2021内蒙古通辽第7题)志远要在报纸上刊登广告,一块cm cm 510⨯的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( ) A .540元 B .1080元 C.1620元 D .1800元 【答案】C考点:相似三角形的应用7. (2021郴州第8题)小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180 B .0210 C .0360 D .0270【答案】B .【解析】试题分析:∵∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D +∠4+∠F =∠2+∠D +∠3+∠F =∠2+∠3+30°+90°=210°,故选B .考点:三角形的外角的性质. .8. (2021广西百色第10题)如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .20(31)+B .20(31)- C. 200 D .300 【答案】A考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用.9. (2021哈尔滨第8题)在Rt ABC △中,90C ∠°,4AB ,1AC ,则cos B 的值为( ) A.154B.14C.1515D.41717【答案】A 【解析】试题分析:∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC =2241- =15,则cosB =BCAB=154,故选A .考点:锐角三角函数的定义.10. (2021哈尔滨第9题)如图,在ABC △中,,D E 分别为,AB AC 边上的点,DE BC ∥,点F 为BC 边上一点,连接AF 交DE 于点E ,则下列结论中一定正确的是( )A.ADAEAB ECB.AC AEGF BDC.BD CEAD AED.AG ACAF EC【答案】C考点:相似三角形的判定与性质.11. (2021黑龙江绥化第6题)如图, A B C '''∆是ABC ∆在点O 为位似中心经过位似变换得到的,若A B C '''∆的面积与ABC ∆的面积比是4:9,则:OB OB '为( )A.2:3B.3:2C.4:5D.4:9【答案】A考点:位似变换.12. (2021黑龙江绥化第9题)某楼梯的侧面如图所示,已测得BC的长约为3.5米,BCA约为29,则该楼梯的高度AB可表示为()A.3.5sin29米B.3.5cos29米C.3.5tan29米D.3.5 cos29米【答案】A 【解析】试题分析:在Rt△ABC中,∵sin∠ACB=ABBC,∴AB=BCsin∠ACB=3.5sin29°,故选A..考点:解直角三角形的应用﹣坡度坡角问题.13. (2021湖南张家界第5题)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A .6B .12C .18D .24 【答案】B . 【解析】试题分析:∵D 、E 分别是AB 、AC 的中点,∴AD =12AB ,AE =12AC ,DE =12BC ,∴△ABC 的周长=AB +AC +BC =2AD +2AE +2DE =2(AD +AE +DE )=2×6=12.故选B .. 考点:相似三角形的判定与性质;三角形中位线定理.14. (2021辽宁大连第8题)如图,在ABC ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,点E 是AB 的中点,a DE CD ==,则AB 的长为( )A .a 2B .a 22 C. a 3 D .a 334 【答案】B.考点:直角三角形斜边上的中线.15. (2021海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .6【答案】B.考点:等腰三角形的性质.16. (2021河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线 【答案】A. 【解析】试题分析:根据等底等高的三角形的面积相等解答. ∵三角形的中线把三角形分成两个等底同高的三角形, ∴三角形的中线将三角形的面积分成相等两部分. 故选A .考点:三角形的面积;三角形的角平分线、中线和高.17. (2021河池第12题)已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是() A .3 B .4 C. 8 D .9 【答案】B. 【解析】试题分析:设AD =x ,根据等边三角形的性质得到∠A =∠B =∠C =60°,由垂直的定义得到∠ADF =∠DEB =∠EFC =90°,解直角三角形即可得到结论.. 设AD =x ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°, ∵DE ⊥AC 于点E ,EF ⊥BC 于点F ,FG ⊥AB ,∴∠ADF =∠DEB =∠EFC =90°,∴AF =2x ,∴CF =12﹣2x , ∴CE =2CF =24﹣4x ,∴BE =12﹣CE =4x ﹣12,∴BD =2BE =8x ﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.考点:等边三角形的性质;含30度角的直角三角形. .18. (2021贵州六盘水第12题)三角形的两边,a b的夹角为60°且满足方程23240x x,则第三边长的长是( )A.6B.22C.23D.32【答案】考点:一元二次方程;勾股定理.