外文翻译----LED显示屏的数字电压表
M-830B数字万用表的安装与调试

M-830B数字万⽤表的安装与调试学校代码学号分类号密级本科实训报告院系名称专业名称年级学⽣姓名指导⽼师年⽉⽇M-803B数字万⽤表⾯板布置,它采⽤⼀⽚44脚AME7106⼤规模集成电路芯⽚,以双积分A/D转换器为核⼼,并配以过载保护电路,使之成为⼀台性能优越⼩巧的⼿持式三位半数字多⽤表,可⽤来测量直流和交流电压、直流电流、电阻等参数。
1 M-830B数字万⽤表电路原理图M-830B数字万⽤表电路原理图如图1所⽰,双积分A/D转换器AME7106为44脚集成电路,其引脚功能如表1所⽰,⼆极管VD1型号为1N4007⼀只。
表1 引脚功能图1 M-830B数字万⽤表电路原理图2 M-830B数字万⽤表⼯作原理虽然数字万⽤表种类很多,但基本⼯作原理则是⼤同⼩异。
都是把被测的模拟量转化成数字量显⽰。
所以最关键的是模数转换电路。
它主要由直流数字电压表DVM(Digital Vo1tMeter),它由阻容滤波器、前置放⼤器、模数转换器A/D(Anal0g⼀to—Digital)、发光⼆极管显⽰器LED(LiGht EnittingDiode)或液晶显⽰器LCD(Light Crystal Disdiay)及保护电路等组成。
在数字电压表的基础上再增加交流⼀直流转换器AC/DC、电流⼀电压转换器I/v和电阻⼀电压转换器Ω/V,就构成了数字万⽤表的基本部分。
当然,由于具体结构的不同,功能的强弱不同,每种表还有其各⾃复杂程度不同的特殊附加电路。
3直流电流档、直流电压档、电阻档及交流各档位的⼯作原理数字万⽤表的表头为200mV的双积分式电压表,其输⼊阻抗很⾼。
在电压表头的基础上,⽤电压表头测量电流取样电阻上的电压,可以构成了不同量程的直流电流表。
在电压表头的基础上,⽤电压表头测量串联分压取样电阻上的电压,可以构成了不同量程的直流电压表。
数字万⽤表是有源的,内部具有有源放⼤器。
利⽤运算放⼤器的R/V转换电路,可以构成线性欧姆表。
LED屏安装工程施工方案

LED屏安装工程施工方案前言:LED显示屏安装工程从设备的角度来讲属于机电安装工程,即LED发光设备的安装,其他的相关工程都是为显示屏创造一个安装的基础,同时和周围环境加以协调,其他的相关工程分别有:1)、土建基础工程(含防雷接地)2)、钢结构框架工程3)、外装饰工程4)、强弱电布线及附属设备安装。
LED显示屏土建基础工程是显示屏安装的基本工程,主要使用在户外显示屏工程中作为屏体承载的基座,其功能主要是两个方面(1)将屏体重力均匀承载于地基上,防止屏体沉降。
(2)平衡屏体所受风载,防止屏体倾覆。
土建基础主要由地基部分、承台、钢筋混凝土基础,预埋件、回填土几部分构成。
钢筋混凝土由钢筋龙骨、混凝土构成,混凝土由水泥、沙、碎石子、水按照一定比例均匀混合,又称为砼(Tǒng)。
钢筋类似骨骼,而混凝土就像血肉,这样结合起来达到很高的强度。
作为显示屏所用土建基础工程,一般工期在7天到45天左右。
预埋件是将预先制作的钢结构件在混凝土灌注时一起埋入混凝土中,这样可以为以后的外部构件安装提供坚固的基础,常用的预埋件有预制螺杆、预制钢板等。
防雷接地户外土建基础工程中一般需要附加防雷接地,基本的做法是在地基工程时,用一定规格的扁钢焊接成网格状接地网,将接地网埋入地基中,并且将地基土壤做一定的处理,使之电阻下降达到防雷接地的要求,然后将混凝土中的钢筋与之多点焊接,并且用扁钢多点引出地面,以便和以后的结构进行联接,使整个构件具备防雷接地。
接地电阻的测量一般采用接地电阻测量仪,阻值一般要求小于10(欧姆)。
二、钢结构框架的基本介绍LED显示屏钢结构框架工程是显示屏安装的基本工程,显示屏部件通过钢结构框架将屏体牢固拼接成为一个整体,并且将屏体和建筑主体联接在一起,承载屏体的重量和所受的其他外力,同时还是其他设备、外装饰的安装基础。
钢结构框架主要的构成是钢柱支撑(主要用于立柱结构)、底座(主要用于落地安装)、屏体主框架、联接紧固件。
AD课程设计-- 八路模拟量转换为数字量电路设计

微机原理课程设计说明书11 级电气工程及其自动化专业 972 班级题目八路模拟量转换为数字量电路设计2011年12 月26 日摘要随着电子技术的发展,计算机在现代科学技术的发展中起着越来越重要的作用。
多媒体技术、网络技术、智能信息处理技术、自适用控制技术、数据挖掘与处理技术等都离不开计算机。
本课程设计是基于微机原理与接口技术的简单应用。
运用所学的微机原理和接口技术知识完成ADC0809的采样,即基于0806最小系统将模拟电压表通过ADC0809的采样完成模拟量转换成的数字量并显示出来。
通过硬件与软件的结合,用我们刚刚学过的汇编语言编写程序模拟分析了ADC0809的芯片功能和硬件配置,结合硬件和软件阐述了该系统的工作原理,得出了一种简单实用的ADC0809的采样即实现数字电压表功能系统的硬件、软件电路设计方案。
该系统能测量0~5V的电压,结果显示于数码管上。
关键字:ADC0809、8086系统、频率发生器前言 (4)1.题义分析与解决方案 (5)1.1题义与需求分析 (5)1.2解决问题的方法与思路 (5)1.2.1硬件部分 (5)1.2.2软件部分 (5)2.硬件设计 (5)2.1电路原理 (5)2.2 8086最小系统模块 (6)2.3可编程并行接口芯片8255A (7)2.3.1 8255A的作用 (7)2.3.2 8255A的功能分析及技术参数 (7)2.4 模数转换芯片ADC0809 (9)2.4.1 ADC0809的内部结构和外部引脚 (9)2.5 模拟量( 0~5V)电压输出 (11)2.6 频率发生器 (11)2.7 七段LED显示器 (12)2.7.1 七段LED显示器的作用、功能分析及结构 (12)2.8 硬件总逻辑图及说明 (13)3.汇编程序设计 (14)3.1控制程序设计思路说明 (14)3.2 程序流程图 (15)4.ADC0809采样系统的设计总结 (21)附录: (23)1、8086最小系统框图 (23)2、0809功能模块框图: (24)3、接口与显示模块框图 (24)4. 程序流程图 (25)前言电子课程设计是电子技术学习中非常重要的一个环节,是将理论知识和实践能力相统一的一个环节,是真正锻炼学生能力的一个环节。
单片机应用技术项目教程(C语言版)全书教案完整版课程设计整本书电子教案单元设计

项目一 发光二极管LED控制课时(学时)8学时终极目标1.能完成单片机最小系统和输出电路设计;2.能应用C语言程序完成单片机输入输出控制,实现对LED控制的设计、运行及调试。
促成目标1.了解AT89S52单片机结构;2.掌握AT89S52单片机的引脚功能;3.掌握AT89S52单片机最小系统电路设计;4.掌握C语言基本构成和基本语句;5.会利用单片机I/O口实现点亮一个LED和控制LED闪烁。
教学重点1.AT89S52单片机引脚功能;2.AT89S52单片机最小系统电路设计;3.C语言基本构成和基本语句;4.LED闪烁控制设计与实现。
教学难点 1. AT89S52单片机的引脚功能;2. AT89S52单片机最小系统电路设计;3. LED闪烁控制设计与实现。
教学内容一、工作模块1点亮一个LED;1.AT89S52单片机结构;2.AT89S52单片机引脚功能;3.AT89S52单片机最小系统。
二、工作模块2 LED闪烁控制设计与实现;1.C语言程序的基本构成;2.C语言基本语句。
教学手段多媒体演示及实训练习相结合教学方法设计1.项目驱动2.教学做一体项目二 LED循环点亮控制课时(学时)10学时终极目标 1.能完成单片机的输入输出电路设计;2.能应用C语言程序完成单片机输入输出控制,实现对LED循环点亮控制的设计、运行及调试。
促成目标 1. 掌握P0、P1、P2和P3功能及应用技能;2. 掌握内部数据存储器的地址分配及特殊功能寄存器;3. 掌握C语言数据类型、常量和变量;4. 会利用单片机I/O口实现开关控制LED循环点亮和步进机电控制。
