5刚体力学基础习题思考题

合集下载

大学物理(上)习题讲解(刚体力学部分)

大学物理(上)习题讲解(刚体力学部分)

3 gl 3 2gs 0
亦即 l >6s ; 当 ’ 取负值,则棒向右摆,其条件 为 3 gl 3 2gs 0 亦即l <6s 棒的质心 C 上升的最大高度,与第一阶段情 况相似,也可由机械能守恒定律求得:
11 2 mgh ml 2 2 3 把式(5)代入上式,所求结果为
m2 m1 g M r / r m2 m1 g M / r
J m2 m1 2 r
a m2 m1 g M / r r m m 1 m r 2 1 2
当不计滑轮质量及摩擦阻力矩即令m=0、M=0时,有
2m1m2 T1 T2 g m2 m1
2 3 0
R
R
2
4
1 mR 2 2
例题5-3 一轻绳跨过一定滑轮,滑轮视为圆盘,绳的两 端分别悬有质量为m1和m2的物体1和2,m1< m2 如图所 示。设滑轮的质量为 m , 半径为 r , 所受的摩擦阻力矩 为 m。 绳与滑轮之间无相对滑动。试求物体的加速度和 绳的张力。
解:滑轮具有一定的转动惯 量。在转动中受到阻力矩 的作用,两边的张力不再 相等,设物体1这边绳的张 力为T1、 T1’(T1’= T1) ,
物体2这边的张力为
T2、 T2’(T2’= T2)
m1 m2
T1 T1
T2 T2
a m1 G1
a m2
a G2
因m2>m1,物体1向上运动,物体2向下运动,滑轮以顺 时针方向旋转,Mr的指向如图所示。可列出下列方程
T1 G1 m1a G2 T2 m2 a T2r T1r M J
例题5-7 恒星晚期在一定条件下,会发生超新星爆 发,这时星体中有大量物质喷入星际空间,同时星 的内核却向内坍缩,成为体积很小的中子星。中子 星是一种异常致密的星体,一汤匙中子星物体就有 几亿吨质量!设某恒星绕自转轴每 45 天转一周,它 的 内 核 半 径 R0 约 为 2107m , 坍 缩 成 半 径 R 仅 为 6103m的中子星。试求中子星的角速度。坍缩前后 的星体内核均看作是匀质圆球。 解:在星际空间中,恒星不会受到显著的外力矩,因 此恒星的角动量应该守恒,则它的内核在坍缩前后的 角动量J00和J应相等。因

第05章刚体力学基础学习知识补充

第05章刚体力学基础学习知识补充

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。

[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。

[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。

那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。

[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。

如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。

[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。

[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。

最新第五章刚体力学参考答案资料

最新第五章刚体力学参考答案资料

所受到的合外力矩的大小 M= mgl ,此时该系统角加速度的大小
2g
=.
3l
参考答案: 力矩: M 2mgl mgl mgl
据刚体定轴转动M =J 有:
M
mgl
2g
J 2m( l )2 ml2 3l 2
2m O
m
图 5-21
名师整理
优秀资源
三、 计算题
1、一转动惯量为 J 的圆盘绕一固定轴转动, 起初角速度为 0 .设它所受阻力矩与转动角速
名师整理
优秀资源
第五章 刚体力学参考答
一、选择题 [ C ] 1、如图所示, A、 B 为两个相同的绕着轻绳的
定滑轮. A 滑轮挂一质量为 M 的物体, B 滑轮受拉力 F,而 A 且 F= Mg.设 A、 B 两滑轮的角加速度分别为 A 和 B,不计
滑轮轴的摩擦,则有 (A) A= B.
(B) A> B.
地面为 v 的速率在台边缘沿逆时针转向走动时, 则此平台相对地面旋转的角速度和旋转方向
分别为
mR2 v
mR2 v
(A)
,顺时针. (B)
,逆时针.
JR
JR
mR2 v
(C)
J
mR2
,顺时针.
R
(D)
mR2 v J mR2 R ,逆时针.
参考答案:
视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-Jω 可得结论。
的四个质点, PQ= QR= RS= l,则系统对 OO 轴的转动惯量为 50ml 2 .
O′
参考答案:
据J
mi ri 2 有:
J 4m(3l )2 3m(2l )2 2ml2 0 50ml 2

