多元统计分析实验报告1
多元统计分析实验指导书——实验一均值向量和协方差阵检验

实验一SPSS软件的基本操作与均值向量和协方差阵的检验【实验目的】通过本次实验,了解SPSS的基本特征、结构、运行模式、主要窗口等,了解如何录入数据和建立数据文件,掌握基本的数据文件编辑与修改方法,对SPSS有一个浅层次的综合认识。
同时能够掌握对均值向量和协方差阵进行检验。
【实验性质】必修,基础层次【实验仪器及软件】计算机及SPSS软件【实验内容】1.操作SPSS的基本方法(打开、保存、编辑数据文件)2.问卷编码3.录入数据并练习数据相关操作4.对均值向量和协方差阵进行检验,并给出分析结论。
【实验学时】4学时【实验方法与步骤】1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.认识SPSS数据编辑窗、结果输出窗、帮助窗口、图表编辑窗、语句编辑窗4.对一份给出的问卷进行编码和变量定义5.按要求录入数据6.练习基本的数据修改编辑方法7.检验多元总体的均值向量和协方差阵8.保存数据文件9.关闭SPSS,关机。
【实验注意事项】1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
【上机作业】1.定义变量:试录入以下数据文件,并按要求进行变量定义。
表1学号姓名性别生日身高(cm)体重(kg)英语(总分100分)数学(总分100分)生活费($代表人民币)200201 刘一迪男1982.01.12 156.42 47.54 75 79 345.00 200202 许兆辉男1982.06.05 155.73 37.83 78 76 435.00 200203 王鸿屿男1982.05.17 144.6 38.66 65 88 643.50 200204 江飞男1982.08.31 161.5 41.68 79 82 235.50 200205 袁翼鹏男1982.09.17 161.3 43.36 82 77 867.00 200206 段燕女1982.12.21 158 47.35 81 74200207 安剑萍女1982.10.18 161.5 47.44 77 69 1233.00 200208 赵冬莉女1982.07.06 162.76 47.87 67 73 767.80 200209 叶敏女1982.06.01 164.3 33.85 64 77 553.90 200210 毛云华女1982.09.12 144 33.84 70 80 343.00200211 孙世伟男1981.10.13 157.9 49.23 84 85 453.80200212 杨维清男1981.12.6 176.1 54.54 85 80 843.00男1981.11.21 168.55 50.67 79 79 657.40 200213 欧阳已祥200214 贺以礼男1981.09.28 164.5 44.56 75 80 1863.90200215 张放男1981.12.08 153 58.87 76 69 462.20200216 陆晓蓝女1981.10.07 164.7 44.14 80 83 476.80200217 吴挽君女1981.09.09 160.5 53.34 79 82200218 李利女1981.09.14 147 36.46 75 97 452.80200219 韩琴女1981.10.15 153.2 30.17 90 75 244.70200220 黄捷蕾女1981.12.02 157.9 40.45 71 80 253.00要求:1)变量名同表格名,以“()”内的内容作为变量标签。
多元统计数据分析报告(3篇)

第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。
多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。
本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。
二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。
三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。
2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。
(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。
(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。
(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。
(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。
