不可不会的平面向量经典习题

合集下载

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。

5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。

三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。

7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。

8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。

四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。

10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。

答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。

高中数学平面向量经典练习题(含答案)

高中数学平面向量经典练习题(含答案)

高中数学平面向量经典练习题(含答案)一.填空题1.在平行四边形ABCD 中,AC 、BD 为对角线,则AB→ + AD→ + CD→ +DB→ +BA→ = .2.已知向量a=(1,-6),b=(-2,14),则向量 13a-2b 的坐标= .3.已知向量a ,b ,若|a |=2,|b |=2√5,且(a-b )·(2a-3b )=68-10√15,则向量a ,b 的夹角为 .4.在△ABC 中,设BC→ =m ,BA→ =n ,D 为AC 上的一点,且AD DC= 45,若向量BD→ 用m ,n 表示,则BD→ = .5.已知向量a=(2,3m-4),b=(m-5,m+1),若a ,b 共线,则m 的值是 .6.在△ABC 中,D 为边BC 上,CD=3DB ,E 在边AC 上,且AE=2EC ,设AC→ =a→,AD→ =b→,用向量a→,b→表示向量EB→ ,则EB→ = .AEDBCADBC7.已知向量a=(-3,6),b=(4,0),c=(1,4),若a用b、c表示。

则a= .8.已知向量a=(x,5√3+11),b=(x+2√3+1,-1),若a,b互相垂直,则x的值为 .9.已知向量a(1,√2),b(-√2,x)它们的夹角为α,且sin2α=1,则x= .10.已知向量a=(1-x,1),b=(-2,2x),若向量2a+b与a-b平行,则a·b= .二、解答题11.已知向量a=(1,1),b=(√2,-1),若(xa-b)⊥(2a+b),求实数x的值.12.已知|a|=1,|b|=2,它们的夹角为60°,设c=3a+xb,d= -xa+2b,若c⊥d,求实数x的值.参考答案 一.填空题1.在平行四边形ABCD 中,AC 、BD 为对角线,则AB→ + AD→ + CD→ +DB→ +BA→ = .解:AB→ + AD→ + CD→ + DB→ +BA→=AB→ + AD→ + CD → +(DB→ +BA→ )=AB→ + AD→ + CD→ +DA→=(AB→ + CD→ )+(AD→ +DA→ )(因为AB→ ,CD→ 大小相等,方向相反,它们的和为0)=0+0 =0故原题的答案为:02.已知a=(1,-6),b=(-2,14),则 13a-2b= .解: 13a = 13(1,-6)=(13,-2)2b=2(-2,14)=(-4, 12)13a-2b =(13+4,-2- 12)=( 133,- 52)故原题的答案为: 133,- 523.已知向量a ,b ,若|a |=2,|b |=2√5,且(a-b )·(2a-3b )=68-10√15,则向量a ,b 的夹角为 .解:由已知,得|a |2=4,|b |2=20,|a |·|b |=4√5(a-b )·(2a-3b )=2a 2-5ab+3b 2=8-5ab+ 60 =68-5ab=68-10√15则ab=2√15cosa = ab |a |.|b|= 2√154√5= √32所以向量a ,b 的夹角为30° 故原题的答案为:30°4.在△ABC 中,设BC→ =m ,BA→ =n ,D 为AC 上的一点,且AD DC= 45,若向量BD→ 用m ,n 表示,则BD→ = .解:BC→ =m ,BA→ =n则AC→ = m-n又AD DC= 45所以DC→ = 59AC→= 59m - -59nBD→ = BC→ - DC→=m -( 59m - 59n )= 49m + 59n故原题的答案为: 49m + 59nADBC5.已知向量a=(2,3m-4),b=(m-5,m+1),若a ,b 共线,则m 的值是 . 解:因为a ,b 共线所以2·(m+1)=(3m -4)·(m -5) 整理,得m 2-7m+6=0 解得,m=1或m=6 故原题的答案为:1或66.在△ABC 中,D 为边BC 上,CD=3DB ,E 在边AC 上,且AE=2EC ,设AC→ =a→,AD→ =b→,用向量a→,b→表示向量EB→ ,则EB→ = .解:CD→ = b→ - a →CB → = 43CD → = 43(b→ - a→)= 43b→ - 43a→EC → = 13AC → = 13a→EB→ = EC→ +CB→ =(13a→)+(43b → - 43a →)= 43b→- a→故原题的答案是: 43b→- a→7.已知向量a=(-3,6),b=(4,0),c=(1,4),若a 用b 、c 表示。