刚体力学基础习题课

刚体力学基础习题课
动量矩与转动惯量的关系
刚体的动量矩
刚体的进动和章动
第五章
进动的定义和计算
进动是指刚体绕自身某定点作角速度矢量沿着垂直于该定点轴的平面内的圆周运动。
进动的角速度矢量可以表示为$omega = omega_0 + alpha times omega_0$,其中$omega_0$是初始角速度矢量,$alpha$是进动角速度矢量。
平动刚体的动能和动量分别为 (E = frac{1}{2}mv^2) 和 (p = mv),其中 m 为刚体的质量,v 为刚体的速度。
平动刚体的特征
平动刚体的运动规律
平动刚体的动能和动量
刚体的转动
转动刚体上任意两点的连线在运动过程中始终保持长度不变,但可以形成不同的角度。转动刚体的角速度和角加速度是矢量。
进动的角速度矢量的大小和方向可以通过向量的外积运算计算得出,即$|omega| = |omega_0| sqrt{1 + alpha^2}$,$tan theta = frac{alpha}{1 + alpha^2}$,其中$theta$是进动角。
章动的定义和计算
章动的角位移矢量的大小和方向可以通过向量的外积运算计算得出,即$|theta| = |theta_0| + frac{1}{2} |beta| t^2$,$tan varphi = frac{beta t}{2 |theta_0|}$,其中$varphi$是章动角。
01
静态平衡是稳定的,只要刚体受到微小的扰动,它就会恢复到原来的平衡状态。
刚体的平衡稳定性
03
刚体在静态平衡状态下,其重心位置保持不变,且各方向上的力矩平衡。
刚体的平衡状态
02
刚体的动态平衡

大学物理 第五章.

大学物理 第五章.

时,
刚体定轴转动的 角动量守恒定律
35
§5.4 刚体的角动量定理及守恒定律
例5.6:如图,质量为M,半径为R的转台,可绕通过中心竖直轴
转动,阻力忽略不计,质量为m的人站在台的边缘,人和台原来都 静止,如果人沿转台的边缘绕行了一周,问相对地面转台转过了多 少角度?
解:把人和转台看做一个系统
系统的角动量守恒 规定:逆时针转动为正方向,以 地面为参考系。 设人的角速度为ω,转台的角速度为Ω。

A = ∫ Mdθ = Mθ
42
例5.9:一质量为m,长为 l的匀质杆,两端用绳悬挂杆处于水平 状态,现突然将杆右端的悬线剪断,求(1)此瞬间另一根绳受到 的张力 ;(2)剪断绳子之后任一时刻杆的角速度 ω与转过角度 θ之 间的关系。 解: (1)首先考虑杆绕O点的的转动 根据转动定律: T O
匀变速运动
6
§5.1 刚体及其定轴转动描述
例5.1:一汽车发动机的转速在5s内由200r(转)/min均匀地增加 到3000r(转)/min。(1)求在这段时间内的初角速度、末角速 度和角加速度;(2)求这段时间内转过的角度;(3)发动机轴 上装有一半径为R=0.15m的飞轮,求轮边缘上一点在这第5s末的 切向加速度、法向加速度和总加速度。
24
§5.3 刚体转动的功和能
回顾: 质点 质量 牛顿运动定律
M = Jβ
刚体 转动惯量 转动定律
力做功
力矩做功
25
§5.3 刚体转动的功和能
一、力矩的功

dθ dr α r
α
F 在转动平面内
ω
元功: dA = F • dr = F dr cos α = F ( rdθ ) cos α F ( r cos α )dθ = Mdθ

第5章刚体力学基础

第5章刚体力学基础
i
mi xi2 yi2
i
o
yi
rimixi
y
x
Jy Jx
例: 圆盘:m,R, 求以直径为轴的转动惯量
J 1 m R2 4
例: 挂钟摆锤的转动惯量
o ml
1
J
1 3
m1l 2
1 2
m2 R2
m2 l
R2
mR 2
l 2
12
将轴移到棒的一端
J
l m x2dx
1
o
ml2
0l
3
x
例 : 均质圆盘:m ,R 计算它对通过盘心与 盘面垂直的转轴的转动惯量。
解:
dm
m
R2
2rdr
J r 2dm
Rm
0 R2
2r 3dr
dr r oR m
1 m R2 2
二 、平行轴定理
刚体对任一转轴的转动惯量J等于对
通过质心的平行转轴的转动惯量Jc加上刚 体质量m乘以两平行转轴间距离d的平方
相对于定轴的合外力矩
oo
ri mi
i Ri
Fi
y
M z M iz ri Fi sin i
x
o
i
i
即作用在各质元的力矩的z分量之和
二、刚体定轴转动定理
由于刚体只能绕z轴转动,引起转动的
力矩只有 Mz,因此转动动力学方程
Li
Mz
dLz dt
Ri mivi
dL
M
oo
ri dtmi
vi
T2
2m1r 2 J m2 g
m1 m2 r 2 J
结论:
1.由于考虑了滑轮的质量,使得 T1 T2
2. 若m1m2则T1T2