四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。
(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。
(3)工作环境得分普遍较高,其中工作压力得分最低。
2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。
(2)创新能力与稳定性呈负相关。
3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。
多元统计分析实验报告_聚类分析

武汉理工大学
实验(实训)报告项目名称实验2―聚类分析
实验报告2
聚类分析(设计性实验)
实验原理:聚类分析的目的是将分类对象按一定规则分为若干类,这些类不是事先给定的,而是根据数据的特征确定的。
在同一类里的这些对象在某种意义上倾向于彼此相似,而在不同的类里的对象倾向于不相似。
系统聚类法是聚类分析中用的最多的一种,其基本思想是:开始将n个对象各自作为一类,并规定对象之间的距离和类与类之间的距离,然后将距离最近的两类合并成一个新类,
E0
N20
(1
(2
(3
(4)用最大距离法将11种语言聚为3类,并将聚类结果存储在一个SPSS数据文件中。
实验题目二:
下表给出了2010年湖北省省各地区的人均各项消费支出情况。
表-1:2010年湖北省各地区人均各项消费支出
(1((2(3
(4
实验题目一分析报告:1.实验(实训)过程(步骤、记录、数据、程序等)
2.结论(结果、分析)
实验题目二分析报告:1.实验(实训)过程(步骤、记录、数据、程序等)
2.结论(结果、分析)。
多元统计分析实验指导书——实验一-均值向量和协方差阵检验

实验一SPSS软件的基本操作与均值向量和协方差阵的检验【实验目的】通过本次实验,了解SPSS的基本特征、结构、运行模式、主要窗口等,了解如何录入数据和建立数据文件,掌握基本的数据文件编辑与修改方法,对SPSS有一个浅层次的综合认识。
同时能够掌握对均值向量和协方差阵进行检验。
【实验性质】必修,基础层次【实验仪器及软件】计算机及SPSS软件【实验内容】1.操作SPSS的基本方法(打开、保存、编辑数据文件)2.问卷编码3.录入数据并练习数据相关操作4.对均值向量和协方差阵进行检验,并给出分析结论。
【实验学时】4学时【实验方法与步骤】1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.认识SPSS数据编辑窗、结果输出窗、帮助窗口、图表编辑窗、语句编辑窗4.对一份给出的问卷进行编码和变量定义5.按要求录入数据6.练习基本的数据修改编辑方法7.检验多元总体的均值向量和协方差阵8.保存数据文件9.关闭SPSS,关机。
【实验注意事项】1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
【上机作业】1.定义变量:试录入以下数据文件,并按要求进行变量定义。
表1学号姓名性别生日身高(cm)体重(kg)英语(总分100分)数学(总分100分)生活费($代表人民币)200201 刘一迪男156.42 47.54 75 79 345.00200202 许兆辉男155.73 37.83 78 76 435.00200203 王鸿屿男144.6 38.66 65 88 643.50200204 江飞男161.5 41.68 79 82 235.50200205 袁翼鹏男161.3 43.36 82 77 867.00200206 段燕女158 47.35 81 74200207 安剑萍女161.5 47.44 77 69 1233.00200208 赵冬莉女162.76 47.87 67 73 767.80200209 叶敏女164.3 33.85 64 77 553.90200210 毛云华女144 33.84 70 80 343.00200211 孙世伟男157.9 49.23 84 85 453.80200212 杨维清男1981.12.6 176.1 54.54 85 80 843.00200213 欧阳已祥男168.55 50.67 79 79 657.40200214 贺以礼男164.5 44.56 75 80 1863.90200215 张放男153 58.87 76 69 462.20200216 陆晓蓝女164.7 44.14 80 83 476.80200217 吴挽君女160.5 53.34 79 82200218 李利女147 36.46 75 97 452.80200219 韩琴女153.2 30.17 90 75 244.70200220 黄捷蕾女157.9 40.45 71 80 253.00 要求:1)变量名同表格名,以“()”内的内容作为变量标签。
多元统计学SPSS实验报告一

