薄膜制备方法
薄膜材料的制备及其应用

薄膜材料的制备及其应用一、薄膜材料的基本概念和制备方法薄膜是指宽度很小,但厚度相对较薄的材料。
薄膜材料由于具有在空间限制下的卓越性质,被广泛应用于化学、生物、光电等领域。
常见的薄膜材料有聚合物、金属、陶瓷、玻璃等。
1.基于聚合物的薄膜制备方法聚合物薄膜制备方法包括溶液浇铸、界面聚合、自组装、化学气相沉积等多种技术。
其中,溶液浇铸法是最为普遍的一种方法,即将聚合物分散于溶剂中,通过蒸发-干燥过程制备膜材料。
2.基于金属的薄膜制备方法金属薄膜制备方法主要包括物理气相沉积、化学气相沉积、物理溅射和热蒸发等技术。
其中,物理气相沉积法是最常用的一种方法,依靠金属的高温蒸发和沉积,形成薄膜材料。
3.基于陶瓷的薄膜制备方法陶瓷薄膜材料的制备采用包括溶胶-凝胶法、物理气相沉积、离子束沉积和磁控溅射等多种技术。
其中,溶胶-凝胶法是一种低温制备技术,制备出的膜材料具有良好的化学稳定性和高纯度。
二、薄膜材料的应用1.生物医学领域在生物医学领域,薄膜被广泛应用于药物递送、人工器官、组织工程等方面。
聚合物薄膜材料具有良好的生物相容性和生物可降解性,广泛用于药物递送系统和组织工程中。
金属薄膜由于其良好的导电性能,可用于人体电刺激和成像等领域。
2.能源领域薄膜在太阳能电池、燃料电池、半导体器件等领域也有着重要的应用。
例如,聚合物薄膜用于太阳能电池、金属薄膜用于燃料电池、氧化物薄膜用于半导体领域。
3.环境领域薄膜在环境领域的应用主要包括水处理、气体净化、油污处理等方面。
例如,纳米复合薄膜用于水处理,可有效过滤掉微小颗粒和化学污染物;纳米多孔结构薄膜用于气体净化,可去除有害氧化物和有机物质;陶瓷薄膜用于油污处理,可高效分离和去除油污。
三、薄膜材料的发展趋势1.可持续、环保的材料未来薄膜材料的制备趋势是转向可持续、环保的材料。
例如,生物可降解聚合物薄膜可以在使用后被自然分解,减少环境影响。
2.多功能化材料未来的薄膜材料也将具备多种功能,例如,与生物组织相容、导电、光学响应等。
薄膜材料制备原理、技术及应用

薄膜材料制备原理、技术及应用薄膜材料是在基材上形成的一层薄膜状的材料,通常厚度在几纳米到几十微米之间。
它具有重量轻、柔韧性好、透明度高等特点,广泛应用于电子、光学、能源、医疗等领域。
薄膜材料制备的原理主要涉及物理蒸发、溅射、化学气相沉积等方法。
其中,物理蒸发是指将所需材料制成块状或颗粒状,利用高温或电子束加热,使材料从固态直接转变为蒸汽态,并在基材上沉积形成薄膜。
溅射是将材料制成靶材,用惰性气体或者稀释气体作为工作气体,在高电压的作用下进行放电,将靶材表面的原子或分子溅射到基材上形成薄膜。
化学气相沉积是指在一定条件下,将气态前体分子引入反应室,通过化学反应沉积到基材上,形成薄膜。
薄膜材料制备技术不仅包括上述原理所述的基本制备方法,还涉及到不同材料、薄膜厚度、表面质量等方面的特定要求。
例如,为了提高薄膜的品质和厚度均匀性,可采用多台蒸发源同时蒸发的方法,或者通过旋涂、喷涂等方法使得所需薄膜材料均匀地覆盖在基材上。
此外,为了实现特定功能,还可以通过控制制备条件、改变材料组成等手段来改变薄膜的特性。
薄膜材料具有多种应用领域。
在电子领域,薄膜材料可以用于制作集成电路的介质层、金属电极与基板之间的隔离层等。
在光学领域,薄膜材料可以用于制作光学滤波器、反射镜、透明导电膜等。
在能源领域,薄膜材料在太阳能电池、锂离子电池等器件中扮演重要角色。
在医疗领域,薄膜材料可以用于制作人工器官、医用伽马射线屏蔽材料等。
此外,薄膜材料还应用于防腐蚀涂料、食品包装、气体分离等领域。
虽然薄膜材料制备技术已经相对成熟,但是其制备过程中仍然存在一些挑战。
例如,薄膜厚度均匀性、结晶性能、粘附性能等方面的要求十分严格,制备过程中需要控制温度、压力、物质流动等多个参数的影响,以确保薄膜的质量。
此外,部分薄膜材料的制备成本相对较高,制约了其在大规模应用中的推广。
总的来说,薄膜材料制备原理、技术及其应用具有重要的实际意义。
通过不断改进制备技术,提高薄膜材料的制备效率和质量,将有助于推动薄膜材料在各个领域的更广泛应用。
溶胶凝胶法制备薄膜及涂层材料

(6)玻璃表面的平整度及光散乱 玻璃表面,由于是所谓火抛光(fire polish), 平整度在6~10nm。如果要求玻璃表面更平滑或 大面积范围的平滑,必须进行研磨。先用SiC或 Al2O3粗磨,然后用红粉(Fe2O3)或CeO2抛光。
玻璃表面如果呈波纹状,凸起的顶部或峰顶 与凹下的底面上的反射光之间存在光程差, △=2hcos,为入射角。如果2h小于λ/8,则看 不到光散乱。