教学重点 1. AT89S52单片机P0、P1、P2和P3功能;2.内部数据存储器的地址分配及特殊功能寄存器;3.C语言数据类型、常量和变量;4.开关控制LED循环点亮。
教学难点 1.电路图的设计;2.51单片机的内存空间地址分配。
教学内容 一、工作模块3 LED循环点亮控制模块1.工作任务要求;2. LED循环点亮电路设计;3. LED循环点亮程序设计;4. 并行I/O端口电路介绍。
许继PZ61直流屏的结构与使用

FXJ-21电池电压巡检模块:
• 依据设定的电池检测只数, 轮流切换相应光继电器,将 单只电池的电压引入模块, 通过运放处理后送入AD进行 模数转换,AD转换完成后以 中断的方式通知CPU读出数 据,CPU依据读出的数据计 算出电池电压,并与设定的 过压值及欠压值比较,连续 3次发生越限时将产生过压 或欠压的报警信息。
(2)负接地可能导致断路器的拒跳闸
• 如图1所示,当图中的B点、E点同时接地,这B、E点 通过地连通后,将中间继电器KM短接,此时如果系 统发生事故,保护动作,由于中间继电器KM被短接 ,KM不动作,断路器不会跳开,产生拒动,使事故 越级扩大。
• 从以上分析看出,直流系统如果仅仅是1点接地,对 二次回路不会造成事故,如果有两点接地,就可能发 生断路器误动或拒动。就动作的实际情况看,当直流 系统监测回路发出预告信号报警,显示该系统接地, 可以断定,直流系统的接地故障已经造成了断路器可 能发生误跳或拒跳的事故隐患,应立即排除。
FZJ-11绝缘监测装置:
技术特点 FZJ-11绝缘监测装置的主要功能是对直流系统中的母线 c.具有电压异常、绝缘降低、装置失电报警功能; a.操作简单直观,利用面板上2个键的简单操作即可完成 的绝缘状况进行长期自动监测,根据设定值对测量的数据进 d.正、负母线同时接地时,能准确测出正负母线对地 各种参数设置; 行实时处理,并与后台监控装置进行通信,保证直流系统安 电阻; b.实时数字化显示母线电压、正负母线对地电压、正负母 全可靠地运行。 e.配备RS-485通讯口。 线对地绝缘电阻;
硅堆调压装置的工作原理:
• 降压硅堆均分为4节(AS1~AS4)串联而成,在每节硅堆两 端并联调压执行继电器(K1~K4)的常闭触点,若驱动执行 继电器动作,令其触点断开,使得该节硅堆被串入线路, 降压单元的压降增大;反之,若执行继电器返回,其触点 闭合,使得串入线路中的硅堆数量减少,降压单元的压降 减小。 • 维护旁路开关是在硅堆降压单元维护更换时,为控制直 流母线提供一个旁路直通回路,保证控制直流母线连续不 间断供电。
THHE2型高性能电工技术实验台介绍

9.6 THHE-2型高性能电工技术实验台THHE-1型高性能电工技术实验台是根据目前“电工技术”、“电工学”、“电子技术”教学大纲和实验大纲的要求而设计的,由实验屏、实验桌和若干实验组件挂箱等组成。
9.6.1 实验屏操作、使用说明实验屏为铁质喷塑结构,铝质面板。
屏上固定有交流电源的起动控制装置、三相电源电压指示切换装置、低压直流稳压电源、恒流源、功率函数信号发生器、定时器兼报警记录仪和数模双显直流电压表、电流表以及数模双显交流电压表、电流表、真有效值交流毫伏表和功率表等。
根据不同实验项目的特点,配备两种不同的实验连接线。
强电部分采用高可靠护套结构手枪插连接线,弱电部分也采用高可靠护套结构手枪插连接线,不存在任何触电的可能。
两种导线都只能配合相应内孔的插座,不能混插,大大提高了实验的安全及合理性。
1.交流电源的启动(1)实验台的左后侧有一根接有三相四芯插头的电源线,将三相四芯插头接通三相四芯380V交流市电,把实验屏左侧的漏电断路器拨至ON,这时,屏左侧的三相四芯插座即可输出三相380V交流电,右侧的三芯双联电源插座可输出220V的交流电压。
三相四芯插座可用来串接另一实验台的电源插头,但最多只能依次串接三台实验台。
本装置适用于三相四线制和三相五线制电源。
(2)开启钥匙式电源开关,“停止”按钮灯亮(红色),实验台左侧面单相三芯电源插座有220V的交流电压输出。
将实验台左侧面三相自耦调压器的手柄按逆时针方向旋转至零位,将“电压指示切换”开关拨至“三相电网输入”侧,三只电压表(0~450V)指示出三相电源线电压之值。
(3)按下“启动”按钮(绿色),红色按钮灯灭,红、绿色按钮灯亮,同时可听到屏内交流接触器的瞬间吸合声,面板上与U1、V1和W1相对应的黄、绿、红三个LED指示灯亮。
至此,实验屏启动完毕。
2.三相可调交流电源输出电压的调节将“电压指示切换”开关置于“三相调压输出”侧,三只电压表指针回到零位。
PMC-D723X三相数字式多功能测控电表用户说明书_V1.0_140103
PMC-D723X三相数字式多功能测控电表用户说明书(PMC-D723I/D723V/D723M)(版权所有,翻版必究)危险和警告本设备只能由专业人士进行安装,对于因不遵守本手册的说明所引起的故障,厂家将不承担任何责任。
触电、燃烧或爆炸的危险⏹设备只能由取得资格的工作人员才能进行安装和维护。
⏹对设备进行任何操作前,应隔离电压输入和电源供应,并且短路所有电流互感器的二次绕组。
⏹要用一个合适的电压检测设备来确认电压已切断。
⏹在将设备通电前,应将所有的机械部件,门和盖子恢复原位。
⏹设备在使用中应提供正确的额定电压。
不注意这些预防措施可能会引起严重伤害。
本说明书版权属深圳市中电电力技术股份有限公司所有,未经书面许可,不得复制,传播或使用本文件及其内容,违犯者将要对损失负责。
深圳市中电电力技术股份有限公司保留所有版权。
我们已经检查了本手册关于描述硬件和软件保持一致的内容。
由于不可能完全消除差错,所以我们不能保证完全的一致。
本手册中的数据将定期审核,并在新一版的文件中做必要的修改,欢迎提出修改建议。
以后版本中的变动不再另行通知。
目录1装置简介 (1)1.1概述 (1)1.2产品功能 (1)2技术指标 (2)3安装与接线 (5)3.1安装图 (5)3.2端子图 (5)3.3接线原理图 (6)3.4端子接线 (7)4面板操作 (9)4.1面板显示 (9)4.2按键说明 (9)4.3显示界面 (10)4.4液晶自检 (12)4.5参数设置 (12)5功能介绍 (18)5.1基本测量 (18)5.2电能计量 (19)5.3开关量监视 (19)5.4继电器输出 (20)5.5AO输出功能 (20)5.6事件顺序记录(SOE) (20)6常见故障分析 (21)7质量保证 (22)7.1质量保证 (22)7.2质保限制 (22)8附图 (23)9联系我们 (24)1 装置简介1.1 概述PMC-D723X系列三相数字式测控电表,以工业级微处理器为核心,处理速度高,具有很高的性价比。
单片机毕业设计有哪些