二、填空题1. (2021湖南株洲第11题)如图示在△ABC中∠B=.【答案】25°. 【解析】试题分析:∵∠C =90°,∴∠B =90°﹣∠A =90°﹣65°=25°; 故答案为:25°..考点:直角三角形的性质.2. (2021湖北咸宁第16题)如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论: ①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 .【答案】①②③.④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的14,则:902180π⨯=π.所以④不正确;综上所述,本题正确的有:①②③;考点:三角形综合题..3. (2021湖南常德第14题)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是.【答案】0≤CD ≤5. 【解析】试题分析:当点D 与点E 重合时,CD =0,当点D 与点A 重合时,∵∠A =90°,∠B =60°,∴∠E =30°,∴∠CDE =∠E ,∠CDB =∠B ,∴CE =CD ,CD =CB ,∴CD =12BE =5,∴0≤CD ≤5,故答案为:0≤CD ≤5. 考点:含30度角的直角三角形;直角三角形斜边上的中线..4. (2021黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC ∆的“和谐分割线”,ACD ∆为等腰三角形,CBD ∆和ABC ∆相似,46A ∠=︒,则ACB ∠的度数为 .【答案】113°或92°.考点:1.相似三角形的性质;2.等腰三角形的性质.5. (2021黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .【答案】(0,(2)2016)或(0,21008).考点:规律型:点的坐标.6. (2021黑龙江绥化第20题)在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD BC =,则ABC ∆的顶角的度数为 . 【答案】30°或150°或90°.. 【解析】试题分析:①BC 为腰, ∵AD ⊥BC 于点D ,AD =12BC ,∴∠ACD =30°, 如图1,AD 在△ABC 内部时,顶角∠C =30°,如图2,AD 在△ABC 外部时,顶角∠ACB =180°﹣30°=150°,②BC 为底,如图3, ∵AD ⊥BC 于点D ,AD =12BC ,∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°,综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°..考点:1.含30度角的直角三角形;2.等腰三角形的性质.7. (2021黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2n-112考点:1.三角形中位线定理;2.等腰直角三角形.8. (2021上海第15题)如图,已知AB ∥CD ,CD =2AB ,AD 、BC 相交于点E ,设AE a = ,BE b =,那么向量CD 用向量a 、b 表示为 .【答案】2b a +考点:1.平面向量;2.平行线的性质9. (2021辽宁大连第15题)如图,一艘海轮位于灯塔P 的北偏东060方向,距离灯塔nmile 86的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处.此时,B 处与灯塔P 的距离约为 nmile .(结果取整数,参考数据:4.12,7.13≈≈)【答案】102. 【解析】试题分析:根据题意得出∠MPA =∠PAD =60°,从而知PD =AP •sin ∠PAD =433,由∠BPD =∠PBD =45°根据BP =sin PDB∠,即可求出即可..考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.三、解答题1. (2021湖南株洲第22题)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【答案】①.证明见解析;②证明见解析. .【解析】试题分析:①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;考点:相似三角形的判定;全等三角形的判定与性质;等腰直角三角形;正方形的性质.2. (2021湖南株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=23,无人机的飞行高度AH为5003米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度A B.【答案】①求点H到桥左端点P的距离为250米;②无人机的长度AB为5米.考点:解直角三角形的应用﹣仰角俯角问题.3. (2021郴州第19题)已知ABC ∆中,ABC ACB ∠=∠,点,D E 分别为边,AB AC 的中点,求证:BE CD =.【答案】详见解析. 【解析】试题分析:由∠ABC =∠ACB 可得AB =AC ,又点D 、E 分别是AB 、AC 的中点.得到AD =AE ,通过△ABE ≌△ACD ,即可得到结果.