表7-1 反应体系的组成
材料 Al2O3 La2O3-Al2O3 ZrO2(Y2O3)-Al2O3 MgO-ZrO2 Y2O3-ZrO2 MgAl2O4 MgFe2O4 Mg (Fe,Al)O4 主盐 Al(NO3)3、La(NO3)3、 Al(NO3)3 、ZrOCl2、Y(NO3)3 ZrOCl2 、Mg(NO3)2、 Y(NO3)3 Mg (NO3)2 、Al (NO3)3、 Fe(NO3)3 沉淀剂 NH4OH H2C2O4 NH4OH (NH4)2CO3 成膜促进剂 聚乙烯醇(PVA) 聚乙烯醇(PVA)、 阴离子表面活性 剂 阴离子表面活性剂 聚乙二醇、甘油
SrTiO3
Li2B4O7 Al2O3-SiO2 (如莫来石等) CeO2-TiO2
7.1.2.2影响成膜性和膜结构的主要因素 采用醇盐法制备薄膜时,影响成膜性和膜 结构的主要因素仍然是溶胶的配比、溶胶 的稳定性、干燥制度、烧结制度和基体的 选择等,具体情况与7.1.1.3节讨论的相同。 此处需要强调的是溶胶的稳定性是可以工 业化最关键的前提条件。
胶粒 H2O NH4+或者NO3成膜促进剂 稳定的均匀溶胶 H2O CO2
NO3- H2O
NH3
干燥初期
快升温
慢升温
图7-1 无机前驱体Sol-Gel膜的成膜机制示意图
mof薄膜的制备方法

mof薄膜的制备方法
金属-有机骨架(MOF)薄膜材料是纳米技术领域的一种新材料,其制备方法多种多样。
主要的合成方法包括水热合成法、微波合成法、机械球磨、液相扩散法、喷雾干燥法、电化学沉积法和模板法等。
对于有特殊成型要求的MOFs,例如MOF薄膜,可以在涂层基板上进行逐层沉积、液相外延生长或籽晶生长;对于难以从头合成的MOF,已经开发了各种后合成方法,如后合成改性和溶剂辅助的方法。
此外,为大量合成膜厚度、均匀性、形态、甚至维度均可控的MOF薄膜材料,多种合成方法的不断提出为此提供了可能性。
液相材料制备薄膜的方法

液相材料制备薄膜的方法液相材料制备薄膜的方法是指使用液相化学方法制备一定厚度的薄膜。
液相材料制备薄膜的具体方法有很多种,常见的方法有溶液旋涂法、自组装法、凝胶法等。
其中,溶液旋涂法是最常见的一种液相材料制备薄膜的方法。
在这个方法中,先将需要制备薄膜的材料溶解在适当的溶剂中制成溶液,然后将溶液倒在旋转的衬底上,靠着旋转的力量使液体均匀地铺在衬底上,形成一层薄膜。
该方法需要精确控制溶液的浓度、旋转速度、喷涂位置等参数,才能得到均匀、致密的薄膜。
自组装法是另一种常用的液相材料制备薄膜的方法。
在这个方法中,使用特定的化合物在衬底上自组装生成薄膜。
这个化合物通常是有机大分子,可以通过物理化学方法调节其结构和性质。
自组装法可以制备非常薄的薄膜,而且可以控制薄膜的厚度、表面形貌等性质,因此具有广泛的应用前景。
凝胶法是另一种较为特殊的液相材料制备薄膜的方法。
该方法中,先将所需的材料与透明胶体结构材料混合,形成凝胶,然后通过超声波或离心等方法将凝胶形成薄膜。
这种方法可以制备均匀且具有良好形貌的薄膜,而且可以制备非常大的薄膜。
液相材料制备薄膜的优点是可以制备导电性、光学性、光电性、磁性等特性的薄膜,且可以制备非常薄的薄膜,对于微电子设备和光电器件等领域具有重要的应用价值。
总之,液相材料制备薄膜的方法多种多样,其中最常用的是溶液旋涂法和自组装法。
无论采用哪种方法,都需要准确控制制备条件,并且要依据实际需求来调节薄膜的特性。
随着新型材料的不断涌现,液相材料制备薄膜的方法也会不断改进和完善,为各领域的应用提供更加高效、优质的薄膜制备技术。
干法制膜工艺

干法制膜工艺膜工艺是一种应用广泛的工艺技术,用于制备薄膜材料。
在薄膜制备过程中,干法制膜工艺是一种常见且重要的方法。
本文将介绍干法制膜工艺的原理、应用以及一些常见的干法制膜技术。
一、干法制膜工艺的原理干法制膜工艺是一种在无溶剂或低溶剂条件下制备膜材料的方法。
其原理是通过物理或化学手段将原料转化为膜材料。
常见的干法制膜工艺包括物理蒸发、化学气相沉积和物理气相沉积等。
1. 物理蒸发:物理蒸发是一种将原料固态直接转化为膜材料的方法。
在物理蒸发过程中,原料固态加热至其熔点以上,使其转变为气态,然后通过凝结再度形成固态膜材料。
物理蒸发工艺的优点是制备过程简单、操作方便,适用于制备高纯度的膜材料。
常见的物理蒸发方法包括热蒸发和电子束蒸发等。
2. 化学气相沉积:化学气相沉积是一种通过化学反应在基底表面生成膜材料的方法。
在化学气相沉积过程中,原料气体进入反应室,与基底表面上的反应物发生化学反应,生成膜材料。