多元统计学SPSS实验报告一华东理工大学2016–2017学年第二学期《多元统计学》实验报告实验名称实验1数据整理与描述统计分析专业姓名学号组名/组号实验时间实验地点指导教师实验目的/要求1、掌握数据整理的基本方法:观察量排序(Sort Cases)、变量排序(Rank Cases)、计算新的变量(Compute Variables)、拆分数据文件(Split Files) 、分类汇总(Aggregate)等。
2、熟练应用SPSS输出描述统计量和绘制统计图。
实验内容1、对“employee data.sav ”进行数据整理,并分别给出三种工作类别(jobcat)的薪水(salary)的描述统计量(均值、方差等)。
2、对第1章的习题4进行描述统计分析。
实验总结教师批阅:实验成绩:教师签名: 日期:实验报告正文:实验 1.1数据整理(一)对“employee data.sav ”进行数据整理1.观察量排序 ( based on current salary)2.变量值排序(based on current salary : rsalary)3.计算新的变量(incremental salary=current salary - beginning salary)4.拆分数据文件(based on gender)结论:There are 215 female employees and 259 male employees.5.分类汇总 (break variable: gender ; function: mean )结论:The average current salary of female is 26031.92.The average current salary of male is 41441.78.(二)分别给出三种工作类别的薪水的描述统计量实验2.2描述统计分析1)样本均值矩阵结论:总共分析六组变量,每组含有十个样本。
多元统计课程实验报告

一、实验背景随着社会经济的发展和科学技术的进步,数据量日益庞大,如何从大量数据中提取有价值的信息,成为统计学研究的热点问题。
多元统计分析作为统计学的一个重要分支,通过对多个变量之间的关系进行分析,为决策者提供有力的数据支持。
本实验旨在通过实际操作,让学生熟练掌握多元统计分析方法,提高数据分析能力。
二、实验目的1. 掌握多元统计分析的基本概念和方法;2. 学会运用多元统计分析方法解决实际问题;3. 提高数据分析能力,为后续课程打下坚实基础。
三、实验内容本次实验以某城市居民消费数据为例,运用多元统计分析方法对其进行分析。
四、实验步骤1. 数据导入首先,将实验数据导入统计软件(如SPSS、R等)。
本实验采用SPSS软件,数据集包含以下变量:(1)收入(y):居民年收入;(2)教育程度(x1):居民最高学历;(3)年龄(x2):居民年龄;(4)家庭人口(x3):家庭人口数量;(5)住房面积(x4):家庭住房面积。
2. 描述性统计分析对数据集进行描述性统计分析,包括各变量的均值、标准差、最大值、最小值等。
3. 相关性分析运用皮尔逊相关系数、斯皮尔曼等级相关系数等方法,分析变量之间的相关关系。
4. 主成分分析运用主成分分析方法,提取主要成分,降低数据维度。
5. 聚类分析运用K-means聚类分析方法,将居民划分为不同的消费群体。
6. 随机森林回归分析运用随机森林回归分析方法,预测居民收入。
五、实验结果与分析1. 描述性统计分析根据描述性统计分析结果,可知居民年收入、教育程度、年龄、家庭人口、住房面积的平均值、标准差、最大值、最小值等。
2. 相关性分析通过相关性分析,发现收入与教育程度、年龄、家庭人口、住房面积之间存在显著的正相关关系。
3. 主成分分析根据主成分分析结果,提取出两个主成分,累计方差贡献率为84.95%,可以解释大部分的变量信息。
4. 聚类分析通过K-means聚类分析,将居民划分为3个消费群体。
多元统计分析实验报告计算协方差矩阵相关矩阵SAS
多元统计分析实验报告计算协方差矩阵相关矩阵SAS实验目的:通过对多元统计分析中的协方差矩阵和相关矩阵的计算,探究变量之间的相关性,并使用SAS进行实际操作。
实验步骤:1.数据准备:选择一个数据集,例如学生的成绩数据,包括数学成绩、语文成绩和英语成绩。
2.数据整理:将数据转化为矩阵形式,每一行代表一个学生,每一列代表一个变量(即成绩),记为X。
3. 计算协方差矩阵:根据公式计算协方差矩阵C,其中元素Cij表示变量Xi和Xj之间的协方差。
计算公式为Cij = cov(Xi, Xj) = E((Xi - u_i)(Xj - u_j)),其中E为期望值,u_i和u_j分别是变量Xi和Xj的均值。
4. 计算相关矩阵:根据协方差矩阵计算相关矩阵R,其中元素Rij表示变量Xi和Xj之间的相关性。
计算公式为Rij = cov(Xi, Xj) / (sigma_i * sigma_j),其中sigma_i和sigma_j分别是变量Xi和Xj的标准差。
5.使用SAS进行实际操作:使用SAS软件导入数据集,并使用PROCCORR和PROCPRINT命令进行协方差矩阵和相关矩阵的计算和输出。