平面向量经典练习题_非常好

平面向量经典练习题_非常好

x平面向量与三角函数一、 选择题 :1. 已知平行四边形 ABCD ,O 是平行四边形 ABCD 所在平面内任意一点,OA 则向量 OD 等于( )A . a + b + cB . a + b - cC . a - b + cD . a - b - ca ,OBb , OCc ,2. 已知向量 a 与b 的夹角为 120o, a3, a b13, 则 b 等于()( A ) 5( B )4( C ) 3( D ) 13. 设 a ,b 是两个非零向量.下列正确的是 ()A .若|a +b |=|a |-|b |,则 a ⊥bB .若 a ⊥b ,则|a +b |=|a |-|b |C. 若|a +b|=|a|-|b|,则存在实数 λ,使得 b =λaD. 若存在实数 λ,使得 b =λa ,则|a + b|=|a|-|b|4. 已知 →a = (sin θ, 1+ cos θ),→b 3 =(1 , 1 - cos θ),其中 θ∈ (π, 2),则一定有 ()A . →a ∥→bB . →a ⊥ →bC . →a 与→b 夹角为 45 °D . |→a |= |→b |5.已知向量 →a = (6 ,- 4) ,→b = (0 ,2), →c = →a + →b ,若 C 点在函数 y = sin π的图象上 ,实数 =()12 5 3 5 3A .B .C .-D .-22 2 26. 已知 k A.17Z ,AB (k,1), ACB.27(2,4) ,若 AB10 C.37 ,则 △ ABC 是直角三角形的概率为( )D.477. 将 y 2cosxπ的图象按向量 a π, 2平移,则平移后所得图象的解析式为 ()A. y 3 62cosx π2 4B. y2cosx π2 3 4 3 4C. y 2cosx π2 D. y 2cosx π2 3 128. 在 ABC 中,M 是 BC 的中点,AM=1, 点 P 在 AM 上且满足() 3 12 AP2PM, 则 PA( PBPC) 等于4 ( A )94 ( B ) 34 ( C )34 (D)99. 已知 O 是 △ABC 所在平面内一点, D 为 BC 边中点,且 2OA OB OC 0 ,那么()A.AO OD B.AO 2OD C.AO 3OD D.2 A O OD10. △ABC 中,点 D 在边AB 上,CD 平分∠ACB ,若CB = a , CA = b , a = 1 ,b = 2, 则CD = ()1 (A ) a +3 2b (B)32 1 3a +b (C) a +3 3 54b (D )54 3a + b5 511 在ABC 中,若BA BC AC ,则ABC 一定是()A .钝角三角形B.锐角三角形C.直角三角形 D .不能确定12.设非零向量a = ( x,2 x) , b ( 3 x,2) ,且a, b 的夹角为钝角,则x 的取值范围是()(A),0 (B)4, 03(C), 04, 0 (D),13 31, 04,3 313.已知点O 、N 、P 在三角形ABC 所在平面内,且OA = OB = OC , NA NB NC 0 , 则PA PB = PB PC = PC PA 则点O 、N 、P 依次是三角形ABC 的( ) (A)重心、外心、垂心(B)重心、外心、内心(C)外心、重心、垂心(D)外心、重心、内心14.设A(a,1) ,B(2, b) ,C (4,5) 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则 a 与b 满足的关系式为( )(A)4a 5b 3 (B)5a 4b 3 (C)4a 5b 14 (D )5a 4b 1415.(上海理14)在直角坐标系xOy 中,i , j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,AB 2i j ,AC 3i k j ,则k 的可能值有( )A 、1 个B 、2 个C、3 个D、4 个二、填空题:16..四边形ABCD中,AB 1,2 , BC 4, 1 ,CD 5, 3则四边形ABCD 的形状是17.已知a,b 是两个非零向量,且a b a b,则a与a b的夹角为19. 若O 是ABC 所在平面内一点,且满足OB OC OB OC 2OA,则ABC的形状为_20. 已知向量a 、b 满足a=b=1 ,3a 2b 3 a b=3,则21. 下列命题中:① a (b c ) a b a c ;② a (b c ) (a b) c ;③2( a b) 2| a |2 22 | a | | b | | b |2;④若a b0 ,则a 0 或b 0 ;⑤若a b c b, 则 a c ;⑥ a a ;⑦a b b2222222aa ;⑧ (a b)a b ;⑨ ( a b)a2a b b 。