化学气相沉积工艺的优点是可以制备出具有复杂结构和优良性能的薄膜材料,适用于微电子器件、光学薄膜和功能薄膜的制备。
常见的化学气相沉积方法包括化学气相沉积和金属有机化学气相沉积等。
3. 物理气相沉积:物理气相沉积是一种通过物理手段在基底表面生成膜材料的方法。
在物理气相沉积过程中,原料固态加热至其熔点以上,转变为气态后,通过凝结在基底表面生成膜材料。
物理气相沉积工艺的优点是制备过程简单、操作方便,适用于制备大面积、均匀性好的膜材料。
常见的物理气相沉积方法包括物理气相沉积和磁控溅射等。
二、干法制膜工艺的应用干法制膜工艺具有广泛的应用前景,可以制备出各种功能性薄膜材料,广泛应用于微电子器件、光学薄膜、传感器、涂层材料等领域。
下面将介绍一些干法制膜工艺在不同领域的应用。
1. 微电子器件:干法制膜工艺在微电子器件中有着重要的应用。
例如,通过化学气相沉积制备出具有优良绝缘性能的二氧化硅薄膜,用于电子元件的隔离和保护;通过物理气相沉积制备出金属薄膜,用于导电材料和电极的制备。
材料科学中的薄膜制备技术研究综述

材料科学中的薄膜制备技术研究综述薄膜作为一种重要的材料形态,在材料科学领域中具有广泛的应用。
薄膜制备技术的研究和发展,不仅能够扩展材料的功能性,并提高材料的性能,还可以为各个领域提供更多的应用可能性。
本文将综述材料科学中薄膜制备技术的研究进展,并重点探讨了几种常见的薄膜制备技术。
1. 物理气相沉积(PVD)物理气相沉积是一种常见的薄膜制备技术,它通过蒸发或溅射等方法将材料转化为蒸汽或离子,经过气相传输沉积在基底上形成薄膜。
物理气相沉积技术包括热蒸发、电子束蒸发、分子束外延和磁控溅射等方法。
这些方法在薄膜制备中具有高温、高真空和高能量等特点,能够制备出具有优异性能的薄膜。
然而,物理气相沉积技术在薄膜厚度的控制上存在一定的局限,且对于一些化学反应活性较高的材料来说,难以实现。
2. 化学气相沉积(CVD)化学气相沉积是一种将反应气体在表面上发生化学反应生成薄膜的方法。
CVD 技术根据反应条件的不同可以分为低压CVD、大气压CVD和等离子CVD等。
这些技术在实现复杂薄膜结构和化学组成控制上相较于PVD技术更具优势。
化学气相沉积技术可用于金属、氧化物、氮化物以及半导体材料等薄膜的制备。
然而,该技术所需的气体和化学物质成分较复杂,容易引起环境污染,并且对设备的要求较高。
3. 溶液法制备薄膜溶液法是一种常用的低成本、高效率的薄膜制备技术。
常见的溶液法包括旋涂法、浸渍法、喷涂法和柔性印刷法等。
这些方法通过将溶液中的溶质沉积在基底上,形成薄膜。
溶液法制备薄膜的优势在于简单易行、成本低、适用于大面积薄膜制备。
然而,溶液法制备出的薄膜常常具有较低的晶化程度和机械强度,且在高温和湿润环境下易失去稳定性。
4. 磁控溅射技术磁控溅射技术是一种通过离子轰击固体靶材的方法制备薄膜。
在磁控溅射过程中,离子轰击靶材,使靶材表面的原子转化为蒸汽,然后通过惰性气体的加速将蒸汽沉积在基底上。
磁控溅射技术可用于金属、氧化物、氮化物等薄膜的制备,并可实现厚度和成分的精确控制。
薄膜材料的制备方法及其应用

薄膜材料的制备方法及其应用第一章薄膜材料薄膜材料是一种表面积极高,厚度在微米到纳米级别的薄片状材料。
薄膜材料具有许多惊人的物理和化学性质,因此在许多不同的应用中都是不可或缺的材料。
薄膜材料的制备方法和应用研究在过去几十年中得到了迅速的发展。
第二章薄膜材料的制备方法首先,我们可以探索一些薄膜材料的制备方法。
以下是薄膜材料的几种主要制备方法:2.1 溅射溅射是得到薄膜材料的最常用方法之一。
通过放置目标材料在真空腔体内,与材料中的离子进行碰撞设计使得薄膜附着在基底上。
这种方法具有较高的质量和卓越的控制性能,被广泛应用于高分子材料,金属溅射薄膜和半导体设备。
2.2 化学气相沉积法一种典型的化学气相沉积法是热原子层沉积(HALCVD)。
其工作原理是利用化学反应将保持在气相状态的气体分压制造出所需的化合物,并将其沉积在基底表面。
由于产生的薄膜具有较高的均匀性、良好的纯度以及出色的控制性,因此广泛应用于显示器、光电器件等生产工艺中。
2.3 溶液工艺溶液法是一种制备大面积有机电子薄膜的简便方法。
这种方法的基本思路是将活性有机物放置在有机介质中溶解成一种溶液,然后将溶液高精度地喷涂在表面上。
产生的薄膜可以在常温下制成,并在通用设备和热塑性基质上进行涂覆。
由于其高质量的器件制作能力,从有色涂料到电子材料验证都有广泛用途。
第三章薄膜材料的应用3.1 晶体管和二极管薄膜材料作为晶体管和二极管中的材料,其制备和应用技术一直是电子行业的重点。