单片机毕业设计有哪些单片机毕业设计有哪些单片机类毕业设计题目有哪些呢?下面是由小编为大家带来的关于单片机毕业设计题目汇总,希望能够帮到您!单片机毕业设计题目1. 电子时钟的设计2. 全自动节水灌溉系统--硬件部分3. 数字式温度计的设计4. 温度监控系统设计5. 基于单片机的语音提示测温系统的研究6. 简易无线电遥控系统7. 数字流量计8. 基于单片机的全自动洗衣机9. 水塔智能水位控制系统10. 温度箱模拟控制系统11. 超声波测距仪的设计12. 基于51单片机的LED点阵显示屏系统的设计与实现16×16点阵显示屏13. 基于AT89S51单片机的数字电子时钟14. 基于单片机的步进电机的控制15. 基于单片机的交流调功器设计16. 基于单片机的数字电压表的设计17. 单片机的数字钟设计18. 智能散热器控制器的设计19. 单片机打铃系统设计20. 基于单片机的交通信号灯控制电路设计21. 基于单片机的电话远程控制家用电器系统设计22. 基于单片机的安全报警器23. 基于单片机的八路抢答器设计24. 基于单片机的超声波测距系统的设计25. 基于MCS-51数字温度表的设计26. 电子体温计的设计27. 基于AT89C51的电话远程控制系统28. 基于AVR单片机幅度可调的DDS信号发生器29. 基于单片机的数控稳压电源的设计30. 基于单片机的室内一氧化碳监测及报警系统的研究31. 基于单片机的空调温度控制器设计32. 基于单片机的可编程多功能电子定时器33. 单片机的数字温度计设计34. 红外遥控密码锁的设计35. 基于51单片机的语音识别系统设计36. 家用可燃气体报警器的设计37. 基于数字温度计的多点温度检测系统38. 基于凌阳单片机的语音实时采集系统设计39. 基于单片机的数字频率计的设计40. 基于单片机的数字电子钟设计41. 设施环境中温度测量电路设计42. 汽车倒车防撞报警器的设计43. 篮球赛计时记分器44. 基于单片机的家用智能总线式开关设计45. 设施环境中湿度检测电路设计46. 基于单片机的音乐合成器设计47. 设施环境中二氧化碳检测电路设计48. 基于单片机的水温控制系统设计49. 基于单片机的数字温度计的设计50. 基于单片机的火灾报警器51. 基于单片机的红外遥控开关设计52. 基于单片机的电子钟设计53. 基于单片机的红外遥控电子密码锁54. 大棚温湿度自动监控系统55. 基于单片机的电器遥控器的设计56. 单片机的语音存储与重放的研究57. 基于单片机的电加热炉温度控制系统设计58. 红外遥控电源开关59. 基于单片机的低频信号发生器设计60. 基于单片机的呼叫系统的设计61. 基于PIC16F876A单片机的超声波测距仪62. 基于单片机的密码锁设计63. 单片机步进电机转速控制器的设计64. 由AT89C51控制的太阳能热水器65. 防盗与恒温系统的设计与制作66. AT89S52单片机实验系统的开发与应用67. 基于单片机控制的数字气压计的设计与实现68. 智能压力传感器系统设计69. 智能定时器70. 基于单片机的智能火灾报警系统71. 基于单片机的电子式转速里程表的设计72. 公交车汉字显示系统73. 单片机数字电压表的设计74. 精密VF转换器与MCS-51单片机的接口技术75. 基于单片机的居室安全报警系统设计76. 基于89C2051 IC卡读/写器的设计77. PC机与单片机串行通信设计78. 球赛计时计分器设计79. 松下系列PCL五层电梯控制系统设计80. 自动起闭光控窗帘设计81. 单片机控制交通灯系统设计82. 基于单片机的电子密码锁83. 基于51单片机的多路温度采集控制系统84. 点阵电子显示屏--毕业设计85. 超声波测距仪--毕业设计86. 单片机对玩具小车的智能控制毕业设计论文87. 基于单片机控制的电机交流调速毕业设计论文88. 单片机智能火灾报警器毕业设计论文89. 基于单片机的锁相频率合成器毕业设计论文90. 单片机控制的数控电流源毕业设计论文91. 基于单片机的数字显示温度系统毕业设计论文92. 单片机串行通信发射部分毕业设计论文93. 基于单片机控制直流电机调速系统毕业设计论文94. 单片机控制步进电机毕业设计论文95. 基于MCS51单片机温度控制毕业设计论文96. 基于单片机的自行车测速系统设计97. 单片机汽车倒车测距仪98. 基于单片机的数字电压表99. 单片机脉搏测量仪100. 单片机控制的全自动洗衣机毕业设计论文101. 基于单片机的电器遥控器设计102. 单片机控制的微型频率计设计103. 基于单片机的音乐喷泉控制系统设计104. 等精度频率计的设计105. 自行车里程,速度计的设计106. 基于单片机的数字电压表设计107. 自行车车速报警系统108. 大棚仓库温湿度自动控制系统109. 自动剪板机单片机控制系统设计110. 单片机电器遥控器的设计111. 基于单片机技术的自动停车器的`设计112. 基于单片机的金属探测器设计113. ATMEIL AT89系列通用单片机编程器的设计114. 单片机水温控制系统115. 基于单片机的IC卡智能水表控制系统设计116. 基于MP3格式的单片机音乐播放系统117. 节能型电冰箱研究118. 基于单片机控制的PWM调速系统119. 交流异步电动机变频调速设计120. 基于单片机的数字温度计的电路设计121. 基于Atmel89系列芯片串行编程器设计122. 基于MCS-51通用开发平台设计123. 基于单片机的实时时钟124. 用单片机实现电话远程控制家用电器125. 中频感应加热电源的设计126. 家用豆浆机全自动控制装置127. 基于ATmega16单片机的高炉透气性监测仪表的设计128. 用单片机控制的多功能门铃129. 基于8051单片机的数字钟130. 红外快速检测人体温度装置的设计与研制131. 三层电梯的单片机控制电路132. 交通灯89C51控制电路设计133. 基于单片机的短信收发系统设计――硬件设计134. 大棚温湿度自动控制系统135. 串行显示的步进电机单片机控制系统136. 微机型高压电网继电保护系统的设计137. 基于单片机mega16L的煤气报警器的设计138. 智能毫伏表的设计139. 基于单片机的波形发生器设计140. 基于单片机的电子时钟控制系统141. 火灾自动报警系统142. 基于PIC16F74单片机串行通信中继控制器143. 遥控小汽车的设计研究144. 基于单片机对氧气浓度检测控制系统145. 单片机的数字电压表设计146. 基于单片机的压电智能悬臂梁振动控制系统设计147. 单片机的打印机的驱动设计148. 单片机音乐演奏控制器设计149. 自动选台立体声调频收音机150. 直流数字电压表的设计151. 具有红外保护的温度自动控制系统的设计152. 基于单片机的机械通风控制器设计153. 音频信号分析仪154. 单片机波形记录器的设计155. 公交车站自动报站器的设计156. 基于单片机的温度测量系统的设计157. 龙门刨床的可逆直流调速系统的设计158. 智能型充电器的电源和显示的设计159. 80C196MC控制的交流变频调速系统设计160. 步进电机运行控制器的设计161. 自动车库门的设计162. 家庭智能紧急呼救系统的设计163. 单片机病房呼叫系统设计164. 电子闹钟设计165. 电子万年历设计166. 定时闹钟设计167. 计算器模拟系统设计168. 数字电压表设计169. 数字定时闹钟设计170. 数字温度计设计171. 数字音乐盒设计172. 智能定时闹钟设计173. 电子风压表设计174. 8×8LED点阵设计175. 可编程的LED(16×64)点阵显示屏176. 无线智能报警系统177. 温湿度智能测控系统178. 单片机电量测量与分析系统179. 多通道数据采集记录系统180. 单片机控制直流电动机调速系统181. 步进电动机驱动器设计182. DS18B20温度检测控制183. 6KW电磁采暖炉电气设计184. 基于电流型逆变器的中频冶炼电气设计185. 新型电磁开水炉设计186. 新型洗浴器设计187. 中频淬火电气控制系统设计188. 中型电弧炉单片机控制系统设计189. 基于单片机的电火箱调温器190. LCD数字式温度湿度测量计191. 单片机与计算机USB接口通信192. 万年历的设计193. 基于单片机的家电远程控制系统设计194. 超声波测距器设计195. 多路温度采集系统设计196. 交通灯控制系统设计197. 数字电容表的设计198. 100路数字抢答器设计199. 单片机与PC串行通信设计200. 基于DS18B20温度传感器的数字温度计设计201. 基于单片机的大棚温、湿度的检测系统202. 智能型客车超载检测系统的设计203. 语音控制小汽车控制系统设计204. 万年历可编程电子钟控电铃205. 基于单片机的步进电机控制系统206. 基于MCS-51单片机温控系统设计的电阻炉207. 基于单片机89C52的啤酒发酵温控系统208. 基于单片机的温度采集系统设计209. PIC单片机在空调中的应用210. 列车测速报警系统211. 多点温度数据采集系统的设计212. 