通信系统建模与仿真课程设计

合集下载

通信系统建模与仿真实验报告

通信系统建模与仿真实验报告

实验报告哈尔滨工程大学教务处制实验一:低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。

二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。

因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。

2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(scsnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。

利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。

我们取理想低通的截止频率c ω=m ω。

下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、 实验内容已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a) 20000s f Hz =; (b) 10000s f Hz =; (c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x’(t)时序图。

通信系统建模与仿真01

通信系统建模与仿真01

1.6 系统建模仿真方法与仿真工具
现代仿真平台和编程语言环境的基本特征
简便高效的仿真描述语言。 层次化和模块化建模的能力。 可视化的建模方式。 软件硬件协同仿真的能力。 交互性和图形环境。 跨平台和可移植性。
1.6 系统建模仿真方法与仿真工具
仿真环境的构成和要求
模块库。 模块编辑和配置器。 仿真管理器。 后处理部分。 文件和数据库管理。 帮助文档。
1.3 通信系统模型的分类
1 按照系统层次分类
通信系统的最高层次描述是通信网络层次
可以进行对节点信息处理标准,通信协议以及通 信链路拓扑结构的设计和验证工作。
在网络层次之下,是对通信节点和链路以 及传输信号的具体化,称为链路层次模型。
通过对输入输出波形或符号的仿真,来验证链路 设计是否满足由网络层次仿真所要求的链路质量 指标。
强大的计算机辅助分析与设计工具和 系统仿真方法作为将新的技术理论成 果转换为实际产品的高效而低成本途 径越来越受到业界的青睐。
1.1 通信系统仿真的现实意义
其他应用领域
建筑/城市规划 交通
医学
1.1 通信系统仿真的现实意义
军事领域
武器装备研制 军事训练
工业领域
电力工业 制造业
1.3 通信系统模型的分类
3 按照系统特征分类
恒参系统 变参系统或时变系统 确定系统 随机系统 无记忆系统 有记忆系统或动态系统
1.4 通信系统仿真的方法
1 基于动态系统模型的状态方程求解 方法
所谓动态系统建模,就是根据研究对象的 物理模型找出相应的状态方程的过程。
所谓对动态系统的仿真,就是利用计算机 来对所得出的状态方程进行数值求解的过 程。
第一章 通信系统仿真的原理和方法论

ads通信仿真课程设计

ads通信仿真课程设计

ads通信仿真课程设计一、教学目标本课程旨在通过学习ads通信仿真,使学生掌握通信原理的基本知识和仿真方法,提高学生在通信领域的实际操作能力。

知识目标:使学生了解通信系统的基本原理,掌握ads通信仿真的基本方法和技巧。

技能目标:使学生能够熟练使用ads软件进行通信仿真,提高学生的实际操作能力。

情感态度价值观目标:培养学生对通信技术的兴趣和热情,提高学生在通信领域的创新意识。

二、教学内容本课程的教学内容主要包括ads通信仿真软件的使用、通信原理的基本知识以及通信仿真的实际应用。

首先,将教授ads通信仿真软件的基本使用方法,包括仿真环境的搭建、参数设置、仿真结果的分析和解释等。

其次,将讲解通信原理的基本知识,包括通信系统的模型、调制解调技术、信道模型等。

最后,将通过实际案例使学生了解通信仿真在实际应用中的重要性,提高学生的实际操作能力。

三、教学方法为了提高学生的学习兴趣和主动性,将采用多种教学方法相结合的方式进行教学。

首先,将采用讲授法,为学生讲解通信原理的基本知识和ads通信仿真的基本方法。

其次,将采用讨论法,学生进行小组讨论,分享学习心得和实际操作经验。

同时,将采用案例分析法,通过实际案例使学生了解通信仿真在实际应用中的重要性。

最后,将采用实验法,学生进行实际操作,提高学生的实际操作能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,将选择和准备以下教学资源:教材:《通信原理》参考书:《ads通信仿真教程》多媒体资料:通信原理的动画演示、ads通信仿真的操作视频等。