实验结果:通过计算协方差矩阵和相关矩阵,可以得到变量之间的相关性信息。
协方差矩阵的对角线上的元素表示每个变量的方差,非对角线上的元素表示不同变量之间的协方差。
相关矩阵的对角线上的元素都是1,表示每个变量与自身的相关性为1,非对角线上的元素表示不同变量之间的相关性。
使用SAS进行实际操作后,我们可以得到一个包含协方差矩阵和相关矩阵的输出表格。
该表格可以帮助我们更直观地理解变量之间的相关性情况,从而为后续的统计分析提供参考。
实验总结:通过本次多元统计分析实验,我们了解了协方差矩阵和相关矩阵的计算方法,并使用SAS软件进行实际操作。
这些矩阵可以帮助我们评估变量之间的相关性,为后续的统计分析提供重要的基础信息。
在实际应用中,我们可以根据协方差矩阵和相关矩阵的结果,选择合适的统计方法和模型,并做出恰当的推断和决策。
《多元统计》课程实验报告-回归分析
《多元统计与程序设计》课程实验报告1 实验内容(1)掌握回归分析和逐步回归分析的思想和计算步骤;(2)用Matlab实现回归分析和逐步回归分析;2 模型建立与求解2.1回归分析2.1.1模型的建立设随机变量y与m个自变量存在线性关系:y= (2.1.1)式(2.1.1)称为回归方程,其中称为回归系数,为随机变量,称为随机误差,它可理解为y无法用表示的是其他各种随机因素造成的误差。
要用来估计随机变量y的均值E(y),即E(y)=此处假定,y。
其中,,是与无关的待定系数。
设有n组样本观测值数据:其中表示第i次试验或第i个样本关于变量的观测值。
于是有:==………(2.1.2)其中,为m+1个待定系数,为n 个相互独立的且服从同一正态分布的随机变量,式(2.1.2)称为多元(m 元)线性回归数学模型。
式(2.1.2)也可写成矩阵形式,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m x x x x x xx x x X 212222111211111则式(2.1.2)可表示为(2.1.3)式(2.1.3)称为多元线性回归模型的矩阵形式。
2.1.2回归模型中参数的确定采用最小二乘法来对回归模型式(2.3)中的作最小二乘估计。
设m 3210,b,,b ,b ,b b 分别是的最小二乘估计值,于是有 m m 22110x b x b x b b yˆ++++=(2.1.4)式(2.1.4)中:yˆ是y 中的一个最小二乘估计。
对于每一个试验数据。
由式(2.1.4),可得一个i ˆy,即:n i x b x b b yim m i i ,,2,1ˆ110 =+++=,。
这里称i ˆy 为实际值i y 的回归值。
显然,回归值i yˆ与实际值i y 有误差,即 i y -i ˆy=n i x b x b b y im m i i ,,2,1110 =+++-, 当然我们希望i ˆy与i y 值偏离程度越小越好,这样才能使回归值i ˆy 与实际值i y 拟合得最好。
数学建模多元统计分析报告
.. ..实验报告一、实验名称多元统计分析作业题。
二、实验目的(一)了解并掌握主成分分析与因子分析的基本原理和简单解法。
(二)学会使用matlab编写程序进行因子分析,求得特征值、特征向量、载荷矩阵等值。
(三)学会使用排序、元胞数组、图像表示最后的结果,使结果更加直观。
三、实验容与要求四、实验原理与步骤(一)第一题:1、实验原理:因子分析简介:(1)1.1 基本因子分析模型设p维总体x=(x1,x2,....,xp)'的均值为u=(u1,u2,....,u3)',因子分析的一般模型为x1=u1+a11f1+a12f2+........+a1mfm+ε1x2=u2+a21f1+a22f2+........+a2mfm+ε2.........xp=up+ap1f1+fp2f2+..........+apmfm+εp其中,f1,f2,.....,fm为m个公共因子;εi是变量xi(i=1,2,.....,p)所独有的特殊因子,他们都是不可观测的隐变量。
称aij(i=1,2,.....,p;j=1,2,.....,m)为变量xi的公共因子fi上的载荷,它反映了公共因子对变量的重要程度,对解释公共因子具有重要的作用。
上式可以写为矩阵形式x=u+Af+ε其中A=(aij)pxm 称为因子载荷矩阵;f=(f1,f2,....,fm)'为公共因子向量;ε=(ε1,ε2,.....εp)称为特殊因子向量(2)1.2 共性方差与特殊方差xi的方差var(xi)由两部分组成,一个是公共因子对xi方差的贡献,称为共性方差;一个是特殊因子对xi方差的贡献,称为特殊方差。
每个原始变量的方差都被分成了共性方差和特殊方差两部分。
(3)1.3 因子旋转因子分析的主要目的是对公共因子给出符合实际意义的合理解释,解释的依据就是因子载荷阵的个列元素的取值。
当因子载荷阵某一列上各元素的绝对值差距较大时,并且绝对值大的元素较少时,则该公共因子就易于解释,反之,公共因子的解释就比较困难。
多元统计实验报告--因子分析