遥控窗帘电路的设计213. 基于单片机的数字式温度计设计214. 87C196MC单片机最小系统单板电路模板的设计与开发215. 基于87C196MC交流调速实验系统软件的设计与开发216. 基于87C196MC交流调速系统主电路软件的设计与开发217. 基于80C196MC交流调速实验系统软件的设计与开发218. 基于单片机的水位控制系统设计219. 基于单片机的液位检测220. 基于单片机的定量物料自动配比系统221. 智能恒压充电器设计222. 单片机的水温控制系统223. 基于单片机的车载数字仪表的设计224. 基于单片机的室温控制系统设计225. 基于MAX134与单片机的数字万用表设计226. 基于单片机防盗报警系统的设计227. 18B20多路温度采集接口模块228. 基于单片机的乳粉包装称重控制系统设计229. 基于单片机的户式中央空调器温度测控系统设计230. 步进电机实现的多轴运动控制系统231. IC卡读写系统的单片机实现232. 单片机电阻炉温度控制系统设计233. 单片机控制PWM直流可逆调速系统设计234. 单片机自动找币机械手控制系统设计235. 基于89C52的多通道采集卡的设计236. 基于AT89C51单片机控制的双闭环直流调速系统设计237. 单片机控制的PWM直流电机调速系统的设计238. 基于单片机的电阻炉温度控制系统设计239. 公交车报站系统的设计240. 智能多路数据采集系统设计241. 基于单片机控制的红外防盗报警器的设计242. 篮球比赛计时器设计243. 超声波测距仪的设计及其在倒车技术上的应用244. 汽车侧滑测量系统的设计245. 自动门控制系统设计246. 基于51单片机的液晶显示器设计247. 基于AT89C51单片机的电源切换控制器的设计248. 基于单片机的普通铣床数控化设计249. 基于AT89C51单片机的号音自动播放器设计250. 基于单片机的玻璃管加热控制系统设计。
简易数字万用表设计
简易数字万用表设计辽宁工业大学单片机原理及接口技术课程设计(论文)题目:简易数字万用表院(系):电气工程学院专业班级:测控技术与仪器学号: 090301020学生姓名:王英会指导教师:起止时间:2012。
6。
18-2012。
6.29课程设计(论文)任务及评语院(系):电气工程学院教研室: 测控技术与仪器注:成绩:平时20%论文质量60% 答辩20%以百分制计算摘要本课题介绍了一种基于单片机的简易数字电压表的设计.该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块.A/D转换主要由芯片ADC0804来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。
数据处理则由芯片89S52来完成,其负责把ADC0804传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;此外,它还控制着ADC0804芯片工作.该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。
此数字电压表可以测量0—5V的1路模拟直流输入电压值,并通过一个四位一体的7段数码管显示出来。
关键字:单片机;数字电压表;A/D转换; 80S52;ADC0804目录第1章绪论.................................... 错误!未定义书签。
第2章课程设计的方案. (1)2。
1概述 .................................... 错误!未定义书签。
2.2总体方案比较 ............................. 错误!未定义书签。
第3章硬件设计. (11)3.1电压采集 (4)3.2电流采集 (5)3.2电阻采集 (6)第4章软件设计 (7)4。
1程序设计总方案 (7)4。
2系统子程序设计 (8)第5章误差分析 (9)第6章课程设计总结 (10)参考文献 (11)第1章绪论社会的发展、科技的进步,离不开电子产业的推动。
基于FPGA的数字电压表设计
基于FPGA数字电压表设计目录1系统设计 (3)1.1 控制模块方案的比较 (3)1.2 A/D转换方案的比较 (4)1.3 显示方案的比较 (4)1.4 总体方案设计 (5)1.5 系统的基本原理 (5)2 单元电路设计 (6)2.1 A/D转换部分 (6)2.1.1 ADC0809工作原理 (6)2.1.2 ADC0809工作时序 (7)2.1.3 档位控制电路 (8)2.2 FPGA功能模块的设计 (8)2.2.1 码制变换模块 (8)2.2.2 显示控制及驱动模块 (9)3 软件设计 (9)3.1 开发软件及编程语言简介 (9)3.2 程序流程图 (9)4 系统测试 (10)4.1 测试仪器清单 (10)4.2 测试及误差计算 (10)参考文献 (11)附录1 程序清单 (11)1 系统设计1.1控制模块方案的比较方案一:采用3位半数字电压表。
采用此方案电路结构简单,易于实现且易于维护。
它的核心器件是一个双积分式A/D转换,双积分式DVM属于V—T变换式,其基本原理是在一个测量周期内,首先将被测电压UX加到积分器的输入端,在确定的时间内进行积分,也称定时积分;然后切断UX,在积分器的输入端加与UX极性相反的电压UR,由于UR一定,所以称为定值积分,但积分方向相反,直到积分输出达到起始电平为止,从而将UX转换成时间间隔进行测量。
只要用计数器累计时间间隔内的脉冲数,即为UX之值。
其原理方框图如图1.1.1所示。
图1.1.1 3位半电压表原理图方案二:采用单片机为控制核心。
目前单片机技术比较成熟,功能也比较强大,配合一定的外围电路可实现数字电压表,原理图如图1.1.2所示。
输入信号经AD转换器转换后送到单片机进行数据处理,系统根据不同电压信号计算出不同的数值,并将其显示出来。
采用这种方案优点是呆以依赖地成熟的单片机技术、运算功能较强、软件编程灵活、自由度大、设计成本也较低,能较准确地测量输入电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)外文资料翻译学院(系):电子电气工程学院专业:电气工程及其自动化姓名:学号:外文翻译:/PROJECTS/(用外文写)TEST/014/INDEX.HTM 附件:1.外文资料翻译译文;2.外文原文。
指导教师评语:所选文献与课题密切相关,翻译字数符合要求,译文意思与原文基本符合,语句较通顺,反映作者已具备一定的外文文献阅读与翻译能力。
签名:年月日附件1:外文资料翻译译文LED显示屏的数字电压表来源:智能工具包1 引言这是一个很容易建立并且非常准确和有用的数字电压表。
它被设计成一个面板仪表,可用于直流电源供应器或其他需要有一个准确电压指示的地方。
该电路采用的ADC(模拟数字转换器)集成电路CL7107由Intersil公司生产。
该IC采用40引脚的情况下整合了所有必要的电路模拟信号转换为数字,可以直接驱动4个7段LED显示。
在IC中内置的电路是数字转换器,比较器,一个时钟,一个解码器和一个7段LED显示驱动器模拟。
在这里它描述了一个可以显示在0-1999电压范围的直流电压电路。
前面2 LED显示屏数字电压表技术规格 - 特征(1) 电源电压:.............+ / - 5V(对称)。
(2) 电源要求:.............200mA(最大)。
(3) 测量范围:.............+ / - 0-1,999V在四个范围。
(4) 精度:.................0.1%。
(5) 特征:- 小尺寸。
- 简易建筑。
- 成本低。
- 简单的调整。
- 易于读取距离。
- 很少的外部元件。
3 数字电压表的基本原则为了了解电路的运作的原则,说明ADC的集成电路工程是必要的。
该集成电路具有以下非常重要的特点:- 准确性。