实验设备:计算机、ads通信仿真软件等。

五、教学评估为了全面、客观地评估学生的学习成果,将采用多种评估方式相结合的方法。

平时表现将占总分的一定比例,包括学生的课堂参与度、提问回答等。

作业将占总分的一定比例,包括课后练习、实验报告等。

考试将占总分的一定比例,包括期中考试和期末考试。

最后,将根据学生的综合表现,给予客观、公正的评价。

(完整word版)数字通信系统的设计与仿真

(完整word版)数字通信系统的设计与仿真

数字通信系统的设计与仿真摘要:数字通信系统是数字传输的过程,模拟信号到达接收端必须先将模拟信号转换成数字信号,数字信号在信道中传输会有损耗,因此合理的采用信道的编/译码和调制、解调是十分重要的,本实验采用systemview 进行仿真.关键字:眼图、误码率、调制、解调.1数字通信系统模型与原理1.1数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统,如图1所示.图1数字通信系统模型1.1.1 信源编码与译码信源编码有两个基本功能:一是提高信息传输的有效性,即通过某种数据压缩技术设计减少码元数目和降低码元速率.二是完成模/数(A/D)转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输.信源译码是信源编码的逆过程.1.1.2 信道编码与译码信道编码的目的是增强数字信号的抗干扰能力.数字信号在信道传输时受到噪声等影响后将会引起差错.为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分,组成所谓“抗干扰编码”.接收端的信道译码器按相应的规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性.1.1.3 加密与解密在需要实现保密通信的场合,为了保证所穿信息的安全,认为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密.在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息.1.1.4 数字调制与解调数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号.基带的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控、相对相移键控(DPSK).在接收端可以采用相干解调或非相干解调还原数字基带信号.对高斯噪声下的信号检测,一般用相关器或匹配滤波器来实现.1.1.5 同步同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确、可靠工作的前提条件.按照同步的公用不同,分为载波同步、位同步、群同步和网同步.数字通信的主要特点(1) 抗干扰能力强,尤其是数字信号通过中继再生后可消除噪声积累(2) 数字信号通过差错控制编码,可提高通信的可靠性.(3) 由于数字通信传输一般采用二进制码,所以可使用计算机对数字信号进行处理,实现复杂的远距离大规模自动控制系统和自动数据处理系统,实现以计算机为中心的通信网.(4) 在数字通信中,各种消息(模拟的和离散的)都可变成统一的数字信号进行传输.在系统对数字信号传输情况的监视信号、控制信号及业务信号都可采用数字信号.数字传输和数字交换技术结合起来组成的ISDN 对于来自不同信源的信号自动地进行变换、综合、传输、处理、存储和分离,实现各种综合业务.(5) 数字信号易于加密处理,所以数字通信保密性强.数字通信的缺点是比模拟信号占带宽,然而,由于毫米波和光纤通信的出现,带宽已不成问题.2 系统的设计过程为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配.这种用数字基带信号控制载波,把数字基带信号变换为数字带同信号的过程称为数字调制.在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调.通常把包括调制和解调过程的数字传输系统叫做数字带通传输系统.一般来说,数字调制与模拟调制技术有的方法:把数字基带信号当作模拟信号的特殊情况处理;是利用数字信号的离散取值特点通过开关键控载波,2.1 信源编码模拟信号转换成数字信号包括三个步骤:抽样,量化,编码.(1) 抽样:把模拟信号在时间上离散化,变换为模拟抽样信号.(2) 量化:将抽样信号在幅度上离散化,变换成量化信号.(3) 编码:用二进制码元来表示有限的量化电平.抽样定理指出:设一个连续模拟信号m(t)中的最高频率〈f h ,则以间隔时间T〈1/2f h的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定.由于抽样时间间隔相等,所以此定理又称均匀抽样定理.例如模拟信号的最高频率为10hz,则采样频率为30hz.2.2 信道格雷码的编/译码数字信号在传输过程中,由于受到干扰的影响,码元波形将变坏,,接收端收到后可能发生错误判决,故采用GRAY编\译码方式来进行差错控制. 格雷码的编码和译码设备都不太复杂,而且检错的能力较强.格雷码除了具有线性码的一般性质外,还具有循环性.循环性是指任一码组循环一位(即将最右端的一个码元移至左端,或反之)后,仍为该码中的一个码组.2.3 2FSK信号的调制与非相干解调2.3.1 调制原理键控法:在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率进行选通,使其在每一个码元T s 期间输出 f1或f0两个载波之一, 图2所示.键控法产生的2FSK信号,是由于电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续. 2FSK信号可以看成两个ASK的相加,图3所示.图2 键控法产生2FSK 信号的原理图图3 相位连续的2FSK 信号波形2.3.2 2FSK 信号的非相干解调2FSK 的非相干解调:其原理是将2FSK 信号分解为上下两路2ASK 信号分别进行解调,然后进行判决.这里的抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限.判决规则应与调制规则相呼应,调制时若规定“1”符号对应载波频率w 1,则接收时上支路的样值较大,应判为“1”;反之则判为“0”.2FSK 信号的非相干解调方框图如图4所示,其可视为由两路2ASK 解调电路组成.这里,两个带通滤波器(带宽相同,皆为相应的2ASk 信号带宽;中心频率不同,分别为w 1、w 2 起分路作用,用以分开两路2ASK 信号. 振荡器f 1选通开关 反相器 想加器 振荡器f 2 选通开关基带信号 2FSK 信号图4 2FSK信号非相干解调方框图2.4 模拟FIR滤波器的设计通过选择菜单上的”Filter/Analog”按扭,可以设计五种模拟滤波器.它们是:巴特沃斯,巴赛尔,切比契夫,椭圆,线性相位.这些滤波器可以是低通、高通或带通,所选滤波器的一般形状由滤波器的类型决定,需要输入的数据是滤波器的极点数、-3db带通或截止频率、相位纹波系数、增益等参数,按”finish”完成设计.低通滤波器:去掉信号中不必要的高频成分,降低采样频率,避免频率混淆,去掉高频干扰.带通滤波器:高通滤波器同低通滤波器的组合.对滤波器而言,所有频率都应是采样速率的分数,即相对的百分比系数.例如,系统的采样速率为1MHZ,所涉及的FIR低通滤波器的截止频率为50KH Z,则滤波器涉及窗口输入的截止频率为0.05(50KH Z/1MH Z),如果在滤波器前面连接的是抽样器或采样器的图符,则这些图符的频率也必须是滤波器采样速率的分数. 2.5 眼图分析眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形.观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”.从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度.另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能.眼图的“眼睛” 张开的大小反映着码间串扰的强弱.“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清.若同时存在码间串扰,“眼睛”将张开得更小.与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正.噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正.眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰.(1) 最佳抽样时刻应在“眼睛” 张开最大的时刻.(2) 对定时误差的灵敏度可由眼图斜边的斜率决定.斜率越大,对定时误差就越灵敏. 在抽样.(3) 时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变.眼图中央的横轴位置应对应判决门限电平.(4) 在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决.(5) 对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响.2.6 误码率分析对于二进制双极性信号,假设它在抽样时刻的点平取值为+A或-A(分别对应信码“1或“0”),在-A 和+A之间选择一个适当的电平V d作为判决门限,根据判决准则将会出现以下几种情况:(1) 对“1”码:当X>V d,判为“1”码(正确);当X<V d,判为“0”码(错误).(2) 对“0”码:当X<V d,判为“0”码(正确);当X>V d,判为“1”码(错误).假设信源发送“1”码的概率为P(1),发送“0”码的概率为P(0),则二进制基带传输系统的总误码率Pe= P(1) P(0/1)+ P(0) P(1/0) 其中P(0/1)= P(X<V d),P(1/0) = P(X>V d)3参数的设定(1)模拟信源:正弦函数,频率fs=10hz,幅度A=1V;。

