高中数学第二章变化率与导数3计算导数教材习题点拨北师大选修2-2创新
(常考题)北师大版高中数学高中数学选修2-2第二章《变化率与导数》测试题(包含答案解析)(4)

一、选择题 1.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=
( ) A.1 B.3 C.4 D.5
2.函数21cos6fxxx的导函数yfx的图象大致是( )
A. B.
C. D.
3.已知a,b为正实数,直线yxa与曲线lnyxb相切,则11ab的最小值是
( ) A.2 B.42 C.4 D.
22
4.设点P是曲线233xfxex上的任意一点,点P处的切线的倾斜角为,则角
的取值范围是( )
A.2,3 B.
20,,23
C.50,,26 D.
5,
26
5.若曲线xfxmxen在点1,1f处的切线方程为yex,则mn的值为
( )
A.12e B.12e C.12 D.
2
e
6.已知221111xxfxx,则曲线yfx在点2,(2)f处的切线的斜率为( )
A.19 B.29 C.19 D.
2
9
7.曲线33lnyxxx在点(1,0)处的切线方程为( )
A.220xy B.210xy C.10xy D.
440xy 8.曲线21xye在点(0,2)处的切线与直线y0和yx所围成图形的面积( ) A.1 B.13 C.23 D.
1
2
9.函数()(cos)xfxaxe,若曲线()yfx在点,33f处的切线垂直于y轴,
则实数a( ) A.312 B.132 C.312 D.
312
10.设函数431fxxaxa.若fx为偶函数,则fx在1x处的切线方
程为( ) A.54yx B.53yx C.42yx D.
43yx
11.若fx为定义在区间G上的任意两点12,xx和任意实数0,1,总有
2.2 导数的概念及其几何意义 课件(北师大选修2-2)

1.函数f(x)在点x0处的导数就是函数的平均变化率在 Δy 当自变量的改变量趋于零时的极限,若li Δx→0 m 存在,则 Δx 函数y=f(x)在点x0处就有导数. 2.f′(x0)的几何意义是曲线y=f(x)在切点(x0,f(x0)) 处的切线的斜率.
[例1]
4 求函数y= 2在x=2处的导数. x
解析:设P(3,9),Q(3+Δx,(3+Δx)2), 3+Δx2-9 则割线PQ的斜率为kPQ= =6+Δx. Δx 当Δx趋于0时,kPQ趋于常数6,从而曲线y=f(x)在 点P(3,9)处的切线的斜率为6.
答案:6
2 5.求曲线f(x)=x在点(-2,-1)处的切线方程. 2 解:∵点(-2,-1)在曲线y=x上,
2.切线的定义:
当Δx趋于零时,点B将沿着曲线y=f(x)趋于 点A ,割 线AB将绕点A转动最后趋于直线l,直线l和曲线y=f(x)在点 A处“相切”,称直线l为曲线y=f(x)在 3.导数的几何意义: 函数y=f(x)在x0处的导数,是曲线y=f(x)在点(x0, f(x0))处的 切线的斜率 . 点A 处的切线.
[例3] 已知抛物线y=2x2+1,求:
(1)抛物线上哪一点处的切线的倾斜角为45°?
(2)抛物线上哪一点处的切线平行于直线4x-y-2=0?
(3)抛物线上哪一点处的切线垂直于直线x+8则
2 Δy=2(x0+Δx)2+1-2x0-1=4x0·Δx+2(Δx)2.
解析:根据题意可设切点为P(x0,y0), ∵Δy=(x+Δx)2-3(x+Δx)-(x2-3x) =2xΔx+(Δx)2-3Δx, Δy ∴ =2x+Δx-3. Δx Δy ∴f′(x)=liΔx→0 m =liΔx→0 (2x+Δx-3)=2x-3. m Δx
(常考题)北师大版高中数学高中数学选修2-2第二章《变化率与导数》测试(包含答案解析)(1)

一、选择题1.已知b 为正实数,直线y x a =+与曲线x by e +=相切,则2a b的取值范围是( )A .[),e +∞B .2[,)e +∞C .[2,)+∞D .[4,)+∞2.已知a ,b 为正实数,直线y x a =-与曲线()ln y x b =+相切,则11a b+的最小值是( ) A .2B.C .4D.3.已知()sin cos f x x x =-,定义1()()f x f x '=,[]'21()()f x f x =,…[]1()()n n f x f x '+=,(*n N ∈),经计算,1()cos sin f x x x =+,2()sin cos f x x x =-+,3()cos sin f x x x =--,…,照此规律,2019()f x =( )A .cos sin x x --B .cos sin x x -C .sin cos x x +D .cos sin x x -+4.若点P 在曲线32y x x =-+上移动,经过点P 的切线的倾斜角为α,则α的取值范围为( )A .02π⎡⎤⎢⎥⎣⎦,B .3024πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭,, C .34,ππ⎡⎤⎢⎥⎣⎦D .30224πππ⎡⎫⎛⎤⋃⎪⎢⎥⎣⎭⎝⎦,, 5.设a 为实数,函数()32(1)f x x a x ax =+-+的导函数为()f x ',且()f x '是偶函数,则曲线()y f x =在点()()0,0f 处的切线方程为( ) A .20x y +=B .20x y -=C .0x y -=D .0x y +=6.已知函数()f x 在0x x =处可导,若()()00021x f x x f x lim x∆→+∆-=∆,则()0'f x = ( )A .2B .1C .12D .07.已知()ln f x x =,217()(0)22g x x mx m =++<,直线l 与函数()f x ,()g x 的图象都相切,且与()f x 图象的切点为(1,(1))f ,则m 的值为( )A .2-B .3-C .4-D .1-8.函数()(cos )x f x a x e =+,若曲线()y f x =在点,33f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线垂直于y 轴,则实数a =( ) A.12B.12- C.12D.9.设曲线y =x n +1(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 014x 1+log 2014x 2+…+log 2 014x 2 013的值为()A .-log 2 0142 013B .-1C .(log 2 0142 013)-1D .110.设函数sin cos y x x x =+的图象上的点()00,x y 处的切线的斜率为k ,记()0k g x =,则函数()k g x =的图象大致为( )A .B .C .D .11.曲线l (n )f x x x =-在点(1,(1))f 处的切线方程为 A .0x y += B .1x = C .20x y --=D .1y =-12.函数()ln 0y x x =>的图象与直线12y x a =+相切,则a 等于( ) A .ln21-B .ln21+C .ln 2D .2ln 2二、填空题13.函数f (x )=ax 3+x+1在x=1处的切线与直线4x ﹣y+2=0平行,则a=_____. 14.已知函数为偶函数,若曲线的一条切线的斜率为,则该切点的横坐标等于______.15.在平面直角坐标系中,曲线21x y e x =++在0x =处的切线方程是___________. 16.抛物线2y x 上的点到直线20x y --=的最短距离为________________.17.曲线 2xy x =+ 在点 ()1,1-- 处的切线方程为________________. 18.以下四个命题错误的序号为_______(1) 样本频率分布直方图中小矩形的高就是对应组的频率.(2) 过点P(2,-2)且与曲线33y x x =-相切的直线方程是9160x y +-=. (3) 若样本1210,,x x x 的平均数是5,方差是3,则数据121021,21,,21x x x +++的平均数是11,方差是12.(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.19.三棱锥A BCD -中,3AB CD ==,2==AC BD ,5AD BC ==,则该几何体外接球的表面积为_______________.20.设()0sin f x x =,()()10'f x f x =,()()21'f x f x =,…,()()1'n n f x f x +=,n N ∈,则()20170f = __________ 三、解答题21.已知直线240x y +-=与抛物线212y x =相交于,A B 两点(A 在B 上方),O 是坐标原点。
(北师大版)上海市高中数学选修2-2第二章《变化率与导数》测试(含答案解析)

一、选择题1.如图,()y f x =是可导函数,直线l :2y kx =+是曲线()y f x =在3x =处的切线,令2()()g x x f x =,()g x '是()g x 的导函数,则()3g '等于( )A .3B .0C .2D .42.已知a ,b 为正实数,直线y x a =-与曲线()ln y x b =+相切,则11ab+的最小值是( ) A .2B .42C .4D .223.若曲线()xf x mx e n =⋅+在点()()1,1f 处的切线方程为y ex =,则m n +的值为( ) A .12e + B .12e - C .12D .2e 4.函数()2221sin cos 622x xf x x =+-的导函数()y f x '=的图象大致是( ) A . B .C .D .5.已知()ln f x x =,217()(0)22g x x mx m =++<,直线l 与函数()f x ,()g x 的图象都相切,且与()f x 图象的切点为(1,(1))f ,则m 的值为( ) A .2-B .3-C .4-D .1-6.设曲线y =x n +1(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 014x 1+log 2014x 2+…+log 2 014x 2 013的值为()A .-log 2 0142 013B .-1C .(log 2 0142 013)-1D .17.已知直线:l y m =,若l 与直线23y x =+和曲线ln(2)y x =分别交于A ,B 两点,则||AB 的最小值为A .1B .2C .455D .2558.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .[0,π)C .3,44ππ⎡⎤⎢⎥⎣⎦ D .[0,4π]∪[2π,34π]9.函数为R 上的可导函数,其导函数为()f x ',且()3sin cos 6f x f x x π⎛⎫=⋅+⎪⎝⎭',在ABC ∆中,()()1f A f B ='=,则ABC ∆的形状为 A .等腰锐角三角形B .直角三角形C .等边三角形D .等腰钝角三角形10.已知函数()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x '<,则有( ) A .2019(2019)(0)e f f -<,2019(2019)(0)f e f < B .2019(2019)(0)e f f -<,2019(2019)(0)f e f > C .2019(2019)(0)e f f ->,2019(2019)(0)f e f > D .2019(2019)(0)e f f ->,2019(2019)(0)f e f <11.设函数sin cos y x x x =+的图象上的点()00,x y 处的切线的斜率为k ,记()0k g x =,则函数()k g x =的图象大致为( )A .B .C .D .12.函数f (x )=﹣12x 2+12在x=1处的切线的斜率为( ) A .﹣2B .﹣1C .0D .1二、填空题13.设点P 是曲线3233y x x =-+上的任意一点,P 点处的切线倾斜角为σ,则σ的取值范围为____________. 14.已知函数4()ln 2f x x x xλλ=+-≥,,曲线()y f x =上总存在两点M (x 1,y 1),N (x 2,y 2)使曲线()y f x =在M 、N 两点处的切线互相平行,则x 1+x 2的取值范围为_______. 15.在曲线3211333y x x x =-+-的所有切线中,斜率最小的切线方程为______. 16.若直线y kx b =+是曲线ln 3y x =+的切线,也是曲线ln(1)y x =+的切线,则b =______17.函数在处的切线与直线垂直,则a 的值为______.18.若以曲线()y f x =上任意一点(,)M x y 为切点作切线l ,曲线上总存在异于M 的点11(,)N x y ,以点N 为切点作线1l ,且1//l l ,则称曲线()y f x =具有“可平行性”,下列曲线具有可平行性的编号为__________.(写出所有的满足条件的函数的编号) ①1y x=②3y x x =- ③cos y x = ④2(2)ln y x x =-+ 19.设()()()sin 2',''32f x x xf f x f x f ππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭是的导函数,则___________. 20.过点()1,1-与曲线()32f x x x =-相切的直线方程是__________.三、解答题21.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.22.已知函数()mf x mx x=-,()2ln g x x =. (1)当2m =时,求曲线()y f x =在点(1(1))f ,处的切线方程; (2)当1m =时,判断方程()()f x g x =在区间(1)+∞,上有无实根;(3)若(1]x e ∈,时,不等式()()2f x g x -<恒成立,求实数m 的取值范围. 23.求下列函数的导数: (1)()(1sin )(14)f x x x =+-; (2)()21x xf x x =-+. 24.设函数()bf x ax x=-,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -(1)求y =f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.25.(1)函数()(1sin )f x x x =+的导数为()'f x ,求2f π⎛⎫' ⎪⎝⎭; (2)设l 是函数1y x=图象的一条切线,证明:l 与坐标轴所围成的三角形的面积与切点无关.26.已知函数()()1ln 1x f x x++=和()()1ln 1g x x x =--+(1)若()f x '是()f x 的导函数,求(1)f '的值 (2)当0x >时,不等式()()0g x f x kx'->恒成立,其中()g x '是()g x 导函数,求正整数k 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】2y kx =+是曲线()y f x =在3x =处的切线求出=(3)k f ,由图(3)=1f ,对2()()g x x f x =求导取值可得.【详解】2y kx =+是曲线()y f x =在3x =处的切线,所以切点(3,1)代入切线方程得1=(3)=3k f ,又(3)=1f 2()()g x x f x =,2()2()+()g x xf x x f x ''=,(3)6(3)+9(3)=3g f f ''∴=故选:A. 【点睛】本题考查导数的几何意义.根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点00)(P x y ,既在曲线上又在切线上构造方程组求解.2.C【分析】求函数的导数,由已知切线的方程,可得切线的斜率,求得切线的坐标,可得1a b +=,再由乘1法和基本不等式,即可得到所求最小值. 【详解】解:()y ln x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1, 可得切点的横坐标为1b -,所以切点为(1,0)b -, 代入y x a =-,得1a b +=,a 、b 为正实数,则111()()22241b a b a a b a b a b a b a b+=++=+++=. 当且仅当12a b ==时,11a b+取得最小值4. 故选:C 【点睛】本题主要考查导数的应用,利用导数的几何意义以及基本不等式是解决本题的关键,属于中档题.3.A解析:A 【分析】求导得到()()'1xf x m x e =+⋅,由已知得()1f e =,()1f e '=,解得答案.【详解】()x f x mx e n =⋅+,则()()'1x f x m x e =+⋅,故()1f e =,()1f e '=,()11me n e m e e +=⎧∴⎨+=⎩,解得122m en ⎧=⎪⎪⎨⎪=⎪⎩,所以12e m n ++=. 故选:A . 【点睛】本题考查了根据切线方程求参数,意在考查学生的计算能力和转化能力.4.C解析:C 【分析】将函数()y f x =的解析式化简,求出其导数()1sin 3f x x x '=+,,然后结合导函数的符号排除错误选项即可确定导函数的图像.因为()222211sin cos cos 6226x x f x x x x =+-=-,()1sin 3f x x x '∴=+. 当03x <≤时,103x >,sin 0x >,则()1sin 03f x x x '=+>; 当3x >时,113x >,1sin 1x -≤≤,则()1sin 03f x x x '=+>. 所以,当0x >时,()1sin 03f x x x '=+>,排除ABD 选项, 故选:C. 【点睛】本题考查函数图象的识别,给定函数解析式,一般要结合函数的定义域、奇偶性、单调性(导数)、特殊值符号、零点等知识进行逐一排除,考查分析问题和解决问题的能力,属于中等题.5.A解析:A 【分析】先利用导数求切线斜率,再根据点斜式方程得切线方程,最后根据判别式为零得结果. 