考点:全等三角形的判定及性质.4. (2021郴州第22题)如图所示,C城市在A城市正东方向,现计划在,A C两城市间修建一条高速铁路60方向上,在线段AC上距A城市(即线段AC),经测量,森林保护区的中心P在城市A的北偏东030方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,120km的B处测得P在北偏东0请问计划修建的这条高速铁路是否穿越保护区,为什么?)(参考数据:3 1.732【答案】这条高速公路不会穿越保护区,理由详见解析.【解析】试题分析:作PH⊥AC于H.求出PH与100比较即可解决问题.试题解析:结论;不会.理由如下:作PH⊥AC于H.考点:解直角三角形的应用.5. (2021郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,23+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,③当6<t <10s 时,由∠DBE =120°>90°,∴此时不存在;④当t >10s 时,由旋转的性质可知,∠DBE =60°,又由(1)知∠CDE =60°,∴∠BDE =∠CDE +∠BDC =60°+∠BDC ,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE =90°,从而∠BCD =30°,∴BD =BC =4,∴OD =14cm ,∴t =14÷1=14s ,综上所述:当t =2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.6. (2021湖北咸宁第18题) 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形.【答案】详见解析.考点:全等三角形的判定与性质;平行四边形的判定.7. (2021湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC =0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.考点:解直角三角形的应用.8. (2021湖南常德第26题)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •A C .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.9. (2021哈尔滨第24题)已知:ACB △和DCE △都是等腰直角三角形,90ACB DCE ∠∠°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:AE BD ; (2)如图2,若AC DC ,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB ≌△DCE (SAS ),△EMC ≌△BCN (ASA ),△AON ≌△DOM (AAS ),△AOB ≌△DOE (HL )考点:1.全等三角形的判定与性质;2.等腰直角三角形.10. (2021黑龙江齐齐哈尔第23题)如图,在ABC ∆中,AD BC ⊥于D ,BD AD =,DG DC =,E ,F 分别是BG ,AC 的中点.(1)求证:DE DF =,DE DF ⊥;(2)连接EF ,若10AC =,求EF 的长.【答案】(1)证明见解析;(2)EF =52 .考点:1.全等三角形的判定与性质;2.勾股定理.11. (2021湖北孝感第18题)如图,已知,,AB CD AE BD CF BD =⊥⊥ ,垂足分别为,,E F BF DE = .求证AB CD .【答案】证明见解析【解析】试题分析:根据全等三角形的判定与性质,可得∠B =∠D ,根据平行线的判定,可得答案.试题解析:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,AB CDBE DF=⎧⎨=⎩,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥C D.考点:全等三角形的判定与性质.12. (2021内蒙古呼和浩特第18题)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD CE=;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC∆的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案(1)证明见解析;(2)四边形DEMN是正方形.(2)四边形DEMN是正方形,理由:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=12BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=12 BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,BE CDCE BDBC CB=⎧⎪=⎨⎪=⎩,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离=12BC,∴BD⊥CE,∴四边形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.13.(2021内蒙古呼和浩特第22题)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30︒角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70︒角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)【答案】A,B两地的距离AB长为200(3﹣tan20°)米.