通信系统仿真教案(信道和调制解调)

通信系统仿真教案(信道和调制解调)

信道
传输信号的媒介,如无线电波、 光纤等。
信宿
接收并使用信息,如收音机、 电视机等。
通信系统的分类
有线通信系统
利用电缆、光缆等物理介质传输信号。
模拟通信系统
传输连续的模拟信号,如调频广播。
无线通信系统
利用电磁波传输信号,如手机、卫星通信等。
数字通信系统
传输离散的数字信号,如数字电视、计算机 网络等。
04
解调技术
解调的基本概念
01
解调是将已调信号从载波中提取出来以便进一步处理的过程。
02
解调是调制的逆过程,其作用是将已调信号还原成原始基带信
号。
解调方式分为线性解调和非线性解调两种。
03
常见的解调方式
相干解调
相干解调也称为同步解调,它需要使用已调信号的相位信息进行解调。相干解调的优点是解调性能较好,但需要 同步信号,因此在实际应用中受到一定限制。
通信系统仿真教案(信道和调 制解调)
目录
• 通信系统概述 • 信道特性 • 调制技术 • 解调技术 • 通信系统仿真
01
通信系统概述
通信系统的基本组成
发送器
将信源产生的信息转换为适合 传输的信号,如调频、调相、 调幅等。
接收器
接收信道传输的信号,并将其 还原为原始信息。
信源
产生需要传输的信息,如声音、 图像、文字等。
信道容量
信道容量表示信道传输信息的最大速率,是衡量信道性能的 重要指标。
信道编码
为了提高通信系统的可靠性和传输效率,需要对信号进行编 码处理,包括纠错编码和加密编码等。
03
调制技术
调制的基本概念
调制的基本概念
调制是将低频信号(基带信号)附加到高频载波 信号上,以便于传输的过程。