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

一、选择题1.已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 2、已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1BC .2D .43、若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______;4、 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值范围是(A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-5、在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=6、在∆ABC 中,已知D 是AB 边上一点,若=2,=λ+31,则λ= (A)32(B)31 (C) -31(D) -327、设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6(C) 4(D) 38、在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-9把函数e xy =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+B .e 2x-C .2ex -D .2ex +10、已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =11、在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有A 、1个B 、2个C 、3个D 、4个 12、对于向量,a 、b 、c 和实数错误!未找到引用源。

平面向量典型例题

平面向量典型例题

平面向量经典例题:1.已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13C .-1D .-23[答案] C[解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2.(文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C[解析] a +2b =(3,1)+(0,2)=(3,3),∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0,∴k =-3.(理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611B .-116C.611D.116 [答案] C[解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直,∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611.3.设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30°[答案] B[解析] 如图,在▱ABCD 中,∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,∴〈a ,b 〉=120°,故选B.(理)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( ) A.12 B.13 C.14 D.15 [答案] A[解析] ∵|a -b |=32,∴|a |2+|b |2-2a ·b =34,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =12.4.若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形[答案] B[解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5.若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A .-a +3b B .a -3b C .3a -b D .-3a +b [答案] B[解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ),∴⎩⎨⎧ λ+μ=-2λ-μ=4,∴⎩⎨⎧λ=1μ=-3,∴c =a -3b ,故选B. 在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.23a +13b C.12a +14b D.13a +23b [答案] B[解析] ∵E 为OD 的中点,∴BE →=3ED →, ∵DF ∥AB ,∴|AB ||DF |=|EB ||DE |,∴|DF |=13|AB |,∴|CF |=23|AB |=23|CD |,∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →-OC →)=a +23(12b -12a )=23a +13b .6.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19 [答案] D[解析] 据已知得cos B =72+52-622×7×5=1935,故AB →·BC →=|AB →|×|BC →|×(-cos B )=7×5×()-1935=-19.7.若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .2 3 C .3 2 D .6[答案] D[解析] a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x +3y ≥232x +y =6,等号在x =12,y =1时成立.8.若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA →+xOB →+BC →=0,实数x 为( ) A .-1 B .0 C.-1+52D.1+52[答案] A[解析] x 2OA →+xOB →+OC →-OB →=0,∴x 2OA →+(x -1)OB →+OC →=0,由向量共线的充要条件及A 、B 、C 共线知,1-x -x 2=1,∴x =0或-1,当x =0时,BC →=0,与条件矛盾,∴x =-1. 9.(文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .最小值为2 C .是定值6 D .与P 的位置有关[答案] C[解析] 以BC 的中点O 为原点,直线BC 为x 轴建立如图坐标系,则B (-1,0),C (1,0),A (0,3),AB →+AC →=(-1,-3)+(1,-3)=(0,-23),设P (x,0),-1≤x ≤1,则AP →=(x ,-3),∴AP →·(AB →+AC →)=(x ,-3)·(0,-23)=6,故选C.(理)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD →|的最小值是( )A.12B.32C. 2D.22[答案] D[解析] ∵∠A =120°,AB →·AC →=-1,∴|AB →|·|AC →|·cos120°=-1, ∴|AB →|·|AC →|=2,∴|AB →|2+|AC →|2≥2|AB →|·|AC →|=4,∵D 为BC 边的中点,∴AD →=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,∴|AD →|≥22.10. 如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF→=12AD →,AK →=λAC →,则λ的值为( )A.15B.14C.13D.12[答案] A[解析] 如图,取CD 的三等分点M 、N ,BC 的中点Q ,则EF∥DG ∥BM ∥NQ ,易知AK →=15AC →,∴λ=15.11. 已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为( )A.12 B .2 C .-2 D .-12[答案] C[解析] m a +4b =(2m -4,3m +8),a -2b =(4,-1), 由条件知(2m -4)·(-1)-(3m +8)×4=0,∴m =-2,故选C.12. 在△ABC 中,C =90°,且CA =CB =3,点M 满足BM →=2MA →,则CM →·CB →等于( )A .2B .3C .4D .6 [答案] B[解析] CM →·CB →=(CA →+AM →)·CB →=(CA →+13AB →)·CB →=CA →·CB →+13AB →·CB →=13|AB →|·|CB →|·cos45°=13×32×3×22=3.13. 在正三角形ABC 中,D 是BC 上的点,AB =3,BD =1,则AB →·AD →=________. [答案]152[解析] 由条件知,|AB →|=|AC →|=|BC →|=3,〈AB →,AC →〉=60°, 〈AB →,CB →〉=60°,CD →=23CB →,∴AB →·AD →=AB →·(AC →+CD →)=AB →·AC →+AB →·23CB →=3×3×cos60°+23×3×3×cos60°=152.14. 已知向量a =(3,4),b =(-2,1),则a 在b 方向上的投影等于________.[答案] -255。