这些设备通常需要具有高面积、低导电电阻、高纵向导电性能和高晶格匹配度的特殊特性,以满足当前技术和市场的良好表现。
3.2 柔性电子柔性电子是指能够以各种方式或经受曲折、弯曲、侵蚀和扭曲。
由于薄膜材料具有优越的柔性、弯曲和可塑性、可在各种表面上涂覆、耐黄变和耐水洗性能,因此在该领域也起着重要作用。
该类应用,尽管其特殊性和复杂性所限制,但在智能手机、电脑、电视等产品中得到了广泛应用。
3.3 生物技术有机薄膜和金属薄膜都广泛应用于生物技术领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
______________________________________________________________________________________________________________ 精品资料 薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀 、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。
一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。这种方法是把装有基片的真空室抽成真空,使气体压强达到10¯²Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室和真空抽气系统两大部分组成。 保证真空环境的原因有防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱和蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料和高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩______________________________________________________________________________________________________________ 精品资料 埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecular beam epitaxy,MBE)。外延是一种制备单晶薄膜的新技术,它是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜和衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 MBE是在810—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷射到衬底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状和蒸发源温度决定。 二、离子镀是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热; 充入气体: 充入Ar或充入少量反应气体; 离化方式:被镀基体为阴极,利用高电压直流辉光放电 离子加速方式:在数百伏至数千伏的电压下加速,离化和离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollow cathode discharge )。等离子束作为蒸发源,可充入Ar、其他惰性气体或反应气体;利用低压大电流的电子束碰撞离化, 0至数百伏的加速电压。离化和离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其他惰性气体或反应气体; 利______________________________________________________________________________________________________________ 精品资料 用射频等离子体放电离化 , 0至数千伏的加速电压,离化和离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。 等离子体离化, DC或AC 50V 离子镀是一个十分复杂 过程,一般来说始终包括镀料金属的蒸发,气化,电离,离子加速,离子之间的反应,中和以及在基体上成膜等过程,其兼具真空蒸镀和真空溅射的特点。