【详解】 1()f x x'=, 直线l 是函数()f x lnx =的图象在点(1,0)处的切线,∴其斜率为k f ='(1)1=, ∴直线l 的方程为1y x =-.又因为直线l 与()g x 的图象相切,∴211722y x y x mx =-⎧⎪⎨=++⎪⎩,消去y ,可得219(1)022x m x +-+=,得△2(1)902(4m m m =--=⇒=-=不合题意,舍去), 故选A 【点睛】本题主要考查函数导数的几何意义,考查直线和曲线的位置关系,意在考查学生对这些知识 的理解掌握水平和分析推理能力.6.B解析:B 【解析】 【分析】由题意,求出y =x n +1(n ∈N *)在(1,1)处的切线方程,取0y =,求得n x ,再利用对数的运算性质可得答案. 【详解】由y =x n +1,可得(1)n y n x =+',即11x y n ='=+即曲线y =x n +1(n ∈N *)在(1,1)处的切线方程为1(1)(1)y n x -=+-令0y =,得1n n x n =+ log 2 014x 1+log 2 014x 2+…+log 2 014x 2 013=20141220132014122013log ()log ()1232014x x x =⋅=- 故选B 【点睛】本题考查了曲线的切线方程和对数的运算,细心计算是解题的关键,属于中档题.7.B解析:B 【分析】利用导数求出与直线23y x =+平行的曲线的切线的切点,利用点到直线的距离可得. 【详解】1y x '=,令12x =可得12x =,所以切点为1,02⎛⎫ ⎪⎝⎭. 根据题意可知1,02B ⎛⎫ ⎪⎝⎭且0m =,所以3,02A ⎛⎫- ⎪⎝⎭,此时2AB =.故选B. 【点睛】本题主要考查导数的几何意义.已知切线的斜率,结合导数可得切点.8.A解析:A 【解析】由题得cos y x '=,设切线的倾斜角为α,则,3tan cos 1tan 1[0,][,)44k x ππαααπ==∴-≤≤∴∈⋃,故选A.9.D解析:D 【解析】 【分析】求函数的导数,先求出'16f π⎛⎫= ⎪⎝⎭,然后利用辅助角公式进行化简,求出A ,B 的大小即可判断三角形的形状. 【详解】函数的导数()''cos sin 6f x x x π⎛⎫=- ⎪⎝⎭,则131''cos sin ''666662262f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则11'262f π⎛⎫= ⎪⎝⎭,则'16f π⎛⎫= ⎪⎝⎭,则()'sin 2cos 6f x x x x π⎛⎫=-=+⎪⎝⎭, ()cos 2cos 3f x x x x π⎛⎫=+=- ⎪⎝⎭,()()'1f A f B ==,()'2cos 16f B B π⎛⎫∴=+= ⎪⎝⎭,即1cos 62B π⎛⎫+= ⎪⎝⎭,则63B ππ+=,得6B π=,()2cos 13f A A π⎛⎫=-= ⎪⎝⎭,即1cos 32A π⎛⎫-= ⎪⎝⎭,则33A ππ-=,则23A π=, 则2366C ππππ=--=, 则B C =,即ABC 是等腰钝角三角形, 故选D . 【点睛】本题考查三角形形状的判断,根据导数的运算法则求出函数()f x 和()'f x 的解析式是解决本题的关键.10.B解析:B 【分析】 令()()xf xg x e=,x ∈R .()()()x f x f x g x e '-'=,根据x R ∀∈,均有()()f x f x '<,可得函数()g x 的单调性,进而得出结论. 【详解】 解:令()()x f x g x e=,x ∈R .()()()xf x f xg x e '-'=, x R ∀∈,均有()()f x f x '<, ()g x ∴在R 上单调递增,(2019)(0)(2019)g g g ∴-<<,可得:2019(2019)(0)e f f -<,2019(2019)(0)f e f >. 故选B . 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、构造法,考查了推理能力与计算能力,属于中档题.11.A解析:A 【详解】因为sin cos ,sin cos sin cos y x x x y x x x x x x '=+=+-=, 则()cos g x x x =,该函数为奇函数,排除B 、C ,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0>g x ,排除D. 故选:A12.B解析:B 【解析】 【分析】根据导数的几何意义可知(1)k f '=,求导后计算即可. 【详解】 因为()f x x '=-,所以 (1)1k f '==- ,故选B. 【点睛】本题主要考查了导数的几何意义,属于容易题.二、填空题13.【分析】设点根据导数的几何意义求得即可得到答案【详解】设点由函数可得可得即又由所以故答案为:【点睛】本题主要考查了导数的几何意义及其应用其中解答中熟记导数的几何意义准确计算是解答的关键着重考查推理与解析:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】设点00(,)P x y ,根据导数的几何意义,求得tan σ≥.【详解】设点00(,)P x y,由函数323y x =+,可得23y x '=可得020|3x x y x ='=,即tan σ≥ 又由[)0,σπ∈,所以20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭. 故答案为:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭. 【点睛】本题主要考查了导数的几何意义及其应用,其中解答中熟记导数的几何意义,准确计算是解答的关键,着重考查推理与运算能力.14.【分析】求出导函数根据题意转化为对恒成立即可得解【详解】曲线上总存在两点M (x1y1)N (x2y2)使曲线在MN 两点处的切线互相平行即所以对恒成立所以x1+x2的取值范围为故答案为:【点睛】此题考查解析:()8+∞,【分析】求出导函数24()1f x x x λ'=--,根据题意转化为()()212121244x x x x x x λλ++=<对2λ≥恒成立,即可得解.【详解】4()ln 2f x x x x λλ=+-≥,,24()1f x x xλ'=--,曲线()y f x =上总存在两点M (x 1,y 1),N (x 2,y 2)使曲线()y f x =在M 、N 两点处的切线互相平行,即121212()(),,0,0f x f x x x x x ''=≠>>,2211224411x x x x λλ--=--, 22121244x x x x λλ-=-,()()212121244x x x x x x λλ++=<所以1216x x λ+>对2λ≥恒成立所以x 1+x 2的取值范围为()8+∞,. 故答案为:()8+∞,【点睛】此题考查导数的几何意义,根据导数的几何意义解决切线斜率相等的问题,求切点横坐标之和的取值范围,利用基本不等式构造不等关系求解.15.【解析】【分析】根据导数的几何意义可知在某点处的导数为切线的斜率先求出导函数利用配方法求出导函数的最小值即为切线最小斜率再用点斜式写出化简【详解】曲线时切线最小斜率为2此时切线方程为即故答案为:【点 解析:20x y -=【解析】 【分析】根据导数的几何意义可知在某点处的导数为切线的斜率,先求出导函数()f x ',利用配方法求出导函数的最小值即为切线最小斜率,再用点斜式写出化简. 【详解】曲线3211333y x x x =-+-,223y x x ∴'=-+,1x ∴=时,切线最小斜率为2,此时,32111131233y =⨯-+⨯-=.∴切线方程为22(1)y x -=-,即20x y -=.故答案为:20x y -=. 【点睛】本题主要考查了利用导数研究曲线上某点切线方程,以及二次函数的最值等基础题知识,考查运算求解能力,属于基础题.16.【分析】对两条曲线对应的函数求导设出两个切点的横坐标令它们的导数相等求出两条曲线在切点处的切线方程对比系数求得的值【详解】依题意设直线与相切切点的横坐标为即切点为设直线与相切切点的横坐标为即切点为令 解析:2ln 3-【分析】对两条曲线对应的函数求导,设出两个切点的横坐标,令它们的导数相等,求出两条曲线在切点处的切线方程,对比系数求得b 的值. 【详解】依题意,()()''11ln 3,ln 11x x x x +=+=⎡⎤⎣⎦+,设直线y kx b =+与ln 3y x =+相切切点的横坐标为0x ,即切点为()00,ln 3x x +,设直线y kx b =+与()ln 1y x =+相切切点的横坐标为1x ,即切点为()()11,ln 1x x +,令01111x x =+,解得101x x =-,故直线y kx b =+与()ln 1y x =+相切切点为()001,ln x x -.由此求出两条切线方程为()()0001ln 3y x x x x -+=-和()0001ln 1y x x x x -=-+;即001ln 2y x x x =++和000111ln y x x x x =-++,故0001ln 21ln x x x +=-++,013x =,故0ln 22ln3b x =+=-.【点睛】本小题主要考查两条曲线共切线方程的问题,考查切线方程的求法,考查导数的运算,属于中档题.17.0【解析】【分析】求函数的导数根据导数的几何意义结合直线垂直时直线斜率的关系建立方程关系进行求解即可得结果【详解】因为函数y=(x+a)ex 在x=0处的切线与直线x+y+1=0垂直所以函数y=(x+ 解析:【解析】 【分析】求函数的导数,根据导数的几何意义结合直线垂直时直线斜率的关系建立方程关系进行求解即可得结果. 【详解】 因为函数在处的切线与直线垂直,所以函数在处的切线斜率,因为,所以,解得,故答案是0. 【点睛】该题考查的是有关利用导数研究曲线上某点处的切线的问题,涉及到的知识点有两直线垂直的条件,导数的几何意义,以及函数的求导公式,属于中档题目.18.①③【解析】因为;因为不存在异于的点;因为总存在异于的点满足条件;因为不存在异于的点;所以选①③解析:①③ 【解析】 因为122111y x x x x x =-=-∴=-'≠取 ; 因为231,0y x x =-='时不存在异于M 的点N ;因为1sin sin y x x =-=-'∴总存在异于M 的点N 满足条件;因为212412(2)x x y x x x ='-+=-+,22x =不存在异于M 的点N ;所以选①③19.-1【解析】∵令可得:解得则解析:-1 【解析】∵()2(),()2()33f x sinx xf f x cosx f ππ=+'∴'=+',令3x π=,可得:()2()333f cos f πππ'=+' ,解得1()32f π'=- , 则1()2()1222f cosππ'=+⨯-=- 20.或【解析】由题意可得:设曲线上点的坐标为切线的斜率为切线方程为:(*)切线过点则:解得:或将其代入(*)式整理可得切线方程为:或点睛:曲线y =f(x)在点P(x0y0)处的切线与过点P(x0y0)的解析:20x y --=或5410x y +-= 【解析】由题意可得:()2'32f x x =-,设曲线上点的坐标为()3000,2x x x -,切线的斜率为2032k x =-,切线方程为:()()()320000232y x x x x x --=--,(*)切线过点()1,1-,则:()()()32012321x x x x ---=--,解得:01x =或012x =-将其代入(*)式整理可得,切线方程为:20x y --=或5410x y +-=.点睛:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.三、解答题21.(1)[-1,+∞);(2)(-∞,2∪(1,3)∪[2∞). 【解析】试题分析:(1)先求导函数,然后根据导函数求出其取值范围,从而可求出曲线C 上任意一点处的切线的斜率的取值范围;(2)根据(1)可知k 与﹣1k的取值范围,从而可求出k 的取值范围,然后解不等式可求出曲线C 的切点的横坐标取值范围. (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1, 即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,111k k≥-⎧⎪⎨-≥-⎪⎩解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2∪(1,3)∪[2∞) 22.(1) 44y x =-;(2) 内无实数根;(3)241e e ⎛⎫-∞ ⎪-⎝⎭,. 【解析】试题分析:(2)把m 的值代入后,求出f (1),求出x=1时函数的导数,由点斜式写出曲线y=f (x )在点(1,f (1))处的切线方程;(Ⅱ)代入m 的值,把判断方程f (x )=g (x )在区间(1,+∞)上有无实根转化为判断函数h (x )=f (x )﹣g (x )在(1,+∞)上有无零点问题,求导后利用函数的单调性即可得到答案;(Ⅲ)把f (x )和g (x )的解析式代入不等式,整理变形后把参数m 分离出来,x ∈(1,e]时,不等式f (x )﹣g (x )<2恒成立,转化为实数m 小于一个函数在(1,e]上的最小值,然后利用导数分析函数在(1,e]上的最小值. 试题(1)2m =时,()22f x x x =-,()222f x x='+,()14f '=,切点坐标为()10,, ∴切线方程为44y x =-(2)1m =时,令()()()12ln h x f x g x x x x=-=--, ()()22211210x h x x x x-=+-=≥',∴()h x 在()0+∞,上为增函数, 又()10h =,所以()()f x g x =在()1+∞,内无实数根. (3)2ln 2mmx x x--<恒成立,即()2122ln m x x x x -<+恒成立. 又210x ->,则当(]1x e ,∈时,222ln 1x x xm x +<-恒成立,令()222ln 1x x xG x x +=-,只需m 小于()G x 的最小值. ()()()2222ln ln 21x x x G x x-++-'=,∵1x e <≤,∴ln 0x >,∴(]1x e ,∈时,()0G x '<, ∴()G x 在(]1e ,上单调递减,∴()G x 在(]1e ,的最小值为()241eG e e =-, 则m 的取值范围是241e e ⎛⎫-∞ ⎪-⎝⎭,. 点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >. 23.(1)'()4cos 4sin 4cos f x x x x x ==-+--;(2)21'()2ln 2(1)x f x x =-+. 【分析】(1)利用积的导数和和差的导数法则求导.(2)利用商的导数和积的导数的法则求导. 【详解】(1)f'(x)=(1+sin x)'(1-4x)+(1+sin x)(1-4x)'=cos x(1-4x)-4(1+sin x)=cos x-4xcos x-4-4sin x.(2)f(x)=1x x +-2x =1-11x +-2x ,则f'(x)=21(1)x +-2xln 2. 【点睛】本题主要考查对函数求导,意在考查学生对该知识的掌握水平和分析推理能力. 24.(1)3()f x x x=-;(2)证明见解析. 【解析】解:(1)方程7x -4y -12=0可化为y =74x -3, 当x =2时,y =12. 又f′(x)=a +2b x , 于是1222{744b a b a -=+=,解得13a b ==⎧⎨⎩故f(x)=x -3x. (2)证明:设P(x 0,y 0)为曲线上任一点,由f′(x)=1+23x知,曲线在点P(x 0,y 0)处的切线方程为y -y 0=(1+203x )·(x -x 0),即y -(x 0-03x )=(1+203x )(x -x 0). 令x =0得,y =-06x ,从而得切线与直线x =0,交点坐标为(0,-06x ). 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P(x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-06x ||2x 0|=6.曲线y =f(x)上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,此定值为6.25.(1)2;(2)证明见解析. 【分析】(1)求出()cos 1sin f x x x x '=++,即得2f π⎛⎫'⎪⎝⎭的值; (2)设切点为001,x x ⎛⎫⎪⎝⎭,先求出切线l 的方程为:()020011y x x x x -=--,再求出l 与坐标轴所围成的三角形的面积2S =,即得证. 【详解】(1)()(1sin )f x x x =+,则()[(1sin )](1sin )(1sin )cos 1sin f x x x x x x x x x x ''''=+=+++=++, 所以cos 1sin 22222f ππππ'⎛⎫=++=⎪⎝⎭; (2)设切点为001,x x ⎛⎫⎪⎝⎭, ∵1y x =,21y x'∴=-,∴切线l 的斜率201k x =-, ∴切线l 的方程为:()020011y x x x x -=--, 令0x =,得02y x =, 令0y =,得02x x =,所以l 与坐标轴所围成的三角形的面积0012222S x x =⋅⋅=, 因此l 与坐标轴所围成的三角形的面积与切点无关. 【点睛】本题主要考查导数的运算,考查导数的几何意义,意在考查学生对这些知识的理解掌握水平. 26.(1)1ln 22--;(2)3 【分析】(1)求出导函数,代入x 的值即可得到结果; (2)不等式()()0g x f x k x-'>恒成立等价于[](1)1ln(1)x x k x+++<对于0x >恒成立.【详解】(1)由题意可得()()2ln 111xx x f x x +='--+ ∴()11ln 22f '=--;(2)当0x >时,不等式()()0g x f x k x'->恒成立 即[](1)1ln(1)x x k x+++<对于0x >恒成立设[](1)1ln(1)()x x h x x+++=,则21ln(1)()x x h x x --+'=1()1011x g x x x '=-=>++,()1ln(1)g x x x =--+在区间()0,∞+上是增函数, 且()0g x =存在唯一实数根a ,满足(2,3)a ∈,即1ln(1)a a =++ 由x a >时,()0,()0g x h x '>>;0x a <<时,()0,()0g x h x '<< 知()(0)h x x >的最小值为[](1)1ln(1)()1(3,4)a a h a a a+++==+∈故正整数k 的最大值为3. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题.。