(完整版)平面向量练习题(有答案)

(完整版)平面向量练习题(有答案)

平面向量一 、选择题1、已知向量等于则MN ON OM 21),1,5(),2,3(--=-=( ) A .)1,8(B .)1,8(-C .)21,4(-D .)21,4(- 2、已知向量),2,1(),1,3(-=-=则b a 23--的坐标是( ) A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-3、已知),1,(),3,1(-=-=x b a 且∥,则x 等于( ) A .3B .3-C .31D .31-4、若),12,5(),4,3(==b a 则与的夹角的余弦值为( ) A .6563B .6533 C .6533-D .6563-564==,与的夹角是ο135,则⋅等于( ) A .12B .212C .212-D .12-6、点)4,3(-关于点)5,6(-B 的对称点是( ) A .)5,3(-B .)29,0(C .)6,9(-D .)21,3(-7、下列向量中,与)2,3(垂直的向量是( ) A .)2,3(-B .)3,2(C .)6,4(-D .)2,3(-8、已知A 、B 、C 三点共线,且A 、B 、C 三点的纵坐标分别为2、5、10,则点A 分所成的比是() A .83-B .83C .38-D .389、在平行四边形ABCD-=+,则必有( )A .=B .=或=C .ABCD 是矩形D .ABCD 是正方形10、已知点C 在线段AB的延长线上,且λλ则,CA BC ==等于( )A .3B .31C .3-D .31-11、已知平面内三点x C B A ⊥满足),7(),3,1(),2,2(,则x 的值为( ) A .3B .6C .7D .912、已知ABC ∆的三个顶点分别是),(),,(),,(y C B A 124231-,重心)1,(-x G ,则y x 、的值分别是( ) A .5,2==y xB .25,1-==y x C .1,1-==y xD .25,2-==y x16、设两个非零向量b a ,不共线,且b k a b a k ++与共线,则k 的值为( ) A .1B .1-C .1±D .017、已知B A 32),2,3(),1,2(=--,则点M 的坐标是( ) A .)21,21(--B .)1,34(--C .)0,31(D .)51,0(-18、将向量x y 2sin =按向量)1,6(π-=平移后的函数解析式是( ) A .1)32sin(++=πx yB .1)32sin(+-=πx yC .1)62sin(++=πx yD .1)62sin(+-=πx y二、填空题20、已知b a b a b a -+==⊥λ与且23,32垂直,则λ等于 21、已知等边三角形ABC 的边长为1,则=⋅22、设21e e 、是两个单位向量,它们的夹角是ο60,则=+-⋅-)23()2(2121e e e e 23、已知=--B A 、),2,5()4,3(三、解答题24、已知),(),,(0823=-ABA,求线段AB的中点C的坐标。