在直角△BCM中,∵tan20°=BMCM,∴BM=200tan20°,∴AB =AM ﹣BM =2003﹣200tan 20°=200(3﹣tan 20°),因此A ,B 两地的距离AB 长为200(3﹣tan 20°)米.考点:解直角三角形的应用.14. (2021青海西宁第24题)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC 上的,A B 两点分别对南岸的体育中心D 进行测量,分别没得0030,60,200DAC DBC AB ∠=∠==米,求体育中心D 到湟水河北岸AC 的距离约为多少米(精确到1米,3 1.732≈)?【答案】体育中心D 到湟水河北岸AC 的距离约为173米.在直角△BHD 中,sin 60°=32002DH DH BD ==,∴DH =1003≈100×1.732≈173.答:体育中心D到湟水河北岸AC的距离约为173米.考点:解直角三角形的应用.15. (2021上海第21题)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥B C.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【答案】(1)sinB=21313;(2)DE =5.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.16. (2021湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD 和底座CD 两部分组成.如图,在Rt △ABC 中,∠ABC =70.5°,在Rt △DBC 中,∠DBC =45°,且CD =2.3米,求像体AD 的高度(最后结果精确到0.1米,参考数据:sin 70.5°≈0.943,cos 70.5°≈0.334,tan 70.5°≈2.824)【答案】4.2m .考点:解直角三角形的应用.17. (2021辽宁大连第24题)如图,在ABC ∆中,090=∠C ,4,3==BC AC ,点E D ,分别在BC AC ,上(点D 与点C A ,不重合),且A DEC ∠=∠.将DCE ∆绕点D 逆时针旋转090得到''E DC ∆.当''E DC ∆的斜边、直角边与AB 分别相交于点Q P ,(点P 与点Q 不重合)时,设y PQ x CD ==,.(1)求证:DEC ADP ∠=∠;(2)求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.【答案】(1)见解析;(2)5512(3),627255612.12257x xyx x⎧-+<<⎪⎪=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩(2)解:如图1中,当C′E′与AB相交于Q时,即61257x<≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=45y,PN=43×12(3﹣x),∴23(3﹣x)+45y=x,∴255122y x=-,考点:旋转的性质;函数关系式;矩形的判定与性质;解直角三角形.18. (2021辽宁大连第25题)如图1,四边形ABCD 的对角线BD AC ,相交于点O ,OD OB =,m AD AB OA OC =+=,,n BC =,ACB ADB ABD ∠=∠+∠.(1)填空:BAD ∠与ACB ∠的数量关系为 ;(2)求nm 的值; (3)将ACD ∆沿CD 翻折,得到CD A '∆(如图2),连接'BA ,与CD 相交于点P .若215+=CD ,求PC 的长.【答案】(1)∠BAD +∠ACB =180°;(2)512;(3)1.考点:相似三角形的判定和性质;解一元二次方程;三角形的内角和定理.19. (2021海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.20. (2021新疆乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A≈≈≈,结果取整数)出发20分钟到达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】∵cos 37°=EB BC, ∴EB =BC •cos 37°≈0.8×10=8海里,EF =AD =17.32海里,∴FC =EF ﹣CE =11.32海里,AF =ED =EB +BD =18海里,在Rt △AFC 中,AC =22221811.32AF FC +=+≈21.26海里, 21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题。
【中考12年】浙江省嘉兴市、舟山市中考数学试题分类解析 专题04 图形的变换
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析专题04 图形的变换一、选择题1. (2002年浙江舟山、嘉兴4分)圆台的轴截面是一个上、下底边长分别为2cm,4cm,腰长为3cm的等腰梯形,这个圆台的侧面积是【】A.9πcm2B.18πcm2C.24πcm2D.36πcm2【答案】A。
【考点】圆台的计算。
2. (2003年浙江舟山、嘉兴4分)如果圆柱的轴截面是一个边长为4cm的正方形,那么圆柱的侧面积为【】A .16πcm2 B.18πcm2 C.20πcm2 D .24πcm2【答案】A。
【考点】圆柱的计算。