(北师大版)北京市高中数学选修2-2第二章《变化率与导数》测试题(答案解析)

一、选择题1.已知实数a ,b ,c ,d 满足ln |2|0ab c d a-+-+=,则(a ﹣c )2+(b ﹣d )2的最小值为( ) A .4 B .92C .322D .22.与曲线2yx 相切,且与直线210x y ++=垂直的直线的方程为( )A .22y x =-B .22y x =+C .21y x =-D .21y x =+3.函数()2sin f x k x =+在()0,2处的切线l 也是函数3231y x x x =---图象的一条切线,则k =( ) A .1B .1-C .2D .2-4.已知函数()2f x x bx =-的图象在点()()1,1A f 处的切线l 与直线320x y -+=平行,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2019S 的值为( )A .20192020B .20182019C .20172018D .201820175.如图,()y f x =是可导函数,直线l :2y kx =+是曲线()y f x =在3x =处的切线,令2()()g x x f x =,()g x '是()g x 的导函数,则()3g '等于( )A .3B .0C .2D .46.若曲线224y x x p =-+与直线1y =相切,则p 的值为( ) A .1-B .1C .3D .47.已知(,()),(,())M t f t N s g s 是函数()ln f x x =,()21g x x =+的图象上的两个动点,则当MN 达到最小时,t 的值为 ( ) A .1B .2C .12D 358.若函数()33=-ln 3f x x x x -+-,则曲线()y f x =在点()()-1,-1f 处的切线的倾斜角是( )A .6π B .3π C .23π D .56π 9.设点P ,Q 分别是曲线x y xe -=(e 是自然对数的底数)和直线+3y x =上的动点,则P ,Q 两点间距离的最小值为( )A.2B.2C.(42e -D.(42e +10.函数f (x )=﹣12x 2+12在x=1处的切线的斜率为( )A .﹣2B .﹣1C .0D .111.已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2020S 的值为( ) A .20202021B .20192020C .20182019D .2017201812.已知直线y x m =-+ 是曲线23ln y x x =-的一条切线,则m 的值为( ) A .0B .2C .1D .3二、填空题13.若函数()()ln 2f x x =+的图象在点()00,P x y 处的切线l 与函数()xg x e =的图象也相切,则满足条件的切点P 的个数为______. 14.在曲线3211333y x x x =-+-的所有切线中,斜率最小的切线方程为______. 15.若直线y kx b =+是曲线ln 3y x =+的切线,也是曲线ln(1)y x =+的切线,则b =______16.在平面直角坐标系中,曲线21x y e x =++在0x =处的切线方程是___________. 17.如果曲线f (x )=x 3+x -16,的某一切线与直线y =-14x +3垂直,则切线方程_________.18.已知函数()3f x x =,设曲线()y f x =在点()()11P x f x ,处的切线与该曲线交于另一点()()22Q x f x ,,记()f x '为函数()f x 的导数,则()()12f x f x ''的值为_____. 19.已知2()2(1)f x x xf =+',则'(1)f _______20.已知曲线1C :x y e =与曲线2C :2()y x a =+,若两条曲线在交点处有相同的切线,则实数a 的值为__________.三、解答题21.设函数f (x )=x 3+ax 2+bx+c 满足f'(0)=4,f'(-2)=0. (1)求a ,b 的值及曲线y=f (x )在点(0,f (0))处的切线方程;(2)若函数f (x )有三个不同的零点,求c 的取值范围.22.已知函数2(),()()x f x x ax b g x e cx d =++=+,若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.求a b c d ,,,的值. 23.已知函数(0)m >.(1)若,求曲线在点处的切线方程;(2)若函数在区间(21,1)m m -+上单调递增,求实数的取值范围.24.已知函数( )(1)当时,求曲线在处的切线方程;(2)当时,试讨论的单调性.25.已知曲线2:2C y x x =-+. (1)求曲线C 在点()1,2处的切线方程, (2)求过点()2,3且与曲线C 相切的直线的方程. 26.已知函数221()(1)2xf x x a e ax a x =---+,其中e a <. (1)若2a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()f x 在(1,2)内只有一个零点,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】引入点(,)P a b ,(,)Q c d ,利用点P 在曲线ln xy x=上,Q 在直线2y x =+上,只要求得PQ 的最小值即可得,为此可利用导数求出曲线ln xy x=上切线斜率为1的切点坐标,此点即为取最小值时的Q 点,从而计算后可得结论. 【详解】 ∵ln |2|0a b c d a -+-+=,∴ln ab a =,2dc =+,设(,)P a b ,(,)Q cd ,则点P 在曲线ln xy x=上,Q 在直线2y x =+上,设曲线ln xy x=上切线斜率为1的切点为00(,)x y , 21ln xy x -'=, (0,)x e ∈时,0y '>,ln x y x =递增,(,)x e ∈+∞时,0y '<,ln xy x=递减,max ln 1e y e e==, 直线2y x =+在曲线ln xy x=上方, 由021ln 1x x -=,即200ln 10x x +-=,记2()ln 1f x x x =+-,显然()f x 在(0,)+∞上是增函数,而(1)0f =,∴01x =是()0f x =的唯一解.0ln101y ==,0(1,0)Q ,点0Q 到直线2y x =+的距离为h ==, ∴22()()a c b d -+-的最小值为292h =. 故选:B . 【点睛】本题考查用几何意义求最值,考查导数的几何意义,解题关键是引入点的坐标:(,)P a b ,(,)Q c d .已知条件说明两点中一点在一条直线上,一点在一函数图象上,只要求得曲线上与直线平行的切线的切点坐标,距离的最小值就易求得.2.C解析:C 【分析】由导数的几何意义可得所求直线的斜率02k x =,根据两直线垂直可求得01x =,即可求得切线方程. 【详解】设切点为()00P x y ,,由导数的几何意义可得所求直线的斜率02k x =, 又直线210x y ++=的斜率为12-, 所以()01212x ⎛⎫⋅-=- ⎪⎝⎭, 解得01x =,则2001y x ==,2k =,所以所求直线的方程为()121y x -=-, 即21y x =-.故选:C. 【点睛】本题考查导数的几何意义,考查计算能力,属于基础题.3.C解析:C 【分析】利用导数的几何意义得出()f x 在()0,2的切线l 的方程,设切线l 在函数3231y x x x =---上的切点为00,x y ,结合导数的几何意义得出在点00,x y 的切线方程,并将点()0,2代入切线方程和函数3231y x x x =---,求出01x =-,00y =,再代入2y kx =+,即可得出k 的值. 【详解】∵()cos f x k x '=,∴()0f k '=,所以在()0,2的切线l 的方程为直线2y kx =+ 设切线l 在函数3231y x x x =---上的切点为00,x y 由2323y x x '=--,得出0200323x x y x x ='=-- 故切线方程为()()20000323y y x x x x -=---由()()200003200002323031y x x x y x x x ⎧-=---⎪⎨=---⎪⎩整理得3200230x x -+=,即32200022330x x x +-+=所以()()002012330x x x +-+=,所以()20031512048x x ⎛⎫⎛⎫+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭解得01x =-,00y = 代入2y kx =+,解得2k =. 故选:C 【点睛】本题主要考查了导数几何意义的应用,属于中档题.4.A解析:A 【分析】利用导数的几何意义,可求出直线l 的斜率,进而由l 与直线320x y -+=平行,可求出b ,从而可得到()1111f n n n =-+,进而求出2019S 即可.【详解】由题意,()2f x x b '=-,则()12f b '=-,所以直线l 的斜率为2b -, 又直线320x y -+=的斜率为3,所以23b -=,解得1b =-.则()2f x x x =+,故()211111f n n n n n ==-++, 所以201911111111201911223342019202020202020S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查导数的几何意义的应用,考查平行直线的性质,考查利于裂项相消求和法求数列的前n 项和,属于中档题.5.A解析:A 【分析】2y kx =+是曲线()y f x =在3x =处的切线求出=(3)k f ,由图(3)=1f ,对2()()g x x f x =求导取值可得.【详解】2y kx =+是曲线()y f x =在3x =处的切线,所以切点(3,1)代入切线方程得1=(3)=3k f ,又(3)=1f 2()()g x x f x =,2()2()+()g x xf x x f x ''=,(3)6(3)+9(3)=3g f f ''∴=故选:A. 【点睛】本题考查导数的几何意义.根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点00)(P x y ,既在曲线上又在切线上构造方程组求解.6.C解析:C 【分析】设切点坐标为()0,1x ,求导得到44y x '=-,计算得到答案. 【详解】设切点坐标为()0,1x ,∵44y x '=-,由题意知,0440x -=,∴01x =,即切点为()1,1,∴124p =-+,∴3p =.故选:C . 【点睛】本题考查了根据切线求参数,意在考查学生的计算能力.7.C解析:C【分析】求得()f x 图像上切线斜率为2的切点的横坐标,即是t 的值. 【详解】依题意可知,当()f x 图像上的切线和()21g x x =+平行时,MN 取得最小值,令()'12f x x ==,解得12x =,故12t =,所以选C. 【点睛】本小题考查函数导数,考查切线斜率与导数的对应关系,属于基础题.8.B解析:B 【解析】 【分析】先求()f x ,再求导数得切线斜率,最后求倾斜角. 【详解】因为3()ln()3f x x x x =+-+,所以21()1f x x +'=+因此(1)k f =-='3π,选B. 【点睛】本题考查导数几何意义以及倾斜角,考查基本分析求解能力.9.B解析:B 【分析】对曲线y =xe ﹣x 进行求导,求出点P 的坐标,分析知道,过点P 直线与直线y =x +2平行且与曲线相切于点P ,从而求出P 点坐标,根据点到直线的距离进行求解即可. 【详解】∵点P 是曲线y =xe ﹣x 上的任意一点,和直线y =x +3上的动点Q ,求P ,Q 两点间的距离的最小值,就是求出曲线y =xe ﹣x 上与直线y =x +3平行的切线与直线y =x +3之间的距离.由y ′=(1﹣x )e ﹣x ,令y ′=(1﹣x )e ﹣x =1,解得x =0,当x =0,y =0时,点P (0,0),P ,Q 两点间的距离的最小值,即为点P (0,0)到直线y =x +3的距离,∴d min2. 故选B. 【点睛】此题主要考查导数研究曲线上某点的切线方程以及点到直线的距离公式,利用了导数与斜率的关系,这是高考常考的知识点,是基础题.10.B解析:B 【解析】 【分析】根据导数的几何意义可知(1)k f '=,求导后计算即可. 【详解】 因为()f x x '=-,所以 (1)1k f '==- ,故选B. 【点睛】本题主要考查了导数的几何意义,属于容易题.11.A解析:A 【分析】由2()f x x bx =+,求导得到()2f x x b '=+,再根据函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,由(1)23f b '=+=求解,从而得到()2()1f x x x x x =+=+,则()1111()11f n n n n n ==-++,再利用裂项相消法求解. 【详解】因为2()f x x bx =+, 所以()2f x x b '=+,因为函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3, 所以(1)23f b '=+=, 解得1b =,所以()2()1f x x x x x =+=+,数列()1111()11f n n n n n ==-++, 所以202011111111 (12233420202021)S =-+-+-++-, 12020120212021=-=. 故选:A 【点睛】本题主要考查导数的几何意义以及数列的裂项法求和,还考查了运算求解的能力,属于中档题.12.B解析:B 【分析】根据切线的斜率的几何意义可知0003|21x x y x x ='=-=-,求出切点,代入切线即可求出m . 【详解】 设切点为00(,)x y 因为切线y x m =-+, 所以0003|21x x y x x ='=-=-, 解得0031,2x x ==-(舍去) 代入曲线23ln y x x =-得01y =,所以切点为1,1()代入切线方程可得11m =-+,解得2m =. 故选B. 【点睛】本题主要考查了函数导数的几何意义,函数的切线方程,属于中档题.二、填空题13.【分析】求得函数的导数可得切线的斜率和方程由两直线重合的条件解方程可得即可得到所求的个数【详解】解:函数的导数为可得点处的切线斜率为切线方程为函数的导数为设与相切的切点为可得切线斜率为切线方程为由题 解析:2【分析】求得函数()f x ,()g x 的导数,可得切线的斜率和方程,由两直线重合的条件,解方程可得0x ,即可得到所求P 的个数. 【详解】解:函数()(2)f x ln x =+的导数为1()2f x x '=+, 可得点0(P x ,0)y 处的切线斜率为012x +, 切线方程为00001(2)22x y x ln x x x =++-++, 函数()x g x e =的导数为()x g x e '=,设l 与()g x 相切的切点为(,)m n , 可得切线斜率为m e ,切线方程为m m m y e x e me =+-, 由题意可得012m e x =+,000(2)2m m x ln x e me x +-=-+,可得0000011(2)022x x ln x x x ++-+=++,解得01x =-或2e -. 则满足条件的P 的个数为2, 故答案为:2. 【点睛】本题考查导数的运用:求切线方程,考查直线方程的运用,以及化简运算能力,属于中档题.14.【解析】【分析】根据导数的几何意义可知在某点处的导数为切线的斜率先求出导函数利用配方法求出导函数的最小值即为切线最小斜率再用点斜式写出化简【详解】曲线时切线最小斜率为2此时切线方程为即故答案为:【点 解析:20x y -=【解析】 【分析】根据导数的几何意义可知在某点处的导数为切线的斜率,先求出导函数()f x ',利用配方法求出导函数的最小值即为切线最小斜率,再用点斜式写出化简. 【详解】曲线3211333y x x x =-+-,223y x x ∴'=-+,1x ∴=时,切线最小斜率为2,此时,32111131233y =⨯-+⨯-=.∴切线方程为22(1)y x -=-,即20x y -=.故答案为:20x y -=. 【点睛】本题主要考查了利用导数研究曲线上某点切线方程,以及二次函数的最值等基础题知识,考查运算求解能力,属于基础题.15.【分析】对两条曲线对应的函数求导设出两个切点的横坐标令它们的导数相等求出两条曲线在切点处的切线方程对比系数求得的值【详解】依题意设直线与相切切点的横坐标为即切点为设直线与相切切点的横坐标为即切点为令 解析:2ln 3-【分析】对两条曲线对应的函数求导,设出两个切点的横坐标,令它们的导数相等,求出两条曲线在切点处的切线方程,对比系数求得b 的值. 【详解】依题意,()()''11ln 3,ln 11x x x x +=+=⎡⎤⎣⎦+,设直线y kx b =+与ln 3y x =+相切切点的横坐标为0x ,即切点为()00,ln 3x x +,设直线y kx b =+与()ln 1y x =+相切切点的横坐标为1x ,即切点为()()11,ln 1x x +,令01111x x =+,解得101x x =-,故直线y kx b =+与()ln 1y x =+相切切点为()001,ln x x -.由此求出两条切线方程为()()0001ln 3y x x x x -+=-和()0001ln 1y x x x x -=-+;即001ln 2y x x x =++和000111ln y x x x x =-++,故0001ln 21ln x x x +=-++,013x =,故0ln 22ln3b x =+=-.