- 抗干扰性。
- 无需要一个采样保持电路。
- 它有一个内置的时钟。
- 它不需要精度高的外部元件。
一个模拟数字转换器(ADC),从现在起更好的称为双斜率转换器或集成转换器。
这种类型的转换器通常优于其他类型,因为它提供了准确,简洁的设计和它可以将相对不重要的噪音变得非常可靠。
如果将电路分两个阶段描述,该电路的操作将更好的理解。
在第一阶段的输入集成电压和最后阶段的输出集成电压中有一个电压与输入电压成正比。
在预设的时间结束时,积分将到达内部基准电压以及输出电路会逐渐降低直至达到零参考电压水平。
第二个阶段就是所谓的负斜率时期,其持续时间由第一阶段积分器输出而定。
作为第一个操作时间是固定的,第二个变量的长度就可以比较两个这样的输入电压,其实是相对于内部参考电压,其结果是编码,然后发送到显示。
示意图(固定16-11-09)7段显示器引出线MAN6960这一切听起来很容易,但实际上它是一系列非常复杂的操作,这些都是由ADC集成电路作出了很少的外部元件,帮助它们用来配置工作的电路。
详细的电路的工作原理如下。
为了进行测量,需要将电压施加于电路的1和2点,最后通过电路的R3,R4和C4应用到集成电路的引脚30和31。
从下图你可知这是该集成电路的输入(分别为高与低)。
R1电阻的C1一起用来设置内部振荡器(时钟),该设置约48Hz。
在这个时钟速率大约有三个不同的每秒读数。
连接集成电路引脚33和34之间的电容已被选定,以弥补由内部参考电压带来的误差,并保持稳定的显示。
电容C3和电阻R5在一起的电路是输入电压的集成电路,同时它可避免任何使电路更快的分裂输入电压,从而使错误的可能性大大减少进而使电路更稳定。
在没有输入电压时电容器C5强迫仪器显示为零。
当输入为零时电阻R2和P1一起用来调整仪器在设置过程中显示为零。
电阻R6的控制电流允许流经显示,以便使电路在没有损坏的前提下显示充分的亮度。
至于我们上面已经提到的芯片它能够驱动4个共阳极LED显示屏。
这三个最右边的显示器相连,使他们可以显示所有从0到9的数字,而从左边第一个只能显示数字1,当电压为负“-”的时候。
整个电路工作,从对称ρ5伏直流电电源,这在引脚1(+5V)申请,21(0V),26(-5V)集成电路。
背面4 数字电压表印刷电路板的加工首先让我们考虑建立一个印刷电路板上的电子电路的基础知识。
该印刷电路板是由薄绝缘铜的导电复合材料薄层形成,这样以形成电路之间的各组成部分的必要的导体。
一个设计完善的印刷电路板是非常可取的,因为它大大加快了加工,并大大减少了决策失误的可能性。
为了保护印刷电路板在存储过程中被氧化和保证它到达你所要求的完美的条件,在生产过程中将铜镀锡的同时起表面还要覆盖一层特殊的漆,这样不仅防止了它被氧化,也使焊接更容易。
焊接的部件,印刷电路板是建立你的电路的唯一的方式和你在做板时很大程度上取决了你的成功或失败。
这项工作也并不是很困难,如果你坚持有一些规则你应该没有问题。
在你使用电烙铁时,其功率不应超过25瓦。
它的尖应该是好的,并且必须时刻保持清洁。
为此我们特地准备了一特制海绵并使其保持潮湿,这样可以不时擦拭热烙铁尖,从而去除积累在它上面的残渣。
如果烙铁尖不能清洗或更换,请勿用文件或砂纸弄脏或磨损其尖部。
在市场上有许多不同类型的焊接剂,你应该选择一个优质的一个在其核心包含必需的流量的焊接剂,以保证每次焊接时都能完美的接合。
不使用助焊剂除了在你的焊接剂里已含有助焊剂。
太多的流量可能会导致许多问题,也是电路故障的主要原因之一。
但如果您必须使用额外的流量,因为它是在你不得不将铜线镀锡的情况下,将起彻底清除干净后你完成了你的工作。
为了焊接组件正确,您应该执行下列操作:- 用一小块砂纸清洁清洁组件。
- 弯曲组件使它们之间有一合适的距离并插入在印刷电路板中的正确地位组成部分。
- 你有时可能会发现比起平常还会有重计部分,它将过于厚而不能进入个人电脑印刷电路板的孔。
在这种情况下使用的小型钻孔略有放大。
不要使孔太大,因为这将会使焊接困难。
安置部分印刷电路板尺寸:77,6毫米× 44,18毫米或35%的范围内做拿着热铁将其尖端放在组件的一角上,同时将焊锡丝末梢放在尖端的一个点上。
烙铁头必须触及略高于印刷电路板的地方。
当焊锡丝开始融化和流动等待它均匀覆盖孔周围的区域和通量疖并且焊料从下面流出。
整个过程不应超过5秒。
清除烙铁,让焊接剂自然冷却不吹,或移动组件。
如果一切处理得当则表面联合处有一个光明的金属质感,其边缘应该是平滑的并且有一轨道面。
如果焊料看起来暗淡无光,有裂痕的,或有一个气泡的形状,那么你虚焊了和你应该清除焊接剂(用泵,或焊芯)然后重做它。
注意不要过热的轨道,因为它是很容易从其电路板上解除从而损坏电路板。
在你焊接一个敏感元件时,很好的做法是用一个长鼻子钳子夹着电路板组件的边缘进行热转移但是那样容易损坏组件。
确保你不使用过多的焊料是必需的,因为你正在冒着毗邻轨道短路的风险,特别是如果他们都非常接近时。
当你完成你的工作时,切断组件的多余部分和用适当的溶剂来彻底清除可能还留在电路板上的助焊剂残留物。
更换的电阻按照下表:0 - 2V............ R3 = 0欧姆1%0 - 20V........... R3 = 1.2千欧1%0 - 200V.......... R3 = 12千欧1%0 - 2000V......... R3 = 120千欧1%当您完成所有的电路板上焊接和您确信一切正常,可以插入在其位芯片。
该IC是CMOS类型于是对静电非常敏感。
它有铝箔包裹以防止静电放电,并应小心处理,以免损坏它。
尽量避免用你的手接触引脚,并且保持地面电路和你的身体电位在你插入的位置。
电路连接到一个合适的电源ρ5伏直流电上,开启电源。
在光显示区应立即形成一个数字。
短路输入(0V)和调整微调小屏幕显示,直到完全去掉0。
零件清单R1=180k P1=2万多转微调R2=22k U1=ICL7107R3=12k LD1,2,3,4=MAN6960共阳极LED显示屏R4=1MR5=470kR6=560 OhmC1=100pFC2,C6,C7=100nFC3=47nFC4=10nFC5=220nF5 故障检查简介检查您可能造成的虚焊,跨越邻近轨道或助焊剂残留物的桥梁工作,通常会造成问题。
再次检查所有的电路和外部连接,看看是否有一个错误。
看是否有任何组件丢失或错误的地方插入:- 确保所有的两极分化组件已被焊接正确。
- 确保供应具有正确的电压,以正确的方式连接到你的电路上。
- 检查您的故障或损坏的部件项目。
样品电源1 样品电源26 结论一个配备自动检查和校准的电压表减少了实验所校正的必要,因为它是一个偶尔为了更好的参考电压而校正的参考单元。
附件2:外文原文Led display digital V oltmetersource: Smart Kitfront sideCopyright of this circuit belongs to smart kit electronics. In this page we will use this circuit to discuss for improvements and we will introduce some changes based on original schematicGeneral DescriptionThis is an easy to build, but nevertheless very accurate and useful digital voltmeter. It has been designed as a panel meter and can be used in DC power supplies or anywhere else it is necessary to have an accurate indication of the voltage present. The circuit employs