3. (2004年浙江舟山、嘉兴4分)已知圆锥底面半径为3,高为4,则圆锥侧面积为【】A.10πB.12πC.15πD.20π【答案】B。
【考点】圆锥和扇形的计算。
4. (2005年浙江舟山、嘉兴4分)圆锥的轴截面是【】A .等腰三角形 B.矩形 C .圆 D.弓形【答案】A。
【考点】圆锥的轴截面。
5. (2006年浙江舟山、嘉兴4分)已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为【】.A.15πcm2 B.20πcm2 C.12πcm2 D.30πcm2【答案】A。
【考点】圆锥和扇形的计算。
6. (2006年浙江舟山、嘉兴4分)假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法【】.A.7 B.8 C.9 D.10【答案】B。
【考点】探索规律题(图形的变化类),分类思想的应用。
7. (2010年浙江舟山、嘉兴4分)已知一个几何体的三视图如图所示,则该几何体是【】A.棱柱 B.圆柱 C.圆锥 D.球【答案】B。
【考点】由三视图判断几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题09 三角形一、选择题1. (2002年浙江舟山、嘉兴4分)等腰三角形两腰中点的连线长为4,则它的底边长为【 】A.2B.4C.8D.16 【答案】C 。
【考点】三角形中位线定理。
2. (2002年浙江舟山、嘉兴4分)在△ABC 中,∠A,∠B 都是锐角,且sinA=21,cosB=23,则△ABC 的形状是【 】A.直角三角形B.钝角三角形C.锐角三角形D.不能确定 【答案】B 。
【考点】特殊角的三角函数值,三角形内角和定理。
3. (2002年浙江舟山、嘉兴4分)图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为5:1,则要使这块石头滚动,至少要将杠杆的A 端向下压【 】A.100cmB.60cmC.50cmD.10cm 【答案】C 。
【考点】相似三角形的应用。
4. (2003年浙江舟山、嘉兴4分)如图,在△ABC中,D、E分别为AB、AC的中点,若△ABC 的面积为12cm2,则△ADE的面积为【】A.2cm2B.3cm2C.4cm2D.6cm2【答案】B。
【考点】三角形中位线定理,相似三角形的判定和性质。
5. (2003年浙江舟山、嘉兴4分)如图是人字型屋架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。
如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取地两根钢条及焊接的点是【】A .AC和BC,焊接点B B.AB和AC,焊接点AC. AB和AD,焊接点AD. AD和BC,焊接点D【答案】D。
【考点】等腰三角形性质的应用。
6. (2004年浙江舟山、嘉兴4分)小芳在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网的【】A.15米处B.10米处C.8米处D.7.5米处【答案】 B。
【考点】相似三角形的应用。
7. (2006年浙江舟山、嘉兴4分)数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为【】.A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定【答案】C。
【考点】锐角三角函数定义。
8. (2007年浙江舟山、嘉兴4分)如图,用放大镜将图形放大,应该属于【】A.相似变换 B.平移变换 C.对称变换 D.旋转变换【答案】A。
【考点】相似的判定。
9. (2007年浙江舟山、嘉兴4分)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为【】A.82米 B.163米 C.52米 D.30米【答案】A。
【考点】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值。
10. (2008年浙江舟山、嘉兴4分)如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=【】A.4 B.3 C.2 D.1【答案】B。
【考点】三角形中位线定理。
11. (2008年浙江舟山、嘉兴4分)已知等腰三角形的一个内角为500,则这个等腰三角形的顶角为【】A.500B.800C.500或800D.400或650【答案】C。
【考点】等腰三角形的性质,三角形内角和定理,分类思想的应用。
12. (2009年浙江舟山、嘉兴4分)如图,等腰△ABC 中,底边BC=a ,∠A=36°,∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E ,设k=51,则DE=【 】A .2k aB .3k aC .2ak D .3a k 【答案】A 。
【考点】等腰三角形的判定和性质,三角形内角和定理,相似三角形的判定和性质,解一元二次方程,二次根式化简。
13. (2010年浙江舟山、嘉兴4分)如图,已知AD 为△ABC 的角平分线,DE∥AB 交AC 于E ,如果AE EC =23,那么AB AC=【 】A .13B .23C .25D .35【答案】B 。
【考点】角平分线的性质,平行的性质,相似三角形的判定和性质,等腰三角形的判定。