【点睛】本小题主要考查两条曲线共切线方程的问题,考查切线方程的求法,考查导数的运算,属于中档题.16.【分析】根据导数几何意义得切线斜率再根据点斜式得结果【详解】因为所以因此在x =0处的切线斜率为因为x =0时所以切线方程是【点睛】本题考查导数几何意义考查基本求解能力属基础题 解析:32y x =+【分析】根据导数几何意义得切线斜率,再根据点斜式得结果. 【详解】因为21x y e x =++,所以2x y e '=+,因此在x =0处的切线斜率为023k e =+=, 因为x =0时2y =,所以切线方程是233 2.y x y x -=∴=+ 【点睛】本题考查导数几何意义,考查基本求解能力.属基础题.17.y =4x -18或y =4x -14【解析】【分析】先求然后求出的解即得切点的横坐标从而求得切线方程【详解】设切点为因切线与直线垂直故故或当时切线方程为;当时切线方程为综上填或【点睛】对于曲线的切线问题注解析:y =4x -18或y =4x -14.【解析】 【分析】先求()'f x ,然后求出()'4f x =的解即得切点的横坐标,从而求得切线方程. 【详解】设切点为()00,x y ,因切线与直线134y x =-+垂直,故()200'314f x x =+=,故01x =-或01x =,当01x =-时,()018f x =-,切线方程为()4118414y x x =+-=-;当01x =时,()014f x =-,切线方程为()4114418y x x =--=-, 综上,填418y x =-或414y x =-. 【点睛】对于曲线的切线问题,注意“在某点处的切线”和“过某点的切线”的差别,切线问题的核心是切点的横坐标.如果切点为()()00,x f x ,那么切线方程为:()()()000'y f x x x f x =-+.18.【解析】因为函数所以;则曲线在点处的切线斜率为所以曲线在点处的切线方程为:联立得:即所以则故答案为点睛:本题考查的知识点是利用导数研究曲线上某点的切线方程直线的点斜式方程难度中档;我们在解答这类题的解析:14【解析】因为函数()3f x x =,所以()23f x x '=;则曲线()y f x =在点11(,())P x f x 处的切线斜率为()21113k f x x ==',所以曲线()y f x =在点11(,())P x f x 处的切线方程为:321113()y x x x x -=-,联立()3f x x =得:32321111320()(2)0x xx x x x x x -+=⇒-+=,即212x x =-,所以()22221312f x x x ==',则()()1214f x f x ='',故答案为14. 点睛:本题考查的知识点是利用导数研究曲线上某点的切线方程,直线的点斜式方程,难度中档;我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来.19.【解析】求导得:把代入得:解得故答案为 解析:2-【解析】求导得:()()221f x x f '=+',把1x =代入得:()()1221f f '=+',解得()12f '=-,故答案为2-.20.【解析】设交点为则切线斜率为 解析:22ln 2-【解析】设交点为(,)tt e ,则切线斜率为222(),()(),4,2t tttte e t a e t a e e =+=+∴==22ln 422ln 2a t ∴=-=-=-三、解答题21.(1)a=b=4,y=4x+c ;(2)(0,3227).【解析】试题分析:(1)求出f (x )的导数,由f'(0)=4,f'(-2)=0求得a ,b 的值,再求得切线的斜率和切点,进而得到所求切线的方程;(2)由f (x )=0,可得-c=x 3+4x 2+4x ,由g (x )=x 3+4x 2+4x ,求得导数,单调区间和极值,由-c 介于极值之间,解不等式即可得到所求范围. 试题(1)函数f (x )=x 3+ax 2+bx +c 的导数为f ′(x )=3x 2+2ax +b ,根据题意得:()()0421240f b f a b ⎧==⎪⎨-=-+=''⎪⎩,解得4,4a b ==.可得y =f (x )在点(0,f (0))处的切线斜率为k =f ′(0)=b=4, 切点为(0,c ),可得切线的方程为y =4x +c ; (2)由(1)f (x )=x 3+4x 2+4x +c , 由f (x )=0,可得−c = x 3+4x 2+4x ,由g (x )= x 3+4x 2+4x 的导数g ′(x )=3x 2+8x +4=(x +2)(3x +2) 当23x >-或x <−2时,g ′(x )>0,g (x )递增; 当−2<x <−23时,g ′(x )<0,g (x )递减. 即有g (x )在x =−2处取得极大值,且为0; g (x )在x =−23处取得极小值,且为−3227, 由函数f (x )有三个不同零点,可得−3227<−c <0, 解得0<c <3227, 则c 的取值范围是(0,32 27).22.4, 2.a b c d ====【解析】 试题分析:由题意得到关于实数a,b,c,d 的方程组,解方程可得4, 2.a b c d ==== 试题因为曲线()f x 和曲线()g x 都过点()0,2P , 所以()()02,02f g ==,得2, 2.b d ==()()()2,x x f x x a g x e cx d ce =+=++'',又因为曲线()f x 和曲线()g x 在点P 处有相同的切线42y x =+, 所以()()04,04f g =''=,得4, 2.a c == 所以4, 2.a b c d ====23.(1)(2)【解析】本题考查切线方程和函数的最值问题.考查学生利用导数法解决问题的能力.如果在点可导,则曲线在点()处的切线方程为000()()()y f x f x x x -='-注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不相同的,后者A 必为切点,前者未必是切点.本题的第一文是在点(1,(1))f 处,故直接求解即可;通过对函数求导,分析函数的单调性,寻求函数的最值是常规的解题思路,往往和分类讨论思想结合在一起考查.如本题的第二问,通过函数单调递增的等价性判断参数m 范围. 24.(1)(2)当时,在上单调递减,在单调递增;当时,在上单调递减; 当时,在和上单调递减,在上单调递增。
2.2 导数的概念及其几何意义 课件(北师大选修2-2)

2.记法:函数 y=f(x)在 x0 点的导数,通常用符号 fx1-fx0 x1-x0 =lim f′(x0)表示,记作 f′(x0)= lim x1→x0 Δx→0 fx0+Δx-fx0 Δx .
问题1:函数y=f(x)在[x0,x0+Δx]的平均变 Δy 化率为 ,你能说出它的几何意义吗? Δx 提示:表示过A(x0,f(x0))和B(x0+Δx,
问题3:对于函数y=f(x),当x从x0变到x1时,求函数值 y关于x的平均变化率.
Δy fx0+Δx-fx0 提示: = . Δx Δx
问题4:当Δx趋于0时,平均变化率趋于一个常数吗? 提示:是.
导数的概念 1.定义:设函数y=f(x),当自变量x从x0变到x1时,函 Δy 数值从f(x0)变到f(x1),函数值y关于x的平均变化率为 = Δx fx1-fx0 fx0+Δx-fx0 x1-x0 = ,当x1趋于x0,即Δx趋于0 Δx 时,如果平均变化率趋于一个 固定的值 ,那么这个值就是 函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率 为函数y=f(x)在x0点的导数.
[一点通] 求曲线在点(x0,f(x0))处的切线方程的步骤: (1)求出函数y=f(x)在点x0处的导数f′(x0); (2)根据直线的点斜式方程,得切线方程为y-f(x0)= f′(x0)· (x-x0).
4.已知f(x)=x2,曲线y=f(x)在点(3,9)处的切线的斜率 为________.
求曲线的切线方程,首先要判断所给点是否在曲 线上.若在曲线上,可用切线方程的一般方法求解;若 不在曲线上,可设出切点,写出切线方程,结合已知条
件求出切点坐标或切线斜率,从而得到切线方程.
解析:设P(3,9),Q(3+Δx,(3+Δx)2), 3+Δx2-9 则割线PQ的斜率为kPQ= =6+Δx. Δx 当Δx趋于0时,kPQ趋于常数6,从而曲线y=f(x)在 点P(3,9)处的切线的斜率为6.
新北师大版高中数学高中数学选修2-2第二章《变化率与导数》测试题(含答案解析)(4)
一、选择题1.设()2ln 1f x x =+,则()2f '=( )A .45B .15C .25D .352.已知()sin cos f x x x =-,定义1()()f x f x '=,[]'21()()f x f x =,…[]1()()n n f x f x '+=,(*n N ∈),经计算,1()cos sin f x x x =+,2()sin cos f x x x =-+,3()cos sin f x x x =--,…,照此规律,2019()f x =( )A .cos sin x x --B .cos sin x x -C .sin cos x x +D .cos sin x x -+3.若曲线224y x x p =-+与直线1y =相切,则p 的值为( ) A .1-B .1C .3D .44.若点P 在曲线32y x x =-+上移动,经过点P 的切线的倾斜角为α,则α的取值范围为( ) A .02π⎡⎤⎢⎥⎣⎦, B .3024πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭,,C .34,ππ⎡⎤⎢⎥⎣⎦ D .30224πππ⎡⎫⎛⎤⋃⎪⎢⎥⎣⎭⎝⎦,, 5.函数()f x 的图象如图所示,下列数值排序正确的是( )A .'(3)'(4)(4)(3)f f f f <<-B .'(4)(4)(3)'(3)f f f f <-<C .'(4)'(3)(4)(3)f f f f <<-D .(4)(3)'(4)'(3)f f f f -<<6.已知函数()2f x x =的图象在1x =处的切线与函数()e xg x a=的图象相切,则实数a =( )A .eB .e e2C .e 2D .e e7.已知函数()f x 在0x x =处可导,若()()00021x f x x f x lim x∆→+∆-=∆,则()0'f x = ( )A .2B .1C .12D .08.已知函数ln ,0()3,0x x f x kx x >⎧=⎨-≤⎩的图像上有两对关于y 轴对称的点,则实数k 的取值范围是( ) A .(),0e -B .-21,02e ⎛⎫- ⎪⎝⎭C .()2,0e -D .()22,0e -9.设曲线y =x n +1(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 014x 1+log 2014x 2+…+log 2 014x 2 013的值为()A .-log 2 0142 013B .-1C .(log 2 0142 013)-1D .110.函数为R 上的可导函数,其导函数为()f x ',且()3sin cos 6f x f x x π⎛⎫=⋅+ ⎪⎝⎭',在ABC ∆中,()()1f A f B ='=,则ABC ∆的形状为A .等腰锐角三角形B .直角三角形C .等边三角形D .等腰钝角三角形11.已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2020S 的值为( ) A .20202021B .20192020C .20182019D .2017201812.已知直线y x m =-+ 是曲线23ln y x x =-的一条切线,则m 的值为( ) A .0B .2C .1D .3二、填空题13.设l 是2y x=图象的一条切线,问l 与坐标轴所围成的三角形面积为______. 14.已知函数1()11f x x a x =++-+的图象是以点(1,1)--为中心的中心对称图形,2()x g x e ax bx =++,曲线()y f x =在点(1,(1))f 处的切线与曲线()y g x =在点(0,(0))g 处的切线互相垂直,则a b +=__________.15.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.16.若对于曲线f (x )=-e x -x (e 为自然对数的底数)的任意切线l 1,总存在曲线g (x )=ax +2cos x 的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为________. 17.抛物线2yx 上的点到直线20x y --=的最短距离为________________.18.如图,函数()y f x =的图象在点P 处的切线方程是28y x =-+,则(3)(3)f f '+=__________.19.如图,函数y=f (x )的图象在点P 处的切线方程是y=-x+8,则f (2018)+f'(2018)=_________.20.已知函数()f x 的导函数为()f x ',且满足2()32(2)f x x xf ,则(3)f '=_______.三、解答题21.对于函数()ln f x x =,21()2g x ax bx =+(0a ≠),()()()h x g x f x =-. (1)当曲线()y h x =在点(1,(1))h 处的切线方程为3y x =时,求,a b ;(2)当1a b +=,且0a >时,过曲线()y f x =上任一点P 作x 轴的垂线l ,l 与曲线()y g x =交于点Q ,若P 点在Q 点的下方,求a 的取值范围.22.已知函数()323611f x ax x ax =+--,()23612g x x x =++和直线m :9y kx =+,且()'10f -=.()1求a 的值;()2是否存在k 的值,使直线m 既是曲线()y f x =的切线,又是曲线()y g x =的切线?如果存在,求出k 的值;若不存在,请说明理由. 23.已知函数的图像过坐标原点,且在点处的切线斜率为.(1) 求实数的值; (2) 求函数在区间上的最小值;(3) 若函数的图像上存在两点,使得对于任意给定的正实数都满足是以为直角顶点的直角三角形,且三角形斜边中点在轴上,求点的横坐标的取值范围.24.已知函数()()221f x 2ax x lnx ax x =--+. (a ∈R ). (1)当a =0时,求曲线y =f (x )在(e ,f (e )处的切线方程(e =2.718…) (2)已知x =e 为函数f (x )的极值点,求函数f (x )的单调区间. 25.已知()(),1nf x y ax by =++(常数,a b Z ∈,*n N ∈且2n ≥). (1)若2a =-,0b =,2019n =,记()201901,i ii x y a x a f ==+∑,求:①20191ii a =∑;②20191ii ia =∑.(2)若(),f x y 展开式中不含x 的项的系数的绝对值之和为729,不含y 的项的系数的绝对值之和为64,求n 的所有可能值. 26.已知函数221()(1)2xf x x a e ax a x =---+,其中e a <. (1)若2a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()f x 在(1,2)内只有一个零点,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】令()21u x x =+,可求得()21u x x ='+()f x ',可求得()2f '.【详解】 ∵()21f x x =+()21u x x =+,则()ln f u u =,∵()1f u u '=,()221211x x u x ='=++,由复合函数的导数公式得:()222111xf x x x x ==++'+,∴()225f '=. 故选:C . 【点睛】本题考查复合函数的导数,掌握复合函数的导数求导法则是关键,属于中档题.2.A解析:A 【分析】根据归纳推理进行求解即可. 【详解】解:由题意知:()sin cos f x x x =-,1()()cos sin f x f x x x '==+,[]1'2()()sin cos f x f x x x ==-+, []'23()()cos sin f x f x x x ==--, []'34()()sin cos f x f x x x ==-,照此规律,可知:[]'201923()()co )s (s in f x f x x x f x ==--=,故选:A. 【点睛】本题考查函数值的计算,利用归纳推理是解决本题的关键.3.C解析:C 【分析】设切点坐标为()0,1x ,求导得到44y x '=-,计算得到答案. 【详解】设切点坐标为()0,1x ,∵44y x '=-,由题意知,0440x -=,∴01x =,即切点为()1,1,∴124p =-+,∴3p =.故选:C . 【点睛】本题考查了根据切线求参数,意在考查学生的计算能力.4.B解析:B 【分析】求函数的导数,利用导数的几何意义,结合二次函数的性质和正切函数的图象和性质即可得到结论. 【详解】解:32y x x =-+的导数为231y x '=-, 设(,)P m n ,可得P 处切线的斜率为231k m =-, 则1k-,由tan k α=,(0απ<且)2πα≠即为tan 1α-,由正切函数的性质可得02πα≤<或34παπ≤< 可得过P 点的切线的倾斜角的取值范围是30,24ππαπ⎡⎫⎡⎫∈⎪⎪⎢⎢⎣⎭⎣⎭,. 故选:B . 【点睛】本题主要考查导数的几何意义以及二次函数的性质和正切函数的图象和性质,考查运算能力,综合性较强.5.B解析:B 【分析】根据导数的几何意义结合图象即可判断. 