通信系统仿真课程设计c语言

通信系统仿真课程设计c语言

通信系统仿真课程设计c语言一、教学目标本课程的教学目标是使学生掌握通信系统仿真的基本原理和方法,能够运用C语言进行通信系统的仿真分析。

具体目标如下:1.理解通信系统的基本原理和仿真方法。

2.掌握C语言的基本语法和编程技巧。

3.熟悉通信系统仿真实验的流程和技巧。

4.能够运用C语言编写简单的通信系统仿真程序。

5.能够分析仿真结果,对通信系统进行性能评估。

6.能够独立完成通信系统仿真实验,并撰写实验报告。

情感态度价值观目标:1.培养学生的创新意识和团队合作精神。

2.增强学生对通信技术的兴趣和热情。

3.培养学生的科学思维和解决问题的能力。

二、教学内容本课程的教学内容主要包括以下几个部分:1.通信系统的基本原理:介绍通信系统的基本概念、信号处理方法、调制解调技术等。

2.通信系统仿真方法:讲解通信系统仿真的基本方法,包括系统模型建立、仿真算法选择等。

3.C语言编程基础:介绍C语言的基本语法、数据类型、运算符、控制结构等。

4.通信系统仿真实验:进行一系列的通信系统仿真实验,让学生动手实践,掌握仿真技巧。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解通信系统的基本原理和仿真方法,让学生理解理论知识。

2.讨论法:学生进行小组讨论,培养学生的团队合作精神和创新意识。

3.案例分析法:分析典型的通信系统仿真案例,让学生掌握仿真技巧。

4.实验法:进行通信系统仿真实验,让学生动手实践,提高操作能力。

四、教学资源本课程的教学资源包括以下几个方面:1.教材:选用合适的教材,为学生提供系统的理论知识学习。

2.参考书:提供相关的参考书籍,丰富学生的知识视野。

3.多媒体资料:制作课件、实验视频等多媒体资料,提高学生的学习兴趣。

4.实验设备:提供计算机、通信设备等实验设备,保障学生能够进行实际操作。

五、教学评估本课程的教学评估主要包括以下几个方面:1.平时表现:评估学生在课堂上的参与程度、提问回答情况等,以考察学生的学习态度和积极性。

通信系统仿真 课程设计

14
Matlab代码仿真
部分代码和仿真结果
方形图的实现是在函数中的映射关系。
15
Matlab代码仿真
部分代码和仿真结果
16
Matlab代码仿真
部分代码和仿真结果
方型
17
Simulink仿真
模型图
18
Simulink仿真
方 型 星 座 图
19
Simulink仿真
发送端调制信号与功率谱密度
5
2FSK
6
2PSK 2PSK以载波的相位变化作为参考基准
的,当基带信号为0时相位相对于初始 相位为0,当基带信号为1时相对于初 始相位为180°。
7
2PSK
8
误码率分析
9
误码率分析
10
正交振幅调制(QAM)
Quadrature Amplitude Modulation
振幅和相位联合键控
(3)利用MATLAB中的qammod函数生成16QAM调 制器,再通过其对信号进行调制并画出信号的星座 图。
(4)通过awgn 信道在16QAM信号中加入高斯白噪 声。
(5)利用MATLAB中的scatterplot函数画出通过信道 后接受到的信号的星座图。
(6)利用MATLAB中的eyediagram函数生成调制后 的眼图。
23
SystemView仿真
基于方型16QAM的发送端调制信号波形
24
SystemView仿真
基于方型16QAM的发 送端调制信号眼图
基于方型16QAM的接 收端调制信号眼图
25
误码率分析
对于QAM,可以看成是由两个相互正交且独 立的多电平ASK信号叠加而成。因此,利用多 电平误码率的分析方法,可得到M进制QAM的 误码率为:

通信仿真课程设计-matlab-simulink

理工大学工程技术学院《通信仿真课程设计》报告班级:信息工程1班姓名:_________ 寇路军________学号:201620101133指导教师:_________ 周玲__________成绩:___________________________2019 年3月23日.Z目录通信仿真课程设计报告 (2)一. 绪论 (2)二.课程设计的目的 (2)三.模拟调制系统的设计 (3)3.1二进制相移键控调制基本原理 (3)3.22PSK 信号的调制 (3)3.2.1模拟调制的方法 (3)3.32PSK 信号的解调 (4)3.42PSK 的“倒n现象”或“反向工作” (5)3.5功率谱密度 (5)四.数字调制技术设计 (7)4.12PSK 的仿真 (7)4.1.1仿真原理图 (7)4.1.2仿真数据 (7)4.1.3输出结果 (9)总结 (10)参考文献 (11)通信仿真课程设计报告一. 绪论随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。

目前,我们生活中使用的手机,,Internet,ATM 机等通信设备都离不开通信系统。

随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。

另外,随着人们对通信设备更新换代速度越来越快。

不得不缩短通信系统的开发周期以及提高系统性能。

针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。

自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。

通信系统仿真,在目前的通信系统工程设计当中。

已成为了不可替代的一部分。

它表现出很强的灵活性和适应性。

为我们更好地研究通信系统性能带来了很大的帮助。

本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink 进行仿真。

通过系统仿真验证理论中的结论。

本论文设计的目的之一是进一步加强理论知识,熟悉Matlab 软件。

Simulink 是MATLAB 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。

通信系统建模与仿真

一、实验内容本实验使用SIMULINK进行简单通信系统搭建,比较不同的信道模型和不同的调制方式对信息传递的影响。

二、实验方案通信系统负责将包含信息的消息从发送端有效地传递到接收端。

本文搭建系统的结构图如1-1,图1-1 简单通信系统框图2.1调制方式性能比较本文主要在AWGN信道前提下比较BPSK和QPSK两种调制方式,SIMULINK系统搭建如下,图1-2 基于BPSK调制方式的通信系统图1-3 基于QPSK调制方式的通信系统2.2 不同信道性能比较本文主要在2-FSK的前提下,比较分析两种常见通信信道(AGWN channel,Rayleigh channel)的性能。

其SIMULINK搭建如下,图1-4基于AGWN通信信道的通信系统图1-5基于Rayleigh、AWGN通信信道的通信系统三、参数选择3.1 比较调制方式性能参数设置在图1-2,图1-3两个系统中,本文采用了相同的信源模块、相同的信道模块,不同的调制模块,已达到比较的目的。

信源采用Random Integer Generator模块,参数设置如下:图1-6 信源模块参数设置信道模块采用AWGN Channel模块,参数设置如下:图1-7 AWGN信道参数设置BPSK调制模块与解调模块参数设置如下:图1-8 BPSK调制模块参数设置图1-9 BPSK解调模块参数设置在本文中采用了一个很重要的误码率分析工具bertool,其参数设置如下:3.2 比较信道特性参数设置本节基于2-FSK调试方式下,比较了只有高斯白噪声特性信道和具有两种高斯白噪声、瑞利特性信道误码率情况。

下面将列举几个重要模块的参数设置:图1-10 信源模块参数设置图1-11 2-FSK调制模块参数设置图1-11 2-FSK解调模块参数设置图1-12 瑞利信道参数设置以上参数设置完成之后,我们将在第四部分中,利用Bertool工具得出两种特性的信道对误码率的影响。

四、仿真结果及分析4.1 调制比较仿真结果与分析通过上述参数的设置,我们可以得出一个比较图,如下:图1-13 两种调制方式下,误码率随信噪比的变化从bertool 工具所绘制出的图中,我们可以得出结论:在相同的信源模块以信道模块下,BPSK 调制方式的情况要优于QPSK 。