the ADC (Analogue to Digital Converter) I.C. CL7107 made by INTERSIL. This IC incorporates in a 40 pin case all the circuitry necessary to convert an analogue signal to digital and can drive a series of four seven segment LED displays directly. The circuits built into the IC are an analogue to digital converter, a comparator, a clock, a decoder and a seven segment LED display driver. The circuit as it is described here can display any DC voltage in the range of 0-1999 V olts.Technical Specifications - CharacteristicsSupply V oltage: ............. +/- 5 V (Symmetrical)Power requirements: ..... 200 mA (maximum)Measuring range: .......... +/- 0-1,999 VDC in four rangesAccuracy: ....................... 0.1 %FEATURES- Small size- Easy construction- Low cost.- Simple adjustment.- Easy to read from a distance.- Few external components.How it WorksIn order to understand the principle of operation of the circuit it is necessary to explain how the ADC IC works. This IC has the following very important features:- Great accuracy.- It is not affected by noise.- No need for a sample and hold circuit.- It has a built-in clock.- It has no need for high accuracy external components.Schematic (fixed 16-11-09)7-segment display pinout MAN6960An Analogue to Digital Converter, (ADC from now on) is better known as a dual slope converter or integrating converter. This type of converter is generally preferred over other types as it offers accuracy, simplicity in design and a relative indifference to noise which makes it very reliable. The operation of the circuit is better understood if it is described in two stages. During the first stage and for a given period the input voltage is integrated, and in the output of the integrator at the end of this period, there is a voltage which is directly proportional to the input voltage. At the end of the presetperiod the integrator is fed with an internal reference voltage and the output of the circuit is gradually reduced until it reaches the level of the zero reference voltage. This second phase is known as the negative slope period and its duration depends on the output of the integrator in the first period. As the duration of the first operation is fixed and the length of the second is variable it is possible to compare the two and this way the input voltage is in fact compared to the internal reference voltage and the result is coded and is send to the display.back sideAll this sounds quite easy but it is in fact a series of very complex operations which are all made by the ADC IC with the help of a few external components which are used to configure the circuit for the job. In detail the circuit works as follows. The voltage to be measured is applied across points 1 and 2 of the circuit and through the circuit R3, R4 and C4 is finally applied to pins 30 and 31 of the IC. These are the input of the IC as you can see from its diagram. (IN HIGH & IN LOW respectively). The resistor R1 together with C1 are used to set the frequency of the internal oscillator (clock) which is set at about 48 Hz. At this clock rate there are about three different readings per second. The capacitor C2 which is connected between pins 33 and 34 of the IC has been selected to compensate for the error caused by the internal reference voltage and also keeps the display steady. The capacitor C3 and the resistor R5 are together