平面向量(附例题_习题及答案)

平⾯向量(附例题_习题及答案)向量的线性运算⼀.教学⽬标1.理解向量的概念;2.掌握向量的线性运算;3.理解向量线性运算的⼏何意义、向量共线的含义、平⾏向量基本定理;4.理解平⾯向量基本定理,掌握平⾯向量的正交分解及其坐标表⽰、平⾯向量的坐标运算;5.理解⽤坐标表⽰平⾯向量的共线条件。

⼆.知识清单1.向量基本概念(1)向量的定义:既有⼜有称为向量;(2)向量的⼤⼩(或称模):有向线段的表⽰向量的⼤⼩;(3)零向量与单位向量:叫做零向量,叫做单位向量;(4)共线向量与相等向量:叫做共线向量(或平⾏向量),叫做相等向量。

2.向量的线性运算(1)向量的加法a.向量加法的三⾓形法则、平⾏四边形法则和多边形法则。

b.向量加法满⾜的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).(2)向量的减法a.定义:a-b=a+(-b),即减去⼀个向量相当于加上这个向量的相反向量。

⼀个向量等于终点位置向量减始点位置向量,即AB=OB-OA。

b.三⾓形法则:“共始点,连终点,指向被减”。

(3)数乘向量a.定义:⼀般地,实数λ和向量a的乘积是⼀个向量,记作λa.b.数乘向量满⾜的运算律:(λ+µ)a=λ(µa)=λ(a+b)=3.向量共线的条件与轴上向量坐标运算(1)向量共线的条件平⾏向量基本定理:如果,则;反之,如果,且,则⼀定存在,使。

(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平⾯向量基本定理如果是⼀平⾯内的的向量,那么该平⾯内的任⼀向量a,存在,使。

(2)平⾯向量的正交分解定义:把⼀个向量分解为,叫做把向量正交分解。

(3)向量的坐标表⽰在平⾯直⾓坐标系中,分别取与x轴、y轴⽅向相同的两个_______作为基底。

对于平⾯内的任⼀个向量,由平⾯向量基本定理可知,有且只有⼀对实数x,y使得____________,这样,平⾯内的任⼀向量a都可由__________唯⼀确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表⽰,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标。

数学课程平面向量练习题及答案

数学课程平面向量练习题及答案平面向量练习题及答案1. 题目:给定向量a = (1, 2)和向量b = (3, -1),求向量a与向量b的和。

解答:要求向量a与向量b的和,只需要将它们对应位置的分量相加即可。

所以向量a + 向量b = (1 + 3, 2 + (-1)) = (4, 1)。

2. 题目:已知向量a = (2, -3)和向量b = (-4, 5),求向量a与向量b 的数量积。

解答:向量a与向量b的数量积(也称为点积或内积),可以通过将对应位置的分量相乘,并将乘积相加得到。

所以向量a·向量b = (2 * (-4)) + (-3 * 5) = (-8) + (-15) = -23。

3. 题目:已知向量a = (1, 2, -1)和向量b = (3, -2, 4),求向量a与向量b的叉积。

解答:向量a与向量b的叉积(也称为矢量积或外积),可以通过计算以下行列式得到:| i j k || 1 2 -1 || 3 -2 4 |其中i、j和k分别代表x、y和z轴的单位向量。