【详解】解:由函数图象可知,函数单调递增,但函数的增长速度越来越缓慢,由导数的几何意义可知,()3f '表示函数在3x =处的切线l 的斜率;()4f '表示函数在4x =处的切线m 的斜率;()()()()434343f f f f --=-表示函数图象上()()3,3f 与()()4,4f 两点连线n 的斜率,由图可知l n m k k k >>,故(4)(4)(3)(3)f f f f ''<-< 故选:B【点睛】本题考查了学生的作图能力及对导数的几何意义的理解,属于基础题.6.B解析:B 【分析】先求函数()2f x x =的图象在1x =处的切线,再根据该切线也是函数()e xg x a=图象的切线,设出切点即可求解. 【详解】由()2f x x =,得()2f x x '=,则()12f '=,又(1)1f =,所以函数()2f x x =的图象在1x =处的切线为12(1)y x -=-,即21y x =-. 设21y x =-与函数()ex g x a=的图象相切于点00(,)x y ,由e()xg x a '=,可得00000e ()2,e ()21,x x g x a g x x a ⎧==⎪⎪⎨⎪==-⎩'⎪ 解得32031e e,e =222x a ==. 故选:B. 【点睛】本题考查导数的几何意义与函数图象的切线问题.已知切点时,可以直接利用导数求解;切点未知时,一般设出切点,再利用导数和切点同时在切线和函数图象上列方程(组)求解.7.C解析:C 【分析】 根据条件得到()()0002122x f x x f x lim x∆→+∆-=∆,计算得到答案. 【详解】()()()()00000221122x x f x x f x f x x f x limlimxx ∆→∆→+∆-+∆-=∴=∆∆ 即()()()000021'22x f x x f x f x lim x∆→+∆-==∆ 故选C 【点睛】本题考查了导数的定义,意在考查学生的计算能力.8.C解析:C 【分析】把函数()f x 的图象上有两对关于y 轴的对称点,转化为3y kx =-与ln()yx =-在0x <时有两个交点,利用导数的几何意义,求得切线的斜率,即可求解.【详解】 ,由题意,当0x >时,()ln f x x =,则()ln f x x =关于y 轴的对称函数ln()y x =-(0)x <,由题意可得3y kx =-与ln()y x =-在0x <时有两个交点,设3y kx =-与ln()y x =-相切于(,)m n ,因为ln()yx =-的导数1y x '=,所以1k m=, 又由ln()3m km -=-,即1ln()32m m m -=⨯-=-,解得21m e=-, 所以2k e =-,由图象可得,当20e k -<<时,函数3y kx =-与ln()y x =-在0x <上有两个交点,即当20e k -<<时,函数ln ,0()3,0x x f x kx x >⎧=⎨-≤⎩的图象上有两对关于y 轴的对称点,故选C .【点睛】本题主要考查了利用导数研究函数的零点问题,其中解答中把函数的图象上有两对关于y 轴的对称点,转化为3y kx =-与ln()yx =-在0x <时有两个交点是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.9.B解析:B 【解析】 【分析】由题意,求出y =x n +1(n ∈N *)在(1,1)处的切线方程,取0y =,求得n x ,再利用对数的运算性质可得答案. 【详解】由y =x n +1,可得(1)n y n x =+',即11x y n ='=+即曲线y =x n +1(n ∈N *)在(1,1)处的切线方程为1(1)(1)y n x -=+- 令0y =,得1n n x n =+ log 2 014x 1+log 2 014x 2+…+log 2 014x 2 013=20141220132014122013log ()log ()1232014x x x =⋅=- 故选B 【点睛】本题考查了曲线的切线方程和对数的运算,细心计算是解题的关键,属于中档题.10.D解析:D 【解析】 【分析】求函数的导数,先求出'16f π⎛⎫= ⎪⎝⎭,然后利用辅助角公式进行化简,求出A ,B 的大小即可判断三角形的形状. 【详解】函数的导数()'3'cos sin 6f x x x π⎛⎫=-⎪⎝⎭,则131''cos sin ''666662262f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 则11'262f π⎛⎫= ⎪⎝⎭,则'16f π⎛⎫= ⎪⎝⎭,则()'sin 2cos 6f x x x x π⎛⎫=-=+⎪⎝⎭, ()cos 2cos 3f x x x x π⎛⎫=+=- ⎪⎝⎭,()()'1f A f B ==,()'2cos 16f B B π⎛⎫∴=+= ⎪⎝⎭,即1cos 62B π⎛⎫+= ⎪⎝⎭,则63B ππ+=,得6B π=,()2cos 13f A A π⎛⎫=-= ⎪⎝⎭,即1cos 32A π⎛⎫-= ⎪⎝⎭,则33A ππ-=,则23A π=, 则2366C ππππ=--=, 则B C =,即ABC 是等腰钝角三角形, 故选D . 【点睛】本题考查三角形形状的判断,根据导数的运算法则求出函数()f x 和()'f x 的解析式是解决本题的关键.11.A解析:A 【分析】由2()f x x bx =+,求导得到()2f x x b '=+,再根据函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,由(1)23f b '=+=求解,从而得到()2()1f x x x x x =+=+,则()1111()11f n n n n n ==-++,再利用裂项相消法求解. 【详解】因为2()f x x bx =+, 所以()2f x x b '=+,因为函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,所以(1)23f b '=+=, 解得1b =,所以()2()1f x x x x x =+=+,数列()1111()11f n n n n n ==-++, 所以202011111111 (12233420202021)S =-+-+-++-, 12020120212021=-=. 故选:A 【点睛】 本题主要考查导数的几何意义以及数列的裂项法求和,还考查了运算求解的能力,属于中档题.12.B解析:B 【分析】根据切线的斜率的几何意义可知0003|21x x y x x ='=-=-,求出切点,代入切线即可求出m . 【详解】 设切点为00(,)x y 因为切线y x m =-+, 所以0003|21x x y x x ='=-=-, 解得0031,2x x ==-(舍去) 代入曲线23ln y x x =-得01y =,所以切点为1,1()代入切线方程可得11m =-+,解得2m =. 故选B. 【点睛】本题主要考查了函数导数的几何意义,函数的切线方程,属于中档题.二、填空题13.4【分析】根据导数的几何意义求出切线的方程进而求得轴上的截距即可求得结果【详解】因为故可得设切点为则过切点的切线方程为且则切线在轴上的截距分别为则与坐标轴所围成的三角形面积故答案为:4【点睛】本题考解析:4【分析】根据导数的几何意义,求出切线的方程,进而求得,x y 轴上的截距,即可求得结果. 【详解】 因为2y x =,故可得22y x'=-,设切点为()00,x y , 则过切点的切线方程为()00202y y x x x -=--,且002x y =, 则切线在,x y 轴上的截距分别为0042,x x , 则l 与坐标轴所围成的三角形面积0014242S x x =⨯⨯=. 故答案为:4. 【点睛】本题考查利用导数的几何意义求切线的方程,属中档题.14.【分析】由中心对称得可解得再由两切线垂直求导数得斜率令其乘积为-1即可得解【详解】由得解得所以又所以因为由得即故答案为【点睛】本题主要考查了函数的中心对称性考查了导数的几何意义即切线斜率属于中档题 解析:43-【分析】由中心对称得()()022f f +-=-,可解得a ,再由两切线垂直,求导数得斜率,令其乘积为-1,即可得解. 【详解】由()()022f f +-=-,得11121242a a a +---+-=-=-, 解得1a =,所以()11f x x x =++. 又()()21'11f x x =-++,所以()3'14f =. 因为()2xg x e x bx =++,()'2xg x e x b =++,()'01g b =+, 由()3114b +=-,得413b +=-,即43a b +=-. 故答案为43- 【点睛】本题主要考查了函数的中心对称性,考查了导数的几何意义即切线斜率,属于中档题.15.0【解析】【分析】通过求导数得y =x2+3x 在点(-1-2)处的切线再直线与曲线相切于点求导可得解方程组即可得解【详解】由得∴当时则曲线在点处的切线方程为即设直线与曲线相切于点由得∴解之得∴答案:0解析:0 【解析】 【分析】通过求导数得y =x 2+3x 在点(-1,-2)处的切线1y x =-,再直线1y x =-与曲线ln y ax x =+相切于点()00,x y ,求导可得000000111a x y x y ax lnx⎧+=⎪⎪⎪=-⎨⎪=+⎪⎪⎩,解方程组即可得解.【详解】由23y x x =+得'23y x =+, ∴当1x =-时,'1y =,则曲线23y x x =+在点()1,2--处的切线方程为21y x +=+,即1y x =-, 设直线1y x =-与曲线ln y ax x =+相切于点()00,x y , 由ln y ax x =+得1'(0)y a x x=+>, ∴000000111a x y x y ax lnx⎧+=⎪⎪⎪=-⎨⎪=+⎪⎪⎩,解之得01x =,00y =,0a =. ∴0a =. 答案:0. 【点睛】本题考查导数几何意义的应用,解答此类问题的关键是求出切点坐标.若切点已知,则直接求导即可得切线的斜率,若切点未知,在解题时首先要设出切点,然后根据切点在曲线上及导数的几何意义得到关于切点坐标的方程,求出切点坐标后可得切线方程.16.【分析】先求f′(x )=﹣ex ﹣1令﹣ex ﹣1进一步得∈(01)再求g′(x )=a ﹣2sinx 令=a ﹣2sinx ∈﹣2+a2+a 把l1⊥l2转化为集合间的包含关系求解即可【详解】由f (x )=﹣ex ﹣ 解析:[]1,2-【分析】先求f′(x )=﹣e x ﹣1,令1k =﹣e x ﹣1,进一步得11-=k x 1e +1∈(0,1),再求g′(x )=a ﹣2sinx ,令2k =a ﹣2sinx ∈[﹣2+a ,2+a],把l 1⊥l 2转化为集合间的包含关系求解即可.【详解】由f (x )=﹣e x ﹣x ,得f′(x )=﹣e x ﹣1,所以1k =﹣e x ﹣1 ∵e x +1>1,∴11-=k x 1e +1∈(0,1), 由g (x )=ax+2cosx ,得g′(x )=a ﹣2sinx ,又﹣2sinx ∈[﹣2,2], ∴a ﹣2sinx ∈[﹣2+a ,2+a],要使过曲线f (x )=﹣e x ﹣x 上任意一点的切线为l 1,总存在过曲线g (x )=ax+2cosx 上一点处的切线l 2,使得l 1⊥l 2, 则-2+a 02+a 1≤⎧⎨≥⎩,解得﹣1≤a≤2.故答案为:[-1,2] 【点睛】本题考查了两个函数在点的切线斜率间的关系,利用了导数的几何意义,把问题转化为集合间的包含关系是解题的关键,属于中档题.17.【分析】当抛物线上点的切线与直线平行时这个点到直线的距离最短求出切点坐标利用点到直线的距离公式求出切点到直线的距离即最短距离【详解】由得令则所以抛物线上的点到直线的距离最短最短为故填【点睛】本题考查解析:8【分析】当抛物线上点的切线与直线20x y --=平行时,这个点到直线20x y --=的距离最短.求出切点坐标,利用点到直线的距离公式求出切点到直线的距离,即最短距离 【详解】由2y x =,得2y x '=. 令1y '=,则12x =, 所以抛物线2y x =上的点11,24⎛⎫⎪⎝⎭到直线20x y --=的距离最短,最短为=【点睛】本题考查了导数的几何意义的应用,考查了点到直线的距离公式,解答本题的关键是理解曲线上的点到直线的最短距离,与这条直线和其平行且与曲线的相切的直线间的距离的关系.18.【解析】分析:根据导数几何意义得再根据函数值得代入即得结果详解:由题意可知故点睛:利用导数的几何意义解题主要是利用导数切点坐标切线斜率之间的关系来进行转化 解析:0【解析】分析:根据导数几何意义得(3)2f '=-,再根据函数值得(3)2382f =-⨯+=,代入即得结果.详解:由题意可知(3)2382f =-⨯+=,(3)2f '=-,故(3)(3)0f f '+=.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.19.-2011【解析】分析:由题意函数的图象在点处的切线的斜率就是函数在该点处的导数值以内可求得再根据切点的双重性即切点既在曲线上又在切线上可求得的值即可求解答案详解:根据函数的图象可知函数的图象在点处解析:-2011 【解析】分析:由题意,函数()y f x =的图象在点P 处的切线的斜率就是函数P 在该点处的导数值,以内可求得(2018)f ',再根据切点的双重性,即切点既在曲线上又在切线上,可求得(2018)f 的值,即可求解答案.详解:根据函数的图象可知,函数()y f x =的图象在点P 处的切线切于点P , 所以(2018)201882010f =-+=-, 又由切线的方程为8y x =-+,所以(2018)f '为函数()y f x =的图象在点P 处的切线的斜率,所以(2018)1f '=-, 所以(2018)(2018)201012011f f +=--=-'.点睛:本题主要考查了利用导数研究曲线在某点出处的切线方程,以及过曲线上某点处的切线的斜率问题,其中正确理解导数的几何意义是解答的关键,着重考查了分析问题和解答问题的能力.20.-6【解析】则解得则故答案为解析:-6 【解析】()()()()232'2,'62'2f x x xf f x x f =+∴=+ ,则()()'2622'2f f =⨯+ ,解得()'212f =- ,则()()'624,'318246f x x f =-∴=-=- ,故答案为6- . 三、解答题21.(1) 2a =,2b =;(2) (0,2). 【解析】试题分析:(1)利用导数的几何意义确定,a b 的值;(2)原问题等价于0x ∀>,()()()h x g x f x =-= 21ln 02ax bx x +->,研究函数()h x 的单调性与最值即可.试题 (Ⅰ)()21ln 2h x ax bx x =+-,则()112h a b =+ ()()111h x ax b h a b x=+-='+'⇒-,依题意得 1232213a ab b a b ⎧=+=⎧⎪⇒⎨⎨=⎩⎪+-=⎩. (Ⅱ)已知条件可转化为0x ∀>,()()()h x g x f x =-= 21ln 02ax bx x +->. 由1a b +=得()()211ln 2h x ax a x x =+--. ()()()1111ax x h x ax a x x+-=+--='. 又0a >,由()01h x x ='⇒=;由()01h x x >'⇒>;由()001h x x <⇒<<'. 则()h x 在区间()0,1上是减函数,在区间()1,+∞上为增函数,则()()min 1112h x h a ==-+,则有11022a a -+>⇒<,又0a >得02a <<. 故a 的取值范围是()0,2.22.(1) a=-2 (2) 公切线是y=9,此时k=0 【分析】(1)计算f′(x),进而由f′(-1)=0可得解;(2)直线m 是曲线y =g(x)的切线,设切点为(x 0,320x +6x 0+12),由导数得切线斜率,进而得切线方程,带入(0,9) 得x 0=±1,再分别计算当f′(x)=0或f′(x)=12时的切线,进而找到公切线. 【详解】(1)f′(x)=3ax 2+6x -6a ,f′(-1)=0. 即3a -6-6a =0,∴a =-2. (2)存在.∵直线m 恒过定点(0,9),直线m 是曲线y =g(x)的切线, 设切点为(x 0,320x +6x 0+12),∵g′(x 0)=6x 0+6,∴切线方程为y -(320x +6x 0+12)=(6x 0+6)(x -x 0), 将点(0,9)代入,得x 0=±1.当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由f′(x)=0,得-6x 2+6x +12=0. 即有x =-1或x =2,当x =-1时,y =f(x)的切线方程为y =-18; 当x =2时,y =f(x)的切线方程为y =9. ∴公切线是y =9.又令f′(x)=12,得-6x 2+6x +12=12, ∴x =0或x =1.当x =0时,y =f(x)的切线方程为y =12x -11; 当x =1时,y =f(x)的切线方程为y =12x -10, ∴公切线不是y =12x +9.综上所述公切线是y =9,此时k =0. 【点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点()00,P x y 及斜率,其求法为:设()00,P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为: ()()000'y y f x x x -=-.若曲线()y f x =在点()()00,P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 23.(1);(2);(Ⅲ)点的横坐标的取值范围为.【解析】试题分析:(1)根据图像过原点得,又切线斜率等于切点处导数值,得,解出;(2)时,对求导以判断函数的单调性,得, 令则,令则或,故在单调递减,在单调递增,在单调递减,为极小值点,,为极大值点,,,比较极小值与区间端点处函数值,,得在上的最小值为0,当或1时取得;(3)设,利用横坐标的对称关系得出,由得,于是①,然后对以为分界点分类讨论方程①是否存在解,当时,都有,故方程①无解;当时,,代入①化简得,该方程判别式小于0,故方程无解;当时,代人①化简得,再考虑此方程是否有解,令,求导分析知是增函数,注意到,故的值域是,因此方程①对任意正实数恒有解;当时,由横坐标的对称性同理可得,方程①对任意正实数恒有解,综上可得点的横坐标的取值范围.试题(1)当时,,,依题意,,又,故;...............3分(2)当时,,令有,故在单调递减;在单调递增;在单调递减.又,所以当时,; 6分(3)设,因为中点在轴上,所以,又①,(ⅰ)当时,,当时,.