刚体力学习题课

刚体力学习题课

角动量定理 的微分形式
M = dL dt
角动量定理
t2
t1
Mdt
=
Jw2
Jw1
角动量守恒定律 M=0时,Jw=恒量
刚体力学两个主要公式
• 转动定律
Mz
=
J
dw
dt
=
J
• 角动量守恒定律
Lz = Jw = 恒量
• 机械能守恒定律:
• 当除重力矩以外旳其他合外力矩不作功或 作功为零时,则刚体机械能守恒。
T2 = T2'
对质点: mg T1 = ma1
对刚体: T2 mg = ma2
T12r T2r = J
a1 = 2r a2 = r
联立以上几式解得: 2g
19r
【例】基础训练(18)如图5-17所示、质量分别为m和2m、 半径分别为r和2r旳两个均匀圆盘,同轴地粘在一起,能够绕
经过盘心且垂直盘面旳水平光滑固定轴转动,对转轴旳转动

惯量为9mr2/2,大小圆盘边沿都绕有绳子,绳子下端都挂一 质量为m旳重物,求盘旳角加速度旳大小.
【例】基础训练(18)如图5-17所示、质量分别为m和2m、 半径分别为r和2r旳两个均匀圆盘,同轴地粘在一起,能够绕
经过盘心且垂直盘面旳水平光滑固定轴转动,对转轴旳转动

惯量为9mr2/2,大小圆盘边沿都绕有绳子,绳子下端都挂一 质量为m旳重物,求盘旳角加速度旳大小.
为),圆盘可绕经过其中心O旳竖直固定光滑轴转动.开始时,
圆盘静止,一质量为m旳子弹以水平速度v0垂直于圆盘半径打入 圆盘边沿并嵌在盘边上。求:(1) 子弹击中圆盘后竖直轴旳转动惯量为 ,忽视子弹重力造成旳摩擦阻力矩)
v0

大学物理学第二章刚体力学基础自学练习题

大学物理学第二章刚体力学基础自学练习题

⼤学物理学第⼆章刚体⼒学基础⾃学练习题第⼆章刚体⼒学基础⾃学练习题⼀、选择题4-1.有两个⼒作⽤在有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零;(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零;(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零;(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零;对上述说法,下述判断正确的是:()(A )只有(1)是正确的;(B )(1)、(2)正确,(3)、(4)错误;(C )(1)、(2)、(3)都正确,(4)错误;(D )(1)、(2)、(3)、(4)都正确。

【提⽰:(1)如门的重⼒不能使门转动,平⾏于轴的⼒不能提供⼒矩;(2)垂直于轴的⼒提供⼒矩,当两个⼒提供的⼒矩⼤⼩相等,⽅向相反时,合⼒矩就为零】4-2.关于⼒矩有以下⼏种说法:(1)对某个定轴转动刚体⽽⾔,内⼒矩不会改变刚体的⾓加速度;(2)⼀对作⽤⼒和反作⽤⼒对同⼀轴的⼒矩之和必为零;(3)质量相等,形状和⼤⼩不同的两个刚体,在相同⼒矩的作⽤下,它们的运动状态⼀定相同。

对上述说法,下述判断正确的是:()(A )只有(2)是正确的;(B )(1)、(2)是正确的;(C )(2)、(3)是正确的;(D )(1)、(2)、(3)都是正确的。