按照行列式的计算规则,得到向量a×向量b = (2 * 4 - (-1) * (-2), (-1) * 3 - 1 * 4, 1 * (-2) - 2 * 3) = (10, -7, -8)。

4. 题目:已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的夹角。

解答:要求向量a与向量b的夹角,可以通过计算它们的数量积和各自的模长来得到。

首先计算数量积:向量a·向量b = (2 * (-1)) + (3 * 4) = (-2) + 12 = 10。

接下来计算各自的模长:|向量a| = √(2^2 + 3^2) = √13,|向量b| = √((-1)^2 + 4^2) = √17。

最后,根据余弦定理,夹角θ的余弦值为:cosθ = 向量a·向量b / (|向量a| * |向量b|) = 10 / (√13 * √17) = 10 / √221。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
C A B M N P (第10题) 1.若平面向量a, b满足ab=1, ab平行于y轴,a=(2,-1),则b= 2.已知点O在△ABC内部,且有24OAOBOC0,则△OAB与△OBC的面积之比 为 . 3.已知a,b是平面内两个互相垂直的单位向量,若向量c满足0)()(cbca,则c的最大值是 . 4. 三角形ABC中,若220ABBCAB,且b=2,一个内角为300,则ΔABC的面积为 . 5. 在△ABC中,π6A,D是BC边上任意一点(D与B、C不重合),且 22||||ABADBDDC,则B等于 6. 给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若2,OCxOAyOB其中,xyR,则xy的最大值是________. 7.已知A(-3,0),B(0,3),O为坐标原点,点C在第二象限,且∠AOC=60°,OC→ =λOA→+OB→,则实数λ的值是 . 8.已知ABC,D为BC的中点,E为中线AD的中点,过E点作MN交线段AB于M, 交线段AC于N,设,AMxABANyAC,则4xy的最小值为 9.如图,在平面四边形ABCD中,若3,2ACBD,则()()ABDCACBD . 10.如图,在等腰直角三角形ABC中,AC=BC=1,点M,N分别是AB,BC的中点,点P是△ABC(包括边界)内任一点.则ANMP的取值范围为 11.已知点O为△ABC的外心,且4AC,2AB,则AOBC的值等于 12.已知,,OAB是平面上不共线三点,设P为线段AB垂直平分线上任意一点,若A 第9题 C D
B
- 2 -

||7OA,||5OB,则()OPOAOB
的值为 .

13.已知I是ABC的内心,,4,3,2ABBCAC若,则
yx

14
.在ABC中,已知D是AB边上一点,若DBAD31,12CDCACB,则


21


_____________.

15. 在平行四边形中,ABCD已知60DAB1,AD2,AB,点ABM为的中点,点
P
在CDBC与上运动(包括端点),则APDM的取值范围是 ▲ .

16.已知平面向量,(0,)满足1,且与的夹角为120°,则的
取值范围是____________
17.已知向量(2,0),(2,2),(2cos,2sin)OBOCCA,则向量OBOA,的夹角范
围是

18.等腰直角ΔABC中,90A,2AB,AD是BC边上的高,P为AD的中点,
点MN、分别为AB边和AC边上的点,且MN、关于直线AD对称,当
1
2
PMPN

时,AMMB_____________.
19.如图正六边形ABCDEF中,P是ΔCDE内(包括边界)的动点,设
APABAF

(α、β∈R),则α+β的取值范围是 .

20.给定两个长度为1的平面向量OA和OB,它们的夹角为120o.
(1)求|OA+OB|;
(2)如图所示,点C在以O为圆心的圆弧AB上变动.若
,OCxOAyOB
其中,xyR,求xy的最大值?

B D E A
C F
(第19题)

相关文档
最新文档