the circuit that does the integration of the input voltage and at the same time prevent any division of the input voltage making the circuit faster and more reliable as the possibility of error is greatly reduced. The capacitor C5 forces the instrument to display zero when there is no voltage at its input. The resistor R2 together with P1 are used to adjust the instrument during set-up so that it displays zero when the input is zero. The resistor R6 controls the current that is allowed to flow through thedisplays so that there is sufficient brightness with out damaging them. The IC as we have already mentioned above is capable to drive four common anode LED displays. The three rightmost displays are connected so that they can display all the numbers from 0 to 9 while the first from the left can only display the number 1 and when the voltage is negative the «-« sign. The whole circuit operates from a symmetrical ρ 5 VDC supply which is applied at pins 1 (+5 V), 21 (0 V) and 26 (-5 V) of the IC.ConstructionFirst of all let us consider a few basics in building electronic circuits on a printed circuit board. The board is made of a thin insulating material clad with a thin layer of conductive copper that is shaped in such a way as to form the necessary conductors between the various components of the circuit. The use of a properly designed printed circuit board is very desirable as it speeds construction up considerably and reduces the possibility of making errors. To protect the board during storage from oxidation and assure it gets to you in perfect condition the copper is tinned during manufacturing and covered with a special varnish that protects it from getting oxidised and also makes soldering easier.Soldering the components to the board is the only way to build your circuit and from the way you do it depends greatly your success or failure. This work is not very difficult and if you stick to a few rules you should have no problems. The soldering iron that you use must be light and its power should not exceed the 25 Watts. The tip should be fine and must be kept clean at all times. For this purpose come very handy specially made sponges that are kept wet and from time to time you can wipe the hot tip on them to remove all the residues that tend to accumulate on it. DO NOT file or sandpaper a dirty or worn out tip. If the tip cannot be cleaned, replace it. There are many different types of solder in the market and you should choose a good quality one that contains the necessary flux in its core, to assure a perfect joint every time.DO NOT use soldering flux apart from that which is already included in your solder. Too much flux can cause many problems and is one of the main causes of circuit malfunction. If nevertheless you have to use extra flux, as it is the case when you have to tin copper wires, clean it very thoroughly after you finish your work.In order to solder a component correctly you should do the following:- Clean the component leads with a small piece of emery paper.- Bend them at the correct distance from the component’s body and insert the component in its place on the board.