【提⽰:(1)刚体中相邻质元间的⼀对内⼒属于作⽤⼒和反作⽤⼒,作⽤点相同,则对同⼀轴的⼒矩和为零,因⽽不影响刚体的⾓加速度和⾓动量;(2)见上提⽰;(3)刚体的转动惯量与刚体的质量和⼤⼩形状有关,因⽽在相同⼒矩的作⽤下,它们的运动状态可能不同】3.⼀个⼒(35)F i j N =+v v v 作⽤于某点上,其作⽤点的⽮径为m j i r )34(-=,则该⼒对坐标原点的⼒矩为()(A )3kN m -?v ;(B )29kN m ?v ;(C )29kN m -?v ;(D )3kN m ?v。

【提⽰:(43)(35)4302092935i j kM r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】4-3.均匀细棒OA 可绕通过其⼀端O ⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题5-1. 如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。

解:受力分析如图 ma T mg 222=- (1)ma mg T =-1 (2)βJ r T T =-)(12 (3)βJ r T T =-)(1 (4)βr a = (5)联立 g a 41=, mg T 811=5-2. 如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

(1) 设杆的线lm =λ,在杆上取一小质元dx dm λ=gdx dmg df μλμ==gxdx dM μλ= 考虑对称mgl gxdx M l μμλ⎰==20412 (2) 根据转动定律d M J Jdt ωβ== ⎰⎰=-tw Jd Mdt 000ω 0212141ωμml mglt -=- 所以 gl t μω30=5-3. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。

假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。

dtdv mma T mg ==- βJ TR = βR dtdv = 整理 mg dtdv M m =+)21( gdt M m m dv t v ⎰⎰+=0021 2M m mgt v +=5-4. 轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。

已知滑轮对O 轴的转动惯量4/2MR J =,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?解:选人、滑轮与重物为系统,设u 为人相对绳的速度,v 为重物上升的速度,系统对轴的角动量 MuR MvR R M R v u M vR M L -=+--=23)4()(42ω 根据角动量定理 dtdL M = )23(43MuR MvR dt d MgR -= 0=dt du MRa dt dv MR MgR 232343== 所以 2g a =5-5. 计算质量为m 半径为R 的均质球体绕其轴线的转动惯量。

证明:设球的半径为R ,总重量为m ,体密度343Rm πρ=, 将球体划分为许多厚度为dZ 的圆盘,则盘的体积为 dZ Z R 222)(-π22252182()2155R R J R Z dZ R mR ππρρ-=-==⎰5-6. 一轻弹簧与一均匀细棒连接,装置如图所示,已知弹簧的劲度系数N/m 40=k ,当0θ=时弹簧无形变,细棒的质量kg 0.5=m ,求在0θ=的位置上细棒至少应具有多大的角速度ω,才能转动到水平位置?解:机械能守恒22212121kx J mg =+ω 根据几何关系 22215.1)5.0(+=+x 128.3-⋅=s rad ω5-7. 如图所示,一质量为m 、半径为R 的圆盘,可绕O 轴在铅直面内转动。

若盘自静止下落,略去轴承的摩擦,求:(1)盘到虚线所示的铅直位置时,质心C 和盘缘A 点的速率;(2)在虚线位置轴对圆盘的作用力。

解:在虚线位置的C 点设为重力势能的零点,下降过程机械能守恒221ωJ mgR = 2221mR mR J += R g 34=ω 34Rg R v c ==ω 1623A Rg v R ω== 273y F mg mR mg ω=+= 方向向上 5-8. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为l 31和l 32.轻杆原来静止在竖直位置。

今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以021v 的速度返回,试求碰撞后轻杆所获得的角速度。

解:根据角动量守衡 有022021322)3()32(32v ml m l m l l mv ⋅-⋅+=ωω lv 230=ω 5-9. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动。

开始时,圆盘静止,一质量为m 的子弹以水平速度v 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获得的角速度;(2)经过多少时间后,圆盘停止转动。

(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩。

) 解(1)角动量守恒 ωω2221mR MR mvR += 2(2)mv m M Rω=+ (2)2022π3R M M dM dmgr gr rdr MgR R μμμπ====⎰⎰⎰ 2221()032MgR t MR mR μω⋅∆=+-,()224M m t R Mg ωμ+∴∆= 由(1)已得:()22m M m Rω=+v ,代入即得32m t Mg μ∆=v5-10. 有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动。