故①不成立 7分(ⅱ)当时,代人①得:,无解; 8分(ⅲ)当时,代人①得:②,设,则是增函数.的值域是. 10分所以对于任意给定的正实数,②恒有解,故满足条件.(ⅳ)由横坐标的对称性同理可得,当时,,代人①得:③设,令,则由上面知的值域是的值域为.所以对于任意给定的正实数,③恒有解,故满足条件. 12分综上所述,满足条件的点的横坐标的取值范围为..........14分考点:1、导数与切线关系;2、函数单调性与最值;3、分类讨论的思想;4、函数与方程的思想.24.(1)x +y ﹣e =0.(2)单调递增区间为(0,1)和(e ,+∞),单调递减区间为(1,e ). 【分析】(1)当a =0时,求函数的导数,根据导数的几何意义,即可求得结果. (2)根据导数和极值和单调性之间的关系,即可得到结论. 【详解】 (1)∵a =0,∴f (x )=﹣xlnx +x ,f ′(x )=﹣lnx , 则直线的斜率k =f ′(e )=﹣lne =﹣1, f (e )=﹣elne +e =﹣e +e =0, 故所求切线方程为x +y ﹣e =0.(2)函数的导数f ′(x )=(2ax ﹣1)lnx ﹣ax ﹣1+ax +1=(2ax ﹣1)lnx , ∵x =e 为函数f (x )的极值点, ∴f ′(e )=2ae ﹣1=0,解得a 12e=(经检验符合题意) 则f ′(x )=(1x e -)lnx x e e-=lnx , 由f ′(x )=0得x =1或x =e , 列表得 x (0,1) 1 (1,e ) e (e ,+∞) f ′(x ) + 0 ﹣ 0 + f (x )增极大值减极小值增【点睛】本题主要考查函数切线的求解,以及函数极值和单调性与导数的关系,熟练掌握导数的几何意义和导数的综合应用是关键,属于中档题.25.(1)①201912ii a==-∑,②201914038i i ia ==-∑;(2)2,3,6【分析】(1)①根据二项式定理,令0,1x x ==,分别求得0a 以及0122019a a a a +++,即可得到结果; ②对()201922019012201912x a a x a x a x -=++++求导,令1x =,即可求得结果;(2)令0a =,以及0b =,再根据64可拆分为28,34,62,即可求得结果. 【详解】(1)当2a =-,0b =,2019n =,()()20192,1f x x y =-()()201220192019201920192019201922C C x C x C x =+-+-++220190122019a a x a x a x =++++,①令0x =,得01a =, 令1x =,得()2019012201911a a a a +++=-=-,所以201912ii a==-∑.②在()201922019012201912x a a x a x a x -=++++中,两边同时对x 求导, 可得()2018201812201940381222019x a a x a x --=+++,令1x =,得201914038ii ia==-∑.(2)令0a =得()1nby +,则()1729nb +=,令0b =得()1nax +,则()164na +=,因为64所有的底数与指数均为正整数的指数式拆分为:28,34,62, 所以当2n =时,7a =,26b =; 当3n =时,3a =,8b =, 当6n =时,1=a ,2=b , 故n 的所有的可能值为2,3,6. 【点睛】本题考查利用二项式定理求系数和,以及多项式求导,属综合中档题. 26.(1)23y x =-;(2)()0,1. 【分析】(1)将2a =代入,求出函数解析式,可得(0)f 的值,利用导数求出(0)f '的值,可得()y f x =在点(0,(0))f 处的切线方程;(2)求出函数的导函数,结合a 的讨论,分别判断函数零点的个数,综合讨论结果,可得答案. 【详解】 解:(1)22,()(3)e 4,(0)3x a f x x x x f =∴=--+∴=-,()(2)e 24x f x x x '=--+,则(0)2f '=,故所求切线方程为23y x =-;(2)()()()e xf x x a a '=--,当1a 时,()0f x '>对(1,2)x ∈恒成立 ,则()f x 在(1,2)上单调递增,从而()21(1)e 02(2)(1)e 20f a a f a a ⎧⎛⎫=--< ⎪⎪⎝⎭⎨⎪=-->⎩,则(0,1)∈a ,当12a <<时,()f x 在(1,)a 上单调递减,在(,2)a 上单调递增,121(1)e 0,()0,(2)02a f a a f a f <<⎧⎛⎫=--<∴<∴⎨ ⎪>⎝⎭⎩则a ∈∅ , 当2e a <时, ()0f x '<对(1,2)x ∈恒成立,则()f x 在(1,2)上单调递减,(1)0,()f f x <∴在(1,2)内没有零点 ,综上,a 的取值范围为(0,1).【点睛】本题主要考查了函数的零点,导函数的综合运用及分段函数的运用,难度中等.。
新北师大版高中数学高中数学选修2-2第二章《变化率与导数》测试题(有答案解析)
一、选择题1.已知b 为正实数,直线y x a =+与曲线x by e +=相切,则2a b的取值范围是( )A .[),e +∞B .2[,)e +∞C .[2,)+∞D .[4,)+∞2.已知a ,b 为正实数,直线y x a =-与曲线()ln y x b =+相切,则11ab+的最小值是( ) A .2B.C .4D.3.若函数f (x )=alnx (a ∈R )与函数g (x)=a的值为( ) A .4B .12C .2e D .e4.已知P 与Q 分别为函数260x y --=与函数21y x =+的图象上一点,则线段||PQ 的最小值为( ) A .65BCD .65.已知曲线()3:x ,C f x ax a =-+若过点A (1.1)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( ) A .38B .1C .98D .1586.已知曲线()2ln f x a x x=-在1x =处的切线与x ,y 轴分别交于A ,B 两点,若OAB ∆的面积为256,则正数a 的值为( ) A .1BC .2D .47.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( ) A .1B .13C .23D .128.直线2y kx =+与曲线32y x ax b =++相切于点(1,4),则4a b +的值为( ) A .2B .-1C .1D .-29.已知函数()f x 的导函数为()'f x ,且满足()2()cos 2f x x f x π+'=⋅,则0()()22lim x f f x x ππ∆→-+∆=∆( ) A .1- B .0C .1D .210.曲线11x y x +=-在点(0,1)-处的切线方程为( ) A .21y x =-- B .21y x =-C .21y x =-+D .21y x =+11.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .[0,π)C .3,44ππ⎡⎤⎢⎥⎣⎦D .[0,4π]∪[2π,34π]12.已知函数ln y x x =,则这个函数在点1x =处的切线方程是A .22y x =-B .22y x =+C .1y x =-D .1y x =+二、填空题13.经研究发现,三次函数()()320ax bx d a f x cx =+++≠都有对称中心,设其为()()0,x f x ,则()0''0f x =,反之也成立,其中()''f x 是函数()f x 的导函数()'f x 的导数.已知()()322221f x x ax a a x a =++-++,若对任意的实数()1m m ≠,函数()f x 在x m =和2x m =-处的切线互相平行,则实数a =______.14.函数在处的切线与直线垂直,则a 的值为______.15.已知函数()f x 是定义在R 上的奇函数,且当0x <时,()322f x x x =-,曲线()y f x =在点(1,(1))f 处的切线方程为______________.16.以下四个命题错误的序号为_______(1) 样本频率分布直方图中小矩形的高就是对应组的频率.(2) 过点P(2,-2)且与曲线33y x x =-相切的直线方程是9160x y +-=. (3) 若样本1210,,x x x 的平均数是5,方差是3,则数据121021,21,,21x x x +++的平均数是11,方差是12.(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.17.已知函数()ln f x x x =+,若函数()f x 在点()()00,P x f x 处切线与直线310x y -+=平行,则0x =____________18.已知函数()3f x x =,设曲线()y f x =在点()()11P x f x ,处的切线与该曲线交于另一点()()22Q x f x ,,记()f x '为函数()f x 的导数,则()()12f x f x ''的值为_____. 19.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为_________. 20.已知1()sin cos f x x x =+,记211()(),,()(),,n n f x f 'x f x f 'x +==则1232017()()()()3333f f f f ππππ++++=_________________三、解答题21.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.22.已知函数()()()11ln x ax a f x x x--+=-.(1)当1a =时,求曲线()y f x =在()(),e f e 处的切线方程; (2)当0x >且1x ≠,不等式()11ln 1a x x x x+-<-恒成立,求实数a 的值. 23.已知函数()2ln f x x ax ax =+- ,其中a R ∈ . (1)当1a = 时,求函数()f x 在1x = 处的切线方程;(2)若函数()f x 在定义域上有且仅有一个极值点,求实数a 的取值范围. 24.已知函数.(1)若函数在处有极值,求的值; (2)若对于任意的在上单调递增,求的最小值.25.已知函数(0)m >.(1)若,求曲线在点处的切线方程;(2)若函数在区间(21,1)m m -+上单调递增,求实数的取值范围.26.设函数()3f x x =的图象上一点()()1,1P f 处的切线l 与()3f x x =的图象的另一交点为Q .(1)确定点Q 的坐标;(2)求函数()y f x =与切线l 围成的封闭图形面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】取导数为1计算得到切点为(),1b -,将切点代入直线,得到1b a =-+,换元利用均值不等式得到答案. 【详解】x b y e +=,则'1x b y e +==,则x b =-,当x b =-,1y =,故切点为(),1b -,将切点代入直线得到1b a =-+,()2211224b a b b b b +==++≥=, 当1b =时等号成立.故选:D. 【点睛】本题考查了根据切线求参数,均值不等式,意在考查学生的计算能力和应用能力,确定1b a =-+是解题的关键.2.C解析:C 【分析】求函数的导数,由已知切线的方程,可得切线的斜率,求得切线的坐标,可得1a b +=,再由乘1法和基本不等式,即可得到所求最小值. 【详解】解:()y ln x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1, 可得切点的横坐标为1b -,所以切点为(1,0)b -, 代入y x a =-,得1a b +=,a 、b 为正实数,则111()()22241b a b a a b a b a b a b a b+=++=+++=. 当且仅当12a b ==时,11a b+取得最小值4. 故选:C 【点睛】本题主要考查导数的应用,利用导数的几何意义以及基本不等式是解决本题的关键,属于中档题.3.C解析:C 【分析】根据公共点处函数值相等、导数值相等列出方程组求出a 的值和切点坐标,问题可解. 【详解】由已知得()()a f x g x x ''==,,设切点横坐标为t ,∴alnt a t ⎧=⎪⎨=⎪⎩,解得22e t e a ==,.故选:C. 【点睛】本题考查导数的几何意义和切线方程的求法,以及利用方程思想解决问题的能力,属于中档题.4.C解析:C 【分析】利用导数法和两直线平行性质,将线段||PQ 的最小值转化成切点到直线距离. 【详解】已知P 与Q 分别为函数260x y --=与函数21y x =+的图象上一点, 可知抛物线21y x =+存在某条切线与直线260x y --=平行,则2k =,设抛物线21y x =+的切点为()200,1x x +,则由2y x '=可得022x =,01x ∴=,所以切点为(1,2),则切点(1,2)到直线260x y --=的距离为线段||PQ 的最小值,则min ||PQ == 故选:C. 【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.5.D解析:D 【分析】设切点()3000,x x ax a -+,利用导数的几何意义求切线方程,并且求切点,由题意可知切线在切点处的导数和为0,求a . 【详解】()23f x x a '=-,设切点为()3000,x x ax a -+,()2003f x x a '∴=-∴过切点的切线方程为:()()()3200003y x ax a x a x x --+=--,切线过点()1,1A ,()()()320000131x ax a x a x ∴--+=-- ,整理为:32002310x x -+= , 化简为:()()2001210x x -+= ,01x ∴=或012x =-,()13f a '=-,1324f a ⎛⎫'-=- ⎪⎝⎭,由两条切线的倾斜角互补,得 3304a a -+-=,解得158a =.故选:D 【点睛】本题考查导数的几何意义,求切线方程,并且求参数,意在考查转化与化归和计算能力.6.A解析:A 【分析】根据导数的几何意义,求出曲线在在x =1处的切线方程,进而可知点A ,B 的坐标,因此由△OAB 的面积为256,列出方程,即可解出a . 【详解】 因为()'fx 22a x x=+,所以k =()'1f =a +2,而f (1)=﹣2, 故切线方程为:y +2=(a +2)(x ﹣1),由此可得点A (42a a ++,0),B (0,﹣4﹣a ).由于a >0, S △OAB 12=⨯|﹣4﹣a |×|42a a ++|256=,化简得,3a 2﹣a ﹣2=0,解得a =1. 故选:A . 【点睛】本题主要考查导数的几何意义的应用,求出切线方程即可表示出△OAB 的面积.7.B解析:B 【分析】利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案. 【详解】由题意,曲线21x y e -=+,则22x y e -'=-,所以200|2|2xx x y e -=='=-=-,所以曲线21xy e-=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,令0y =,解得1x =,令y x =,解得23x y ==, 所以切线与直线y 0=和y x =所围成图形的面积为1211233⨯⨯=,故选B . 【点睛】本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.8.A解析:A 【解析】 【分析】求得函数的导数,可得切线的斜率,由切点满足切线的方程和曲线的方程,解方程即可求解,得到答案. 【详解】由题意,直线2y kx =+与曲线32y x ax b =++相切于点(1,4), 则点(1,4)满足直线2y kx =+,代入可得412k =⨯+,解得2k =, 又由曲线()32f x x ax b =++,则()232f x x a '=+,所以()213122f a '=⨯+=,解得12a =-,即()3f x x x b =-+, 把点(1,4)代入()3f x x x b =-+,可得3411b =-+,解答4b =, 所以144()422a b +=⨯-+=,故选A . 【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟记导数的几何意义,合理准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.A解析:A 【分析】求函数的导数,令2x π=,先求出2f π⎛⎫'⎪⎝⎭的值,根据导数的概念即可得到结论. 【详解】∵()2()cos 2f x x f x π+'=⋅,∴()2sin 2f x f x π⎛⎫'='-⎪⎝⎭, 令2x π=,则2sin 222f f πππ⎛⎫⎛⎫'='-⎪ ⎪⎝⎭⎝⎭,即12f π⎛⎫'= ⎪⎝⎭, 则00()()()()2222lim lim 12x x f f x f x f f x x πππππ∆→∆→-+∆+∆-⎛⎫=-=-=- ⎪∆∆⎝⎭',故选A. 【点睛】本题主要考查了导数的计算,根据导数公式以及求出12f π⎛⎫'= ⎪⎝⎭是解决本题的关键,属于中档题.10.A解析:A 【分析】求出函数的导数,求得切线的斜率,利用点斜式可得切线的方程,得到结果. 【详解】 由11x y x +=-可得221(1)2'(1)(1)x x y x x --+==---, 所以0'|2x y ==-, 所以曲线11x y x +=-在点(0,1)-处的切线方程为:21y x =--, 故选A. 【点睛】该题考查的是有关求曲线在某点处的切线方程的问题,涉及到的知识点有导数的几何意义,直线的方程,属于简单题目.11.A解析:A 【解析】由题得cos y x '=,设切线的倾斜角为α,则,3tan cos 1tan 1[0,][,)44k x ππαααπ==∴-≤≤∴∈⋃,故选A.12.C解析:C 【分析】先求导函数,根据切线的斜率等于切点处的导数结合点斜式即可求切线方程. 