数字通信系统设计方案与仿真

数字通信系统的设计与仿真摘 要:本次设计的是一种数字通信系统,该通信系统主要采用数字信源为输入、交织编码译码技术、MP 信道、2FSK 的调制和非相干解调技术。

利用system view 对系统进行仿真,并分析眼图和误码率。

关键字:system view,仿真,数字通信1 数字通信系统基本原理1.1 数字通信系统的模型图1 数字通信系统的模型1.2 信息源它的作用是把各种消息转换为原始电信号,信源分为模拟信源和数字信源。

本文的输入信号采用模拟信源,通过A/D 转换把输入的模拟信号转换为数字信号,模拟信号转化为数字信号包括三个步骤:抽样、量化和编码。

模拟信号首先被抽样。

通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。

模拟信号被抽样后,成为抽样信号,它在时间上是离散的,但是其取值仍然是连续的,所以是离散模拟信号。

第二步是量化。

量化的结果使抽样信号变成量化信号,其取值是离散的。

故量化信号已是数字信号了,它可以看成是多进制的数字脉冲信号。

第三步是编码。

第一步抽样的定理:设一个连续模拟信号m(t)中的最高频率<H f 且带宽受到限制时,则以间隔时间为1/2H T f 的周期性冲击脉冲对它抽样时,()m t 将被这些抽样值所安全确定。

由于抽样时间间隔相等。

),低通滤波107中的最低频率是10Hz ,108的增益为300Hz 。

即奈奎斯特的定理。

第二步:量化。

模拟信号的抽样值为m(KT),其中T 是抽样周期,k 是整数。

量化原理公式:,()q i m kT q =≤i-1i 当m m(kT)<m (1.1-2)在非均匀量化时,量化间隔是随信号抽样值的不同而变化的。

信号抽样值小时,量化间隔 v 也小;信号抽样值大时,量化间隔 v 也大。

非均匀量化的实现方法通常是在进行量化之前,先将信号抽样值压缩,再进行均匀量化。

其压缩是用一个非线性电路将输入电压x 变换成输出电压y :()x y f= (1.1-3) 第三步:通常把从模拟信号抽样、量化,直到变换成为二进制符号的过程,称为脉冲编码调制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信系统建模与仿真课程设计
1任务书
试建立一个2DPSK频带传输模型,产生一段随机的二进制非归零码的基带信号,对其进行2DPSK调制后再送入加性高斯白噪声(AWGN)信道传输,在接收端对其进行2DPSK解调以恢复原信号,观察还原是否成功,改变AWGN信道的信噪比,计算传输前后的误码率,绘制信噪比-误码率曲线,并与理论曲线比较进行说明。

另外,对发送信号和接收信号的功率谱进行估计。

2 二进制差分相移键控(2DPSK )的理论分析
二进制差分相移键控常简称为二相相对调相,记为2DPSK 。

它不是利用载波相位的绝对数值传送数字信息,而是用前后码元的相对载波相位值传送数字信息。

所谓相对载波相位是只本码元初相与前一码元初相之差。

调制 :
2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。

例如,假设相位值用相位偏移△φ表示(△φ定义为本码元初相与前一码元初相只差),并设△φ=π→数字信息1,△φ=0→数字信息0,则数字信息序列与2DPSK 信号的码元相位关系可举例表示如如下:
数字信息: 0 0 1 1 1 0 0 1 0 1
2DPSK 信号相位: 0 0 0 π 0 π π π 0 0 π
或 π π π 0 π 0 0 0 π π 0
差分码可取传号差分码或空号差分码。

其中,传号差分码的编码规则为:
b a b n n n 1-⊕=
式中:⊗为模二加:b n 1-为 b n 的前一码元,最初的 b n 1-可任意设定
差分编码是(码反变换),即把绝对码变换为相对吗;其逆过程成为差分译码(码反变换),即
b b a n n n 1-⊕=
2PSK 及DPSK 信号的波形如图所示。

2DPSK的产生基本类似于2PSK,只是调制信号需要经过码型变换,将绝对码变为相对码,2DPSK有模拟调制法和键控法,如图:
模拟调制法键控法
2DPSK信号可以采用相干解调法(极性比较法)和差分相干解调法(相位比较法)。

其解调原理是:先对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。

在解调过程中,若相干载波产生180度相位模糊,解调出的相对码将产生倒置现象,但是经过码反变换器后,输出的绝对码不会发生任何倒置现象,从而解决了载波相位模糊的问题。