14. (2010年浙江舟山、嘉兴4分)如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为斜边并且在AB的同一侧作等腰直角△ACD和△BCE,连结AE交CD于点M,连结BD交CE于点N,给出以下三个结论:①MN∥AB;②1MN=1AC+1BC;③MN≤14AB,其中正确结论的个数是【】A.0 B.1 C.2 D.3【答案】D。
【考点】等腰直角三角形的判定和性质,平行线的判定和性质,分式的变形,不等式的性质。
15. (2011年浙江舟山、嘉兴3分)如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为【】(A)(B)(C)(D)【答案】B。
【考点】等边三角形的性质,三角形中位线定理,勾股定理或正弦函数。
16. (2012年浙江舟山、嘉兴4分)如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC=a 米,∠A=90°,∠C=40°,则AB 等于【 】米.A . asin40°B . acos40°C . atan40°D .atan40【答案】C 。
【考点】解直角三角形的应用,锐角三角函数定义。
二、填空题1. (2002年浙江舟山、嘉兴5分)学校在周一举行升国旗仪式,一位同学站在离旗杆20米处(如图),随着国歌响起,五星红旗冉冉升起.当这位同学目视国旗的仰角为37°时(假设该同学的眼睛距离地面的高度为1.6米),国旗距地面约 ▲ 米(结果精确到0.1米).(下列数据供选用:sin37°≈53,cos37°≈54,tg37°≈43,ctg37°≈34)2. (2005年浙江舟山、嘉兴5分)课本中,是这样引入“锐角三角函数”的:如图,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足。
我们规定,比值▲ 叫做角α的正弦,比值▲ 叫做角α的余弦。
这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:▲ ,▲ 。
说明这些比值都是由▲ 唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数。
【答案】PMOP,OMOP,11111P M OMPM OMOP OP OP OP==,,α。
【考点】锐角三角函数定义,相似三角形的性质。
3. (2006年浙江舟山、嘉兴5分)小宁想知道校园内一棵大树的高度(如图),他测得CB的长度为10米,∠ACB= 50°,请你帮他算出树高AB约为▲ 米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50 °≈1.2)【答案】12。
【考点】解直角三角形的应用,锐角三角函数定义。
4. (2007年浙江舟山、嘉兴5分)一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为▲ 。
【答案】70°,55°,55°或70°,70°,40°。
【考点】等腰三角形的性质,三角形的外角性质,分类思想的应用。
5. (2011年浙江舟山、嘉兴4分)如图,在△ABC中,AB=AC,︒A,则△ABC的外∠40=角∠BCD=▲度.【答案】110。
6. (2012年浙江舟山、嘉兴5分)如图,在Rt△ABC 中,∠ABC=90°,BA=BC .点D 是AB 的中点,连接CD ,过点B 作BG 丄CD ,分别交GD 、CA 于点E 、F ,与过点A 且垂直于的直线相交于点G ,连接DF .给出以下四个结论:①AG FGAB FB;②点F 是GE 的中点;;④S △ABC =5S △BDF ,其中正确的结论序号是 ▲ .【答案】①③。
【考点】相似三角形的判定和性质,勾股定理,等腰直角三角形的性质。
三、解答题1. (2004年浙江舟山、嘉兴8分)如图,已知登山缆车行驶路线与水平线间的夹角为α=30°,β=47°。
小明乘缆车上山,从A到B,再从B到D,都走了200米(即AB=BD=200米),请根据所给数据计算缆车垂直上升的距离(计算结果保留整数)(以下数据供选用:sin47°≈0.7314,cos47°≈0.6820,tan47°≈1.0724)【答案】解:在Rt△ABC中,斜边AB=200米,∠α=30°,BC=AB•sin∠α=200×sin30°=100(米),在Rt△BDF中,斜边BD=200米,∠β=47°,DF=BD•sin∠β=200×sin47°≈146(米),∴缆车垂直上升的距离应该是BC+DE=246(米)。
答:缆车垂直上升的距离是246米。
2. (2005年浙江舟山、嘉兴8分)课本中有这么一个例题:“如图,河对岸有一水塔AB。
在C处测得塔顶A的仰角为30°,向塔前进12米到达D,在D处测得A的仰角为45°,求水塔AB的高”。
解这个题时,我们通常时这样去想的(分析):要求水塔AB 的高,只要去寻找AB 于已知量之间的关系。
在这里,由于难以找到四个量之间的直接关系,我们可引进一个或两个中间量。
以此作为媒介,再寻找这些量之间的关系,得到。
于是,就可求得水塔的高,问题就解决了。
(本题主要要求写好“分析”,并得出答案即可。
格式参答题卷。
)【答案】解:根据题意,在R t△ABC 中,ABBC tan30=︒,在Rt△ABD 中,ABBD AB tan45==︒,∵CD=BC-BD=12,∴)1AB 12=,解得:)AB 61=(米)。
答:水塔的高为)61米。
【考点】解直角三角形的应用,锐角三角函数定义,特殊角的三角函数值。
3. (2007年浙江舟山、嘉兴12分)如图,已知AB=AC,∠A=36°,AB 的中垂线MN 交AC 于点D ,交AB 于点M 。
有下面4个结论:①射线BD 是么ABC 的平分线;②△BCD 是等腰三角形; ③△ABC∽△BCD;④△AMD≌△BCD。