多元统计实验报告设计题目:因子分析一、分析数据1995年我国社会发展状况的数据二、基本原理因子分析的基本思想是把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子。
三、实验步骤及其结果分析1、选择Analyze→Data Reduction→Factor,打开Factor Analysis主对话框;2、选择变量X1至X6,点击向右的箭头按钮,将六个变量移到Variable栏中;3、点击Descriptives…按钮,打开Descriptives子对话框。
在此对话框的Statistics下选择Initial solution;Correlation Matrix下选择coefficients,单击Continue按钮,返回Factor Analysis主对话框;4、单击Extraction…按钮,打开Extraction子对话框。
在此对话框的Method 下选择Principal components;Analyze下选择Correlation Matrix;Extract下选择Number of Factor,并在其右端的矩形框键入6;Display下选择Unrotated factor 和Scree plot,单击Continue按钮,返回Factor Analysis主对话框;点击OK按钮,显示结果清单。
(1)相关矩阵从表Correlation Matrix(相关矩阵)可知,各变量间存在较强的相关关系,因此有必要进行因子分析。
表中主对角线上的元素为1,表明变量自身于自身的相关系数为1。
(2)解释总方差从表Total Variance Explained(解释总方差)可知,前三个因子一起解释总方差的93.466%(累计贡献率),这说明前三个因子提供了原始数据的足够信息。
5、根据以上分析提取因子情况,单击Extraction…按钮,打开Extraction子对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析
实验报告一
学生姓名 刘琪
学 号 20111315008
院 系 数学与统计学院
专 业 统计学
课程名称 多元统计分析
任课教师 来鹏
二0一三年十一月五日
一、 测量15名两周岁婴儿的身高胸围上半臂围的数据如下表所示,假定这三组都服从
正态总体且协方差相等,试在显著性水平α=0.05下检验男女婴幼儿的这三项指标是否
有差异。
某地区农村两周岁婴儿的体格测量数据
性别 身高X1 胸围X2 上半臂围X3
男
78 60.6 16.5
男
76 58.1 12.5
男
92 63.2 14.5
男
81 59.0 16.0
男
81 60.8 14.0
男
84 59.5 15.0
女
80 58.4 14.0
女
75 59.2 13.0
女
78 60.3 14.0
女
75 57.4 12.0
女
79 59.5 12.5
女
78 58.1 14.0
女
75 58.0 12.5
女
64 55.5 11.0
女
80 59.2 12.5
data shuju4;
input sex $ shenggao xiongwei biwei;
cards;
m 78 60.6 16.5
m 76 58.1 12.5
m 92 63.2 14.5
m 81 59.0 16.0
m 81 60.8 14.0
m 84 59.5 15.0
f 80 58.4 14.0
f 75 59.2 13.0
f 78 60.3 14.0
f 75 57.4 12.0
f 79 59.5 12.5
f 78 58.1 14.0
f 75 58.0 12.5
f 64 55.5 11.0
f 80 59.2 12.5
;
proc glm;
class sex;
model shenggao xiongwei biwei=sex/ss3;
run;
二、1992年美国总统选举的三位候选人为布什、佩罗特和克林顿。从支持三位候选人的选
民中分别抽取了20人,登记他们的年龄段(X1)和受教育程度(X2)资料如下表所示:
布什的选民 X1 X2 佩罗特的选民 X1 X2 克林顿
的选民
X1 X2
1 2 1 1 2 1 1 4 1
2 1 3 2 1 2 2 4 1
3 3 3 3 1 0 3 2 1
4 1 3 4 1 3 4 4 1
5 3 1 5 3 1 5 2 3
6 3 1 6 2 1 6 4 0
7 1 1 7 1 1 7 3 2
8 2 3 8 1 3 8 4 0
9 2 1 9 4 1 9 2 1
10 3 1 10 3 3 10 3 1
11 1 1 11 2 1 11 3 1
12 4 1 12 1 3 12 2 3
13 4 0 13 2 1 13 4 0
14 3 4 14 1 1 14 2 1
15 3 3 15 2 1 15 4 1
16 2 3 16 3 1 16 2 2
17 2 1 17 1 1 17 3 3
18 3 1 18 3 1 18 3 2
19 1 3 19 4 3 19 3 1
20 1 1 20 2 1 20 4 0