【详解】当1x =时,ln10y ==,则切点为()1,0, 导函数()ln ln ln 1y x x x x x '''=+=+, 所以点1x =处的切线的斜率1|ln111x k y ='==+= 所以函数在点1x =处的切线方程为1y x =-, 故选C. 【点睛】本题考查导数几何意义的应用,属于基础题.二、填空题13.-3【分析】由求导得根据题意知恒成立可得出函数对称轴即可求解【详解】由求导得:因为对任意的实数函数在和处的切线互相平行所以故的对称轴为即所以故答案为:【点睛】本题主要考查了函数的导数导数的几何意义函解析:-3 【分析】由()f x 求导得()22322f x x ax a a '=++-,根据题意知()(2)f m f m ''=-恒成立,可得出函数对称轴,即可求解. 【详解】 由()f x 求导得:()22322f x x ax a a '=++-,因为对任意的实数()1m m ≠,函数()f x 在x m =和2x m =-处的切线互相平行, 所以()(2)f m f m ''=-, 故()y f x '=的对称轴为1x =, 即13a-=, 所以3a =-,故答案为:3- 【点睛】本题主要考查了函数的导数,导数的几何意义,函数的对称性,属于中档题.14.0【解析】【分析】求函数的导数根据导数的几何意义结合直线垂直时直线斜率的关系建立方程关系进行求解即可得结果【详解】因为函数y=(x+a)ex 在x=0处的切线与直线x+y+1=0垂直所以函数y=(x+ 解析:【解析】 【分析】求函数的导数,根据导数的几何意义结合直线垂直时直线斜率的关系建立方程关系进行求解即可得结果. 【详解】 因为函数在处的切线与直线垂直,所以函数在处的切线斜率,因为,所以,解得,故答案是0. 【点睛】该题考查的是有关利用导数研究曲线上某点处的切线的问题,涉及到的知识点有两直线垂直的条件,导数的几何意义,以及函数的求导公式,属于中档题目.15.【分析】先求出当时的解析式然后再求出切线方程【详解】函数是定义在上的奇函数当时当时则当时即切线方程为即故答案为【点睛】结合函数的奇偶性求出函数的表达式再运用导数的几何意义求出在点处的切线方程本题较为 解析:740x y --=【分析】先求出当0x >时的解析式,然后再求出切线方程 【详解】函数()f x 是定义在R 上的奇函数∴当0x <时,()322f x x x =-当0x >时,0x -<,()()()323222f x x x x x -=---=--则当0x >时,()322f x x x =+()1123f =+=()234f x x x '=+,()17f '=即切线方程为()371y x -=-, 即740x y --= 故答案为740x y --= 【点睛】结合函数的奇偶性求出函数的表达式,再运用导数的几何意义求出在点处的切线方程,本题较为基础,只要掌握解题方法即可16.(1)(2)(4)【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点是切点的情形求出切线方程然后设切点为(x0y0)根据切点与点(2-2)的斜率等于切线的斜率建立等量关解析:(1)(2)(4) 【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点22-(,)是切点的情形,求出切线方程,然后设切点为(x 0,y 0),根据切点与点(2,-2)的斜率等于切线的斜率建立等量关系,解之即可求出切点,从而求出切线方程.对于(3),利用平均数与方差的性质分别进行解答即可得出答案. 对于(4),由对立事件的定义可知其错误.详解:对于(1),频率分布直方图中每个小矩形的高是该组的频率与组距的比值,∴(1)错误;对于(2), 设直线222233|9x l y k x y x y =+=-'=-∴'=-:().,,又∵直线与曲线均过点22-(,),于是直线22y k x ()+=- 与曲线33y x x =- 相切于切点22-(,)时,9k =-. 若直线与曲线切于点0002x y x ≠(,)(), 则320000000002232122y y k y x x x x x x ++==-∴=-----,,, 又200|33k y x x x ='==-,2220000021332240x x x x x ∴---=-∴--=,, 200021330x x k x ≠∴=-∴=-=,,, 故直线l 的方程为9160x y +-=或2y =-.故(2)错; 对于(3),若样本1210,,x x x 的平均数是5,方差是3,则数据121021,21,,21x x x +++的平均数是25111,⨯+= ,方差是22312⨯=.故(3)正确;对于(4),掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”不是对立事件.故(4)错误. 故选(1)(2)(4)点睛:本题考查了频率分布直方图的应用问题,考查了利用导数研究曲线上某点切线方程,考查了样本平均数,方差,考查了对立事件的定义,是基础题..17.【解析】分析:求出导函数可得切线斜率利用切线斜率等于列方程求解即可详解:因为函数所以可得函数由函数在点处切线与直线平行可得解得故答案为点睛:本题主要考查利用导数求切线斜率属于简单题应用导数的几何意义解析:12【解析】分析:求出导函数,可得切线斜率,利用切线斜率等于3列方程求解即可. 详解:因为函数()ln f x x x =+, 所以可得函数()1'1f x x=+, 由函数()f x 在点()()00,P x f x 处切线与直线310x y -+=平行,可得0113x +=,解得012x =,故答案为12. 点睛:本题主要考查利用导数求切线斜率,属于简单题. 应用导数的几何意义求切点处切线的斜率,主要体现在:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x '=;(2) 己知斜率k 求切点()()11,,A x f x 解方程()1f x k '=即可.18.【解析】因为函数所以;则曲线在点处的切线斜率为所以曲线在点处的切线方程为:联立得:即所以则故答案为点睛:本题考查的知识点是利用导数研究曲线上某点的切线方程直线的点斜式方程难度中档;我们在解答这类题的解析:14【解析】因为函数()3f x x =,所以()23f x x '=;则曲线()y f x =在点11(,())P x f x 处的切线斜率为()21113k f x x ==',所以曲线()y f x =在点11(,())P x f x 处的切线方程为:321113()y x x x x -=-,联立()3f x x =得:32321111320()(2)0x xx x x x x x -+=⇒-+=,即212x x =-,所以()22221312f x x x ==',则()()1214f x f x ='',故答案为14. 点睛:本题考查的知识点是利用导数研究曲线上某点的切线方程,直线的点斜式方程,难度中档;我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来.19.【详解】设切点为∴即又∴即故答案为点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出切点及斜率其求法为:设是曲线上的一点则以的切点的切线方程为:若曲线在点的切线平行于轴(即导数 解析:1ln 2+【详解】设切点为()mlnm m ,1ln y x '=+, 1ln x m y m ==+'∴()()y mlnm 1m m ln x -=+- 即()y 1m m ln x =+-,又2y kx =-∴12lnm k m +=⎧⎨=⎩,即1ln2k =+故答案为1ln2+点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.20.【解析】以此类推可得出即函数是周期为的周期函数又故答案为【解析】()()()()'213cos ,cos 'cos f x f x x sinx f x x sinx sinx x ==-=-=--,()()45cos ,cos f x x sinx f x sinx x =-+=+,以此类推,可得出()()4n n f x f x +=,即函数()1n f x +是周期为4的周期函数,又()()()()12340f x f x f x f x +++=,1232017...3333f f f f ππππ⎛⎫⎛⎫⎛⎫⎛⎫∴++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭20171cos 3333f f sin ππππ⎛⎫⎛⎫===+=⎪ ⎪⎝⎭⎝⎭三、解答题21.(1)[-1,+∞);(2)(-∞,2∪(1,3)∪[2∞). 【解析】试题分析:(1)先求导函数,然后根据导函数求出其取值范围,从而可求出曲线C 上任意一点处的切线的斜率的取值范围;(2)根据(1)可知k 与﹣1k的取值范围,从而可求出k 的取值范围,然后解不等式可求出曲线C 的切点的横坐标取值范围. (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1, 即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,111k k≥-⎧⎪⎨-≥-⎪⎩解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2∪(1,3)∪[2∞) 22.(1)()10e x ey e -+-=(2)12a = 【解析】试题分析:(1)根据导数几何意义得切线斜率为()f e ',再根据点斜式得切线方程(2)根据分母符号转化为:1x >时()0max f x <,01x <<时()0min f x >,研究()f x ,其导函数有两个零点1x =或11x a =-,根据11a-与0,1大小分类讨论,确定函数单调性,进而确定函数最值,解对应不等式可得实数a 的值.试题(1)1a =时,()ln 1f x x x =-+,()2f e e =- ∴切点为(),2e e -()11f x x '=-,()11f e e '=- ∴切线方程为11e y x e-=+ 即曲线()y f x =在()(),e f e 处的切线方程()10e x ey e -+-= (2)∵当0x >且1x ≠时,不等式()11ln 1a x x x x+-<-恒成立 ∴x e =时()11ln 1a e e e e+-<- ∴()2101a e >>-又()()111ln 01x ax a x x x ⎡⎤--+-<⎢⎥-⎣⎦即()101f x x <-对0x >且1x ≠恒成立 等价于1x >时()0f x <,01x <<时()0f x >恒成立 ∵()()0,11,x ∈⋃+∞()()()222111x ax a ax x af x x x --+-+-'-=-= 令()0f x '= ∵0a > ∴1x =或11x a=- ①111a ->时,即102a <<时,11,1x a ⎛⎫∈- ⎪⎝⎭时,()0f x '> ∴()f x 在11,1a ⎛⎫- ⎪⎝⎭单调递增∴()()10f x f >=,∴102a <<不符合题意②当111a -=时,即12a =时,()0,1x ∈时()0f x '<∴()f x 在()0,1单调递减 ∴()()10f x f >=;()1,x ∈+∞时()0f x '<∴()f x 在()1,+∞单调递减∴()()10f x f <= ∴12a =符合题意 ③当1011a <-<时,即112a <<时,11,1x a ⎛⎫∈- ⎪⎝⎭时,()0f x '> ∴()f x 在11,1a ⎛⎫- ⎪⎝⎭单调递增∴()()10f x f <=∴112a <<不符合题意④当110a-<时,即1a >时,()0,1x ∈时,()0f x '>∴()f x 在()0,1单调递增 ∴()()10f x f <= ∴1a >不符合题意 综上,12a =. 点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件. 23.(1)1y x =- ;(2)0a < . 【解析】 试题分析:(1)首先利用导函数求得切线的斜率为1,然后利用点斜式可得切线方程为1y x =-; (2)求解函数的导数,然后讨论函数()221t x ax ax =-+的性质可得实数a 的取值范围是0a < .试题(1)当()0,ln a f x x ==则()10f = 又()1,f x x'=则切线的斜率1k =, 所以函数()f x 在1x =处的切线方程为1y x =-.(2)()2ln f x x ax ax =+-,0x >,则()221ax ax f x x'-+=,令()221t x ax ax =-+,①若0a =,则()22110t x ax ax =-+=>,故()'0f x >,函数()f x 在()0+∞,上单调递增,所以函数()f x 在()0+∞,上无极值点,故0a =不符题意,舍去; ②若0a <,()2211212148t x ax ax a x a ⎛⎫=-+=-+- ⎪⎝⎭,该二次函数开口向下,对称轴14x =,111048t a ⎛⎫=-> ⎪⎝⎭,所以()0t x =在()0+∞,上有且仅有一根0x =()0'0f x =, 且当00x x <<时,()0t x >,()'0f x >,函数()f x 在()00x ,上单调递增; 当0x x >时,()0t x <,()'0f x <,函数()f x 在()0x +∞,上单调递减;所以0a <时,函数()f x 在定义域上有且仅有一个极值点0x =意;③若0a >,()2211212148t x ax ax a x a ⎛⎫=-+=-+- ⎪⎝⎭,该二次函数开口向上,对称轴14x =.(ⅰ)若111048t a ⎛⎫=-≥⎪⎝⎭,即08a <≤,()104t x t ⎛⎫≥≥ ⎪⎝⎭,故()'0f x ≥,函数()f x 在()0+∞,上单调递增,所以函数()f x 在()0+∞,上无极值点,故08a <≤不符题意,舍去; (ⅱ)若111048t a ⎛⎫=-<⎪⎝⎭,即8a >,又()010t =>,所以方程()0t x =在()0+∞,上有两根14a x a =,24a x a=,故()()12''0f x f x ==,且当10x x <<时,()0t x >,()'0f x >,函数()f x 在()10x ,上单调递增; 当12x x x <<时,()0t x <,()'0f x <,函数()f x 在()12x x ,上单调递减; 当2x x >时,()0t x >,()'0f x >,函数()f x 在()2x ,+∞上单调递增; 所以函数()f x 在()0+∞,上有两个不同的极值点,故8a >不符题意,舍去, 综上所述,实数a 的取值范围是0a <.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 24.(1)b =-11 (2)【解析】解:(1)f′(x )=3x 2+2ax +b , 于是,根据题设有,解得或.当时,f′(x)=3x 2+8x -11,Δ=64+132>0,所以函数有极值点; 当时,f′(x)=3(x -1)2≥0,所以函数无极值点.所以b =-11.(2)由题意知f′(x)=3x 2+2ax +b≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 所以F(a)=2xa +3x 2+b≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. 因为x≥0,所以F(a)在a ∈[-4,+∞)上为单调递增函数或为常数函数, ①当F(a)为常数函数时,F(a)=b≥0;②当F(a)为增函数时,F(a)min =F(-4)=-8x +3x 2+b≥0, 即b≥(-3x 2+8x)max 对任意x ∈[0,2]都成立, 又-3x 2+8x =-3(x -)2+≤, 所以当x =时,(-3x 2+8x)max =,所以b≥.所以b 的最小值为.25.(1)(2)【解析】本题考查切线方程和函数的最值问题.考查学生利用导数法解决问题的能力.如果在点可导,则曲线在点()处的切线方程为000()()()y f x f x x x -='-注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不相同的,后者A 必为切点,前者未必是切点.本题的第一文是在点(1,(1))f 处,故直接求解即可;通过对函数求导,分析函数的单调性,寻求函数的最值是常规的解题思路,往往和分类讨论思想结合在一起考查.如本题的第二问,通过函数单调递增的等价性判断参数m 范围.26.(1)()2,8Q --;(2)274. 【分析】(1)利用导数求出函数()3f x x =在点()()1,1P f 处的切线方程,将此切线方程与函数()y f x =的解析式联立,可求出点Q 的坐标;(2)利用图象确定被积函数与被积区间,利用定积分可计算出由函数()y f x =的图象与切线l 围成的封闭图形面积. 【详解】(1)点()1,1P ,()23f x x '=,故()13f '=,所以切线l 的方程为()131y x -=-,即32y x =-.联立332y x y x ⎧=⎨=-⎩,得3320x x -+=,解得2x =-或1x =(舍去),所以点()2,8Q --.(2)由图,设函数()y f x =与切线l 围成的封闭图形面积为S ,则()12342121327322424S x x dx x x x --⎛⎫=⎰-+=-+= ⎪⎝⎭,所以所求面积为274.【点睛】本题考查利用导数求函数的切线方程,同时也考查了利用定积分计算封闭区域的面积,考查计算能力,属于中等题.。
北师大版高中数学2-2第二章《变化率与导数》导数的概念与导数的几何意义习题课 课件
C
.
9 x 4 y 12 0 或 y 0
1 3 3 9 练习 3.⑴如图已知曲线 y x 上的一点 P ( , ) , 3 2 8 求点 P 处的切线方程. 9 2 解:∵ y x ,∴ y | 3 . x 4 2 9 即点 P 处的切线的斜率等于 . 4 ∴在点 P 处的切线方程 9 9 3 是 y (x ) , 8 4 2 即 9 x 4 y 12 0 .
1.导数是函数的瞬时变化率,它是从众多实际问题中 抽象出来的具有相同的数学表达式的一个重要概念,可 以从它的几何意义和物理意义来认识这一概念的实质.