三、溅射镀膜是在真空室中,利用荷能粒子轰击靶表面,使被轰击出的粒子在基片上沉积的技术。用带有几十电子伏特以上动能的粒子或粒子束照射固体表面,靠近固体表面的原子会获得入射粒子所带能量的一部分进而向真空中逸出,这种现象称为溅射。 应用于现在工业生产的主要溅射镀膜方式: (1)射频溅射是利用射频放电等离子体中的正离子轰击靶材、溅射出靶材原子从而沉积在接地的基板表面的技术。由于交流电源的正负性发生周期交替,当溅射靶处于正半周时,电子流向靶面,中和其表面积累的正电荷,并且积累电子,使其表面呈现负偏压,导致在射频电压的负半周期时吸引正离子轰击靶材,从而实现溅射。由于离子比电子质量大,迁移率小,不像电子那样很快地向靶表面集中,所以靶表面的点位上升缓慢,由于在靶上会形成负偏压,所以射频溅射装置也可以溅射导体靶。射频溅射装置的设计中,最重要的是靶和匹配回路。靶要水冷,同时要加高频高压。 (2)磁控溅射(高速低温溅射)。其沉积速率快、基片温度低,对膜层的损伤小、操作压力低。磁控溅射具备的两个条件是:磁场和电场垂直;磁场方向与阴极(靶)表面平行,并组成环形磁场。 ______________________________________________________________________________________________________________ 精品资料 电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar 在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。 (3)反应溅射。反应溅射是指在存在反应气体的情况下,溅射靶材时,靶材会与反应气体反应形成化合物(如氮化物或氧化物),在惰性气体溅射化合物靶材时由于化学不稳定性往往导致薄膜较靶材少一个或更多组分,此时如果加上反应气体可以补偿所缺少的组分,这种溅射也可以视为反应溅射。
化学气相沉积chemical vapor deposition(CVD) 一、热CVD指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。 ______________________________________________________________________________________________________________ 精品资料 原理:利用挥发性的金属卤化物和金属的有机化合物等,在高温下发生气相化学反应,包括热分解、氢还原(可制备高纯度金属膜)、氧化和置换反应等,在基板上沉积所需要的氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、金属、半导体等薄膜。 制备条件:1)在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室; 2)反应产物除了形成固态薄膜物质外,都必须是挥发性的; 3)沉积薄膜和基体材料必须具有足够低的蒸气压。
二、等离子体CVD(plasma chemical vapor deposition)是在高频或直流电场作用下,将原料气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。 在保持一定压力的原料气体中,输入直流、高频或微波功率,产生气体放电,形成等离子体。在气体放电等离子体中,由于低速电子与气体原子碰撞,故除产生正、负离子外,还会产生大量的活性基(激发原子、分子等),从而可大大增强反映气体的活性。这样就可以在较低的温度下,发生反应,产生薄膜。 PCVD可以在更低的温度下成膜。可减少热损伤,减低膜层与衬底材料间的相互扩散及反应多用于太阳能电池及液晶显示器等。 三、有机金属CVD(MOCVD)是将反应气体和气化的有机物通过反应室,经过热分解沉积在加热的衬底上形成薄膜。它是利用运载气携带金属有机物的蒸气进入反应室,受热分解后沉积到加热的衬底上形成薄膜。 其特点是:1.较低的衬底温度; 2.较高的生长速率,可生长极薄的薄膜; 3.精确的组分控制可进行多元混晶的成分控制,可实现多层结构及超晶格结构; 4.易获得大面积均匀薄膜; ______________________________________________________________________________________________________________ 精品资料 其缺陷是:1.残留杂质含量高 2.反应气体及尾气一般为易燃、易爆及毒性很强的气体。