另有一水平运动的质量为2m 的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短。

已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示。

求碰撞后从细棒开始转动到停止转动的过程所需的时间。

(已知棒绕O 点的转动惯量2131l m J =) 碰撞时角动量守恒 22112213m v l m l m v l ω=- lm v v m 1212)(3+=ω 细棒运动起来所受到的摩擦力矩gl m gxdx l m M l 10121μμ==⎰ dtd J M ω=- ⎰-=t gl m d l m dt 01212131μω g m v v m g l t 1212)(232μμω+==5-11. 如图所示,滑轮转动惯量为2m kg 01.0⋅,半径为cm 7;物体的质量为kg 5,用一细绳与劲度系数N/m 200=k 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计。

求:(1)当绳拉直、弹簧无伸长时使物体由静止而下落的最大距离。

(2)物体的速度达最大值时的位置及最大速率。

(1)机械能守恒。

设下落最大距离为hmgh kh =221m kmg h 49.02== (2)mgx J mv kx =++222212121ω 12222mgx kx v J m r ⎡⎤-⎢⎥=⎢⎥+⎢⎥⎣⎦若速度达最大值,0=dxdv )(245.0m kmg x ==1122222222259.80.2452000.245 1.31/0.015(710)mgx kx v m s J m r -⎡⎤⎡⎤⎢⎥-⨯⨯⨯-⨯⎢⎥===⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⨯⎣⎦5-12. 设电风扇的功率恒定不变为P ,叶片受到的空气阻力矩与叶片旋转的角速度ω成正比,比例系数的k ,并已知叶片转子的总转动惯量为J 。

(1)原来静止的电扇通电后t 秒时刻的角速度;(2)电扇稳定转动时的转速为多大?(3)电扇以稳定转速旋转时,断开电源后风叶还能继续转多少角度?解:(1)通电时根据转动定律有 dt d JM M r ω=- ωP M = ωk M r =代入两边积分 ωωωωd k P J dt t ⎰⎰-=020 )1(2t J ke k P --=ω(2)电扇稳定转动时的转速 k P m =ω (3) θωωωd d J k =- ⎰⎰=-00m d d Jk ωθωθ kP k J=θ 5-13. 如图所示,物体A 放在粗糙的水平面上,与水平桌面之间的摩擦系数为μ,细绳的一端系住物体A ,另一端缠绕在半径为R 的圆柱形转轮B 上,物体与转轮的质量相同。

开始时,物体与转轮皆静止,细绳松弛,若转轮以0ω绕其转轴转动。

试问:细绳刚绷紧的瞬时,物体A 的速度多大?物体A 运动后,细绳的张力多大?解:细绳刚绷紧时系统机械能守恒2220212121mv J J +=ωω ωR v = 013v R ω= ma mg T =-μβJ TR =-3mg T μ=βR a =5-14. 质量为m 的小孩站在半径为R 、转动惯量为J 的可以自由转动的水平平台边缘上(平台可以无摩擦地绕通过中心的竖直轴转动)。

平台和小孩开始时均静止。

当小孩突然一相对地面为v 的速率沿台边缘逆时针走动时,此平台相对地面旋转的角速度ω为多少?解:此过程角动量守恒 ωJ mrv -=0J mRv =ω 5-15. 以速度0v 作匀速运动的汽车上,有一质量为m (m 较小),边长为l 的立方形货物箱,如图所示。

当汽车遇到前方障碍物急刹车停止时,货物箱绕其底面A 边翻转。

试求:(1)汽车刹车停止瞬时,货物箱翻转的角速度及角加速度;(2)此时,货物箱A 边所受的支反力。

解:(1)角动量守恒 ω20322ml l mv = l v 430=ω 根据转动定律 β2322ml l mg = l g 43=β (2)0ct 0cn cx x 45cos ma 45cos ma ma N -==思考题5-1. 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量1m 和2m 的物体 (1m <2m ),如图所示.绳与轮之间无相对滑动,某时刻滑轮沿逆时针方向转动,则绳的张力多大?a m T g m 111=- (1)a m g m T 222=- (2) 插入图5-29βJ r T T =-)(21 (3)βr a = (4)联立方程可得 1T 、2T 。

12T T5-2. 一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化?答:增大5-3. 个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的:(A )机械能守恒,角动量守恒;(B )机械能守恒,角动量不守恒,(C )机械能不守恒,角动量守恒;(D )机械能不守恒,角动量不守恒. 答:(C )5-4. 在边长为a 的六边形顶点上,分别固定有质量都是m 的6个质点,如图所示。

相关文档
最新文档