- You may find sometimes a component with heavier gauge leads than usual, that are too thick to enter in the holes of the p.c. board. In this case use a mini drill to enlarge the holes slightly. Do not make the holes too large as this is going to make soldering difficult afterwards.Parts placementPCB dimensions: 77,6mm x 44,18mm or scale it at 35%- Take the hot iron and place its tip on the component lead while holding the end of the solder wire at the point where the lead emerges from the board. The iron tip must touch the lead slightly above the p.c. board.- When the solder starts to melt and flow wait till it covers evenly the area around the hole and the flux boils and gets out from underneath the solder. The whole operation should not take more than 5 seconds. Remove the iron and allow the solder to cool naturally without blowing on it or moving the component. If everything was done properly the surface of the joint must have a bright metallic finish and its edges should be smoothly ended on the component lead and the board track.If the solder looks dull, cracked, or has the shape of a blob then you have made a dry joint and you should remove the solder (with a pump, or a solder wick) and redo it.- Take care not to overheat the tracks as it is very easy to lift them from the board and break them. - When you are soldering a sensitive component it is good practice to hold the lead from the component side of the board with a pair of long-nose pliers to divert any heat that could possibly damage the component.- Make sure that you do not use more solder than it is necessary as you are running the risk of short-circuiting adjacent tracks on the board, especially if they are very close together.- When you finish your work, cut off the excess of the component leads and clean the board thoroughly with a suitable solvent to remove all flux residues that may still remain on it.For the replacement resistors follow the table below:0 - 2 V ............ R3 = 0 ohm 1%0 - 20 V ........... R3 = 1.2 Kohm 1%0 - 200 V .......... R3 = 12 Kohm 1%0 - 2000 V ......... R3 = 120 Kohm 1%When you have finished all the soldering on the board and you are sure that everything is OK you can insert the IC in its place. The IC is CMOS and is very sensitive to static electricity. It comes wrapped in aluminium foil to protect it from static discharges and it should be handled with great care to avoid damaging it. Try to avoid touching its pins with your hands and keep the circuit and your body at ground potential when you insert it in its place.Connect the circuit to a suitable powe r supply ρ 5 VDC and turn the supply on. The displays should light immediately and should form a number. Short circuit the input (0 V) and adjust the trimmer P1 until the display indicates exactly «0».Parts ListR1 = 180kP1 = 20k trimmer multiturnR2 = 22k U1 = ICL 7107R3 = 12k LD1,2,3,4 = MAN 6960 common anode leddisplaysR4 = 1MR5 = 470kR6 = 560 OhmC1 = 100pFC2, C6, C7 = 100nFC3 = 47nFC4 = 10nFC5 = 220nFIf it does not workCheck your work for possible dry joints, bridges across adjacent tracks or soldering flux residues that usually cause problems.Check again all the external connections to and from the circuit to see if there is a mistake there.- See that there are no components missing or inserted in the wrong places.- Make sure that all the polarised components have been soldered the right way round.- Make sure the supply has the correct voltage and is connected the right way round to your circuit. - Check your project for faulty or damaged components.Sample Power supply 1 Sample Power Supply 2。