2.求导数值的三个步骤: ⑴求函数值的增量: y f ( x0 x) f ( x0 ) ; f ( x 0 x ) f ( x0 ) y ⑵求平均变化率: 并化简; x x △y ⑶直觉 lim 得导数 f ( x0 ) . △ x 0 △ x 这也是我们自己推导一些导函数的解析式的过程.
y y1 (2 x1 1)(x x1 ) ,又 y1 x1 x1 1,
2
y x1 x1 1 (2x1 1)(x x1 ) ( )
2
又点(, 1 0)在切线上, x1 x1 1 2x1 1 (1 x1 ) ( )( ) 解之得 x1 0, x1 2 ,于是 y1 1或y1 3 则:过(0,1)的切线方程为 y 1 x ,即 x y 1 0 过(-2,-3)的切线方程为 y 3 3( x 2) ,即 3x y 12 0 讲评:本题考查利用导数的几何意义求抛物线的切线方程,注意 点(-1,0)不在抛物线上.
1 2 x
.
练习 1.求下列函数的导函数 1 3 ⑴y x ⑵y x ⑶ y x2 2 x 3 3
最新高中数学 第二章 变化率与导数综合测试 北师大版选修2-2
最新北师大版数学精品教学资料【成才之路】高中数学 第二章 变化率与导数综合测试 北师大版选修2-2时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.曲线y =e x在点A (0,1)处的切线斜率为( ) A .1 B . 2 C .e D .1e[答案] A[解析] 根据导数的几何意义可得,k =y ′|x =0=e 0=1.2.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为( )A .0B .±3C .0或±3D .非以上答案[答案] C[解析] 求出使y ′=0的值的集合,再逐一检验.y ′=3x 2+2ax .令y ′=0,得x =0或x =-23A .由题设x =0时,y =0,故-43a =0,则a =0.且知当x =2,a =-3或x =-2,a =3时,也成立.故选C .3.设f (x )为可导函数,且满足条件lim x →0f-f -x2x=-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A .-1B .-2C .1D .2[答案] B[解析] 因为f (x )为可导函数,且lim x →0f-f -x2x=-1,所以12lim x →0f -f -xx=-1,所以lim x →0f -f -xx=-2,即f ′(1)=-2,所以y =f (x )在点(1,f (1))处的切线斜率为-2.4.运动方程为s =1-t t2+2t 2,则t =2的速度为( )A .4B .8C .10D .12[答案] B[解析] 本题考查导数的物理意义,求导过程应注意对求导公式和求导法则的灵活应用.∵s =1-t t 2+2t 2=1t 2-1t+2t 2=t -2-t -1+2t 2,∴s ′=-2t -3+t -2+4t .∴v =-2×123+122+4×2=8,故选B.5.函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图像是如图所示的一条直线,则y =f (x )的图像的顶点在( )A .第Ⅰ象限B .第Ⅱ象限C .第Ⅲ象限D .第Ⅳ象限 [答案] A[解析] 显然y =f (x )为二次函数,设为f (x )=ax 2+bx +c (a ≠0),则y =f ′(x )=2ax +b .由图像知a <0,b >0.又由已知函数的图像过原点,∴c =0,顶点为(-b 2a ,-b 24a ),因而y=f (x )的顶点在第Ⅰ象限.6.若函数y =exx在x =x 0处的导数值与函数值互为相反数,则x 0的值( )A .等于0B .等于1C .等于12D .不存在[答案] C[解析] y ′=xx -e xxx 2=exx -x 2,当x =x 0时,y ′=e x 0x 0-x 20,y =e x 0x 0.由题意,知y ′+y =0,即e x 0(x 0-1)+e x 0·x 0=0,所以x 0=12.7.(2014·邹城一中月考,9)已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3[答案] A[解析] ∵f (x )=2f (2-x )-x 2+8x -8, ①∴f (2-x )=2f (x )-(2-x )2+8(2-x )-8 =2f (x )-x 2-4x +4. ②将②代入①,得f (x )=4f (x )-2x 2-8x +8-x 2+8x -8.∴f (x )=x 2,y ′=2x .∴y =f (x )在(1,f (1))处的切线斜率为y ′|x =1=2.∴函数y =f (x )在(1,f (1))处的切线方程为y -1=2(x -1),即y =2x -1.8.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2][答案] D[解析] ∵f ′(x )=x 2sin θ+3x cos θ, ∴f ′(1)=sin θ+3cos θ=2sin(θ+π3),∵θ∈[0,5π12],∴sin(θ+π3)∈[22,1],∴f ′(1)∈[2,2].故选D.9.若曲线xy =a (a ≠0),则过曲线上任意一点的切线与两坐标轴所围成的三角形的面积是( )A .2a 2B .a 2C .2|a |D .|a |[答案] C[解析] 设切点的坐标为(x 0,y 0),曲线的方程即为y =ax ,y ′=-a x2,故切线斜率为-a x 20,切线方程为y -a x 0=-ax 20(x -x 0).令y =0得x =2x 0,即切线与x 轴的交点坐标为(2x 0,0);令x =0得y =2a x 0,即切线与y 轴的交点坐标为⎝ ⎛⎭⎪⎫0,2a x 0.故切线与两坐标轴所围成的三角形的面积为12×|2x 0|×⎪⎪⎪⎪⎪⎪2a x 0=2|a |. 10.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[答案] A[解析] 考查导数的应用,求曲线的切线方程问题. 设过(1,0)的直线与y =x 3相切于点(x 0,x 30), 所以切线方程为y -x 30=3x 20(x -x 0), 即y =3x 20x -2x 30,又(1,0)在切线上, 则x 0=0或x 0=32.x 0=0时,由y =0与y =ax 2+154x -9相切得 a =-2564当x 0=32时,由y =274x -274与y =ax 2+154x -9相切得a =-1,所以选A .二、填空题(本大题共5小题,每小题5分,共25分)11.已知曲线y =13x 3+13,则在点P (2,3)的切线方程是________.[答案] 4x -y -4=0[解析] y ′=x 2,当x =2时,y ′=4. ∴切线的斜率为4.∴切线的方程为y -3=4(x -2), 即4x -y -5=0.12.球的半径从1增加到3时,球的体积平均膨胀率为____________. [答案]104π3[解析] ∵Δy =43π×33-43π×13=104π3,∴V ′=Δy Δx =104π32-1=104π3.13.设f (x )是偶函数,若曲线y =f (x )在点(1,f (1))处的切线的斜率为1,则该曲线在点(-1,f (-1))处的切线的斜率为________.[答案] -1[解析] 考查偶函数性质.偶函数图像关于y 轴对称,则曲线上关于y 轴对称的两点的切线也关于y 轴对称,斜率互为相反数.∴斜率为-1.14.已知0<x <14,f (x )=x 2,g (x )=x ,则f ′(x )与g ′(x )的大小关系是________.[答案] f ′(x )<g ′(x )[解析] 由题意,得f ′(x )=2x ,g ′(x )=12x .由0<x <14,知0<f ′(x )<12,g ′(x )>1,故f ′(x )<g ′(x ).15.函数y =cos x ·cos2x ·cos4x 的导数为________. [答案] y ′=cos x sin8xsin 2x[解析] ∵y =cos x ·cos2x ·cos4x = sin x ·cos x ·cos2x ·cos4x sin x =18·sin8xsin x,∴y ′=18⎝ ⎛⎭⎪⎫sin8x sin x ′=18·8sin x ·cos8x -cos x ·sin8x sin 2x =cos8x sin x -cos x ·sin8x8sin 2x . 三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.求下列函数的导数: (1)y =x (x 2+1x +1x3);(2)y =(x +1)(1x-1);[解析] (1)∵y =x (x 2+1x +1x 3)=x 3+1+1x2,∴y ′=3x 2-2x3.(2)∵y =(x +1)(1x-1)=-x 12+x -12,∴y ′=-12x -12-12x -32=-12x·(1+1x ).17.设曲线C :y =x 3-3x 和直线x =a (a >0)的交点为P ,过点P 的曲线C 的切线与x 轴交于点Q (-a,0),求a 的值.[解析] 依题意⎩⎪⎨⎪⎧y =x 3-3xx =a ,解得P (a ,a 3-3a ),y ′=3x 2-3所以过点P 的曲线C的切线方程为:y -(a 3-3a )=(3a 2-3)(x -a )令y =0得切线与x 轴的交点为(2a33a 2-3,0)则有2a 33a 2-3=-a 解得a =±155或a =0,由已知a >0,∴a =155. 18.已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切.求直线l 的方程.[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1,y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21①.对于C 2,y ′=-2(x -2),则与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4②.∵两切线重合,∴⎩⎪⎨⎪⎧2x 1=-x 2--x 21=x 22-4,解得⎩⎪⎨⎪⎧x 1=0x 2=2或⎩⎪⎨⎪⎧x 1=2x 2=0,∴直线l 的方程为y =0或y =4x -4.19.(1)求曲线y =f (x )=x 3-2x 在点(1,-1)处的切线方程; (2)过曲线y =f (x )=x 3-2x 上的点(1,-1)的切线方程.[分析] 要注意(1)(2)中的不同之处,在点(1,-1)处的切线方程即(1,-1)为切点,而过点(1,-1)的切线方程中切点需设出后,再利用导数的几何意义(可利用斜率相等),求出切点坐标后再求切线方程.[解析] (1)由题意f ′(x )=3x 2-2,f ′(1)=1, ∴点(1,-1)处的切线的斜率k =1,其方程为y +1=x -1,即x -y -2=0.(2)设切点为(x 0,y 0),则y 0=x 30-2x 0, 则切点处的导数值f ′(x 0)=3x 20-2;若点(1,-1)为切点,由(1)知切线方程为x -y -2=0;若点(1,-1)不为切点,则 3x 20-2=y 0+1x 0-1(x 0≠1), 即3x 20-2=x 30-2x 0+1x 0-1,∴3x 30-2x 0-3x 20+1=x 30-2x 0. ∴2x 30-3x 20+1=0, 即(x 0-1)(2x 20-x 0-1)=0.∴x 0=1或x 0=-12,其中x 0=1舍去.则切点坐标为(-12,78),∴斜率为f ′(-12)=3×(-12)2-2=-54.∴切线方程为5x +4y -1=0.∴过点(1,-1)的切线方程为x -y -2=0或5x +4y -1=0.[点评] 利用导数求切线方程时要注意:求在点P (x 0,y 0)处的切线方程,与经过点P (x 0,y 0)的切线方程求法不同,后者需要先把切点设出来.20.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=2x 2. (1)求x <0时,f (x )的表达式;(2)令g (x )=ln x ,问是否存在x 0,使得f (x ),g (x )在x =x 0处的切线互相平行?若存在,请求出x 0的值;若不存在,请说明理由.[解析] (1)当x <0时,-x >0,f (x )=-f (-x )=-2(-x )2=-2x 2. (2)若f (x ),g (x )在x 0处的切线互相平行, 则f ′(x 0)=g ′(x 0),且x 0>0, 故f ′(x 0)=4x 0=g ′(x 0)=1x 0,解得x 0=±12.∵x 0>0,∴x 0=12.21.已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ),若x ∈[0,1],f (x )图像上任意一点处切线的斜率为k ,当|k |≤1时,求a 的范围.[解析] ∵f ′(x )=-3x 2+2ax , ∴k =f ′(x )=-3x 2+2ax .由|k |≤1知|-3x 2+2ax |≤1(0≤x ≤1), 即|-3(x -a3)2+a 23|≤1在x ∈[0,1]上恒成立.又f ′(0)=0,①当a3<0,即a <0时,-3+2a ≥-1,即a ≥1.故无解; ②当0≤a3≤1,即0≤a ≤3时,⎩⎪⎨⎪⎧a 23≤1,-3+2a ≥-1,得1≤a ≤3;③当a3>1,即a >3时,-3+2a ≤1得a ≤2,此时无解.综上知1≤a ≤3, ∴a 的范围为[1,3].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高中数学 第二章 变化率与导数 3 计算导数教材习题点拨 北师大
版选修2-2
练习(P40)
1.解:设函数自变量在t=2处改变量为Δt,相应函数值的改变量为
Δy=21g(2+Δt)221g(2)2=21g[4Δt+(Δt)2].
函数f(t)在t=2处的平均变化率ty=21g×ttt2)(4=21g(4+Δt).
函数f(t)在t=2处的导数f′(2)=0limt[21g(4+Δt)]=2g.
所以f′(2)=2g=20(m/s),
它的实际意义是自由下落的物体下落后,在t=2 s时刻的瞬时速度为20 m/s.
2.解:设自变量x的改变量为Δx,相应函数值的改变为Δy=)()(100100100xxxxxxx.
函数在x处的平均变化率:xy=)(100xxx;
函数在x处的导数为y′=2100x.
所以f′(1)=-100,f′(2)=-25,f′(3)=9100.
习题2-3(P41)
A组
1.解:y′=0limxxxfxxf)()(=0limxxxxxxxx)3()(322
=0limxxxxxx236=0limx(6x+1+3Δx)=6x+1.即f(x)=3x2+x的导函数为f′(x)=6x+1.
∴f′(2)=6×2+1=13,f′(-2)=6×(-2)+1=-11,f′(3)=6×3+1=19.
2.解:y′=0limxxxfxxf)()(=0limxxxxx)31(31
=0limxxxxxxxx)()(=0limxxxx21=-21x,即f(x)=x1-3的导函数为f′(x)=21x.
∴f(1)=211=-1,f(1)=2)1(1=-1,f(5)=251=251.
2
3.解:y′=0limxxxfxxf)()(=0limxxxxx)32(3)(2=2,即f(x)=2x-3的导函
数为f′(x)=2.f′(0)=f′(-1)=f′(3)=2.
4.解:设切点为(x0,y0),则过该点切线斜率为f′(x0)=2x0,
所以2x0=2,于是x0=1,y0=x02=1.
所以切点为(1,1),斜率k=2,切线方程为y-1=2(x-1),即2x-y-1=0.
5.解:f′(x)=0limxxxfxxf)()(=0limxxxxx)2()(2=-2
g′(x)=0limxxxgxxg)()(=0limxx)12(1)(2xxx=-2.
导函数的图像如下图.
B组
解:设自变量x的改变量为Δx,相应函数值的改变量为:
Δy=(x+Δx)3-x3=(x+Δx-x)[(x+Δx)2+(x+Δx)x+x2]
=Δx(3x2+3xΔx+Δx2);
函数在x处的平均变化率:
xy
=xxxxxx)33(22=3x2+3xΔx+Δx2;
函数的导函数为y′=0limx(3x2+3xΔx+Δx2)=3x2,即y=x3的导函数为y′=3x2.
STS
费马大定理
300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的
正整数,则不定方程xn+yn=z没有非零整数解.”费马宣称他发现了这个定理的一个真正奇妙
的证明,但因书上空白太小,他写不下他的证明.300多年过去了,不知有多少专业数学家
和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微.这就是纯数学中最
著名的定理——费马大定理.
费马(1601—1665年)是一位具有传奇色彩的数学家,但他最初学习的法律并以此谋生,
后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究.虽然年近30才认真
注意数学,但费马对数论和微积分作出了重要的贡献.他与笛卡儿几乎同时创立了解析几何,
同时又是17世纪兴起的概率论的探索者之一.费马特别爱好数论,提出了许多定理,但费马
只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余
的陆续被后来的数学家所证实.这唯一未被证明的定理就是上面所说的费马大定理,因为是
最后一个未被证明对或错的定理,所以又称为费马最后定理.
费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进
展更快.1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立.1983年一位年轻的
德国数学家法尔廷斯证明了不定方程xn+yn=z只能有有限多组解,他的突出贡献使他在1986
3
年获得了数学界的最高奖之一费尔兹奖.1993年英国数学家威尔斯宣布证明了费马大定理,
但随后发现了证明中的一个漏洞并作了修正.虽然威尔斯证明费马大定理还没有得到数学界
的一致公认,但大多数数学家认为他证明的思路是正确的.毫无疑问,这使人们看到了希望.