其中相干解调法原理框图及波形图如下:
32DPSK频带系统设计方案
信源:
在DPSK调制中,载波频率应比基带信号的频率大,载波我选用正玄波(频
率可以自己设定),基带信号选用伯努利信号发生器。

2DPSK调制:
2DPSK的调制采用模拟调制法。

调制电路的主要模块是码型变换模块,它主要是完成绝对码波形转换为相对码波形,在实际的仿真中要先经过差分编码,再进行极性双变换,得到的信号与载波一起通过相乘器,就完成了调制过程。

其中要注意的是在进行差分编码之后再进行极性变换之前要有一个数据类型转换的单元,前后数据类型一致才不会出错。

2DPSK解调:
仿真中我们采用相干解调法进行2DPSK解调,解调电路中有带通滤波器、相乘器、低通滤波器、抽样判决器及码反变换组成。

2DPSK相干解调原理是:对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换为绝对码,从而恢复出发送的二进制数字信息。

信道:
信道选用加性高斯白信道。

抽样判决器:
在数字基带信号传输的过程中,信号是在信道里面传输的。

信号在传输的时候必须要有一定的波形,最容易想到的就是矩形脉冲波形,但是这样的话有一定的问题,那就是其频谱是很宽的,不利于传输,因此,必须要选择其它样式的波形进行传输,即对矩形脉冲进行码型变换和波形变换,变成一种适合在信道中传输的形式,比如正弦波,这样是可以在信道里面进行传输的,那就产生了一个问题,怎样在接收端将原来的信号恢复出来?这样就要对信号进行“抽样”,得到在不同的时刻的一些离散的值,但是,由于在信号的传输过程中有各种干扰(噪声和码间串扰),不同时刻的值跟原先实际的不一定相同,比如在第一个时刻抽样得到的是0.9(这样就进行所谓的“判决”,可以发现此时的值很接近1,因此,此时的信号的值就当成1,从而得到1,同样在其它的时候得到不同的抽样值根据情况判断此处原来的值到底是0还是1),利用这种方式就可以将原来的基带信号恢复或者再生。

本次课程设计抽样判决器用Triggered Subsystem,Relay和脉冲发生器三个期间组成。

4SIMULINK下2DPSK系统的设计
在DPSK调制中,载波频率应比基带信号的频率大,故将载波的频率参数设置为2000*pi,抽样时间为0。

将基带信号的抽样时间改成0.001,其参数设置部分截图如图
基带信号参数如下图:
在单极性到双极性变换中,M-ary number设置为2,极性为positive。

码变换中的各部分参数如下连续三张截图数据类型转换参数如下图
Logical Operator参数设置
Unit Delay参数设置
解调中,载波的参数设置同2DPSK调制的载波参数设置一致,带通滤波器参数和低通滤波器设置分别如下图所示:
带通滤波器参数设计
低通滤波器参数设计
抽样判决器有三个器件组合而成,Triggered Subsystem参数默认,另外两个设计参数分别如下:
脉冲发生器设计参数
中继设计参数模型图:
5仿真结果分析
模型图中各点输出时域波形图如下:
经观察调制与解调过程中各阶段波形正确,解调出的波形恢复到了调制前形状。

说明调制与解调电路正确。

发送信号和接收信号的功率谱如下图所示:
(发送信号频谱)(接收信号频谱)调制前后信号的功率谱密度相差不大。

基带信号功率如下图:
实际信噪比曲线图:
理论信噪比曲线图:
误码率:
6遇到的问题及解决的方法
问题一:2DPSK信号波形出现陡升和陡降
解决:将AWGN信道前后两个零阶保持器抽样时间改的再小一点。

问题二:在没有加入噪声时解调出现误码率
解决:在没有加入噪声时出现误码率,是由于误码器参数设置错误的原因。

将基带信号与解调信号进行对比,可发现信号经传输后有2个单位的延迟,故将
误码率计算模块中Receive delay中应设置为2,再次运行simulink,误码率显示模块中显示误码率为零。

问题三:没加Zero Order Hold时,误码率计算模块总是出错
解决:添加Zero Order Hold模块,使输入信号一样,都不是连续的。

问题四:在示波器图中修改data history中的limit data points to last参数,将其改大,再运行simulink,即可从示波器中观察到准确图形。

7结束语
8指导教师评语
(总页数在10页左右)。

相关文档
最新文档