1概A卷解析
人教A版高一数学必修第二册第十章《概率》单元练习题卷含答案解析 (32)

高一数学必修第二册第十章《概率》单元练习题卷9(共22题)一、选择题(共10题)1.掷一枚骰子的试验中,出现各点的概率都为16.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+B(B表示事件B的对立事件)发生的概率为( )A.13B.12C.23D.562.若事件A与B为互斥事件,则下列表示正确的是( )A.P(A∪B)>P(A)+P(B)B.P(A∪B)<P(A)+P(B)C.P(A∪B)=P(A)+P(B)D.P(A)+P(B)=13.某医院治疗一种疾病的治愈率为15.那么,前4个患者都没有治愈,第5个患者治愈的概率是( )A.1B.15C.45D.04.抛掷一枚骰子,观察向上的点数,则该试验中,基本事件的个数是( )A.1B.2C.4D.65.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C= {抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为( )A.0.7B.0.65C.0.35D.0.56.甲、乙两颗卫星同时独立地监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为( )A.0.95B.0.6C.0.05D.0.47.甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发 1 个球.若在某局比赛中,甲发球贏球的概率为 12,甲接发球赢球的概率为 25,则在比分为 10:10 后甲先发球的情况下,甲以 13:11 赢下此局的概率为 ( ) A . 225B . 310C . 110D . 3258. 袋中共有 15 个除了颜色外完全相同的球,其中有 10 个白球,5 个红球.从袋中任取 2 个球,所取的 2 个球中恰有 1 个白球,1 个红球的概率为 ( ) A .521B .1021C .1121D .19. 从 1,2,3,4,5 这五个数中,随机抽取 3 个不同的数,则这 3 个数的和为奇数的概率是 ( ) A . 15B . 25C . 12D . 3510. 我们记事件 P 为明天会下雨,事件 Q 为明天会下暴雨,则有 ( ) A . P ⊆Q B . Q ⊆PC . P =QD .事件 P 与事件 Q 没有关系二、填空题(共6题)11. 先后两次抛掷一枚质地均匀的骰子,所得点数分别为 x ,y ,则 xy 是整数的概率是 .12. 思考辨析 判断正误某事件发生的概率随着试验次数的变化而变化.( )13. 设集合 A ={1,2},B ={1,2,3},分别从集合 A 和 B 中随机取一个数 a 和 b ,确定平面上的一个点 P (a,b ),记“点 P (a,b ) 落在直线 x +y =n 上”为事件 C n (2≤n ≤5,n ∈N ),若事件 C n 的概率最大,则 n 的所有可能值为 .14. 从 1,2,3,4 这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是 .15. 某班有 42 名学生,其中选考物理的学生有 21 人,选考地理的学生有 14 人,选考物理或地理的学生有 28 人,从该班任选一名学生,则该生既选考物理又选考地理的概率为 .16. 袋中 12 个小球,分别有红球、黑球、黄球各若干个(这些小球除颜色外其他都相同),从中任取一球,得到红球的概率为 13,得到黑球的概率比得到黄球的概率多 16,则得到黑球、黄球的概率分别是.三、解答题(共6题)17.某商店计划每天购进某商品若干件,商店每销售1件该商品可获利润50元,若供大于求,则剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利润30元.(1) 若商店一天购进商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;(2) 商店记录了该商品50天内的日需求量n(单位:件,n∈N),将数据整理后得到下表:日需求量(单位:件)89101112频数(单位:天)91115105若商店一天购进10件该商品,以记录的50天内各需求量的频率作为各需求量发生的概率,求当天的利润(单位:元)在[400,550]内的概率.18.甲、乙两人各掷一枚质地均匀的骰子,如果向上的面的点数之和为偶数,则甲赢,否则乙赢.(1) 求两枚骰子向上的面的点数之和为8的概率;(2) 这种游戏规则公平吗?试说明理由.19.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.20.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人员抽取人数A18xB362C54y(1) 求x,y;(2) 若从高校B,C抽取的人中选2人做专题发言,求这2人都来自高校C的概率.21. 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为 14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为 29.(1) 分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(2) 从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.22. 海关对同时从 A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取 6 件样品进行检测.地区A B C 数量50150100(1) 求这 6 件样品中来自 A ,B ,C 各地区商品的数量;(2) 若在这 6 件样品中随机抽取 2 件送往甲机构进行进一步检测,求这 2 件商品来自相同地区的概率.答案一、选择题(共10题)1. 【答案】C【解析】由题意知,B表示“大于或等于5的点数出现”,事件A与事件B互斥,由互斥事件的概率加法公式,可得P(A+B)=P(A)+P(B)=26+26=46=23.【知识点】互斥事件的概率计算2. 【答案】C【知识点】事件的关系与运算3. 【答案】B【解析】每一个患者治愈与否都是随机事件,故第5个患者被治愈的概率仍为15.【知识点】频率与概率4. 【答案】D【知识点】事件与基本事件空间5. 【答案】C【解析】因为“抽到的产品不是一等品”与事件A是对立事件,所以所求概率P=1−P(A)=0.35.【知识点】事件的关系与运算6. 【答案】A【解析】方法一:在同一时刻至少有一颗卫星预报准确可分为:①甲预报准确,乙预报不准确;②甲预报不准确,乙预报准确;③甲预报准确,乙预报准确.这三个事件彼此互斥,故事件的概率为0.8×(1−0.75)+(1−0.8)×0.75+0.8×0.75=0.95.方法二:“在同一时刻至少有一颗卫星预报准确”的对立事件是“在同一时刻甲、乙两颗卫星预报都不准确”,故事件的概率为1−0.2×0.25=0.95.【知识点】事件的相互独立性7. 【答案】C【解析】在比分为10:10后甲先发球的情况下,甲以13:11赢下此局分两种情况:①后四球胜方依次为甲乙甲甲,概率为P1=12×35×12×25=350;②后四球胜方依次为乙甲甲甲,概率为P2=12×25×12×25=125.所以甲以13:11赢下此局的概率为P1+P2=110.【知识点】事件的相互独立性8. 【答案】B【解析】方法一:从袋中取出2个球的方法有C152=105(种),取出1个白球的方法有C101=10(种),取出1个红球的方法有C51=5(种),故取2个球,1白1红的方法有C101C51=50(种),所以P=50105=1021.方法二(间接法):从袋中取出2个球的方法有C152=105(种),若取出的2个球是同色的,则取出的方法有C102+C52=55(种).记“取出的2个球同色”为事件A,则P(A)=55105=1121.因此,取出的2个球不同色的概率为P=1−P(A)=1021.【知识点】古典概型9. 【答案】B【知识点】古典概型10. 【答案】B【知识点】事件的关系与运算二、填空题(共6题)11. 【答案】718【知识点】古典概型12. 【答案】×【知识点】频率与概率13. 【答案】3或4【解析】点P的所有可能值为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),点P(a,b)落在直线x+y=n上(2≤n≤5,n∈N),则当n=2时,P点是(1,1),当n=3时,P点可能是(1,2),(2,1),当n=4时,P点可能为(1,3),(2,2),当 n =5 时,P 点是 (2,3),即事件 C 3,C 4 的概率最大,故 n =3 或 4. 【知识点】古典概型14. 【答案】13【解析】一次随机抽取两个数共有 (1,2),(1,3),(1,4),(2,3),(2,4),(3,4) 这六组,一个数是另一数的 2 倍的有 2 种, 故所求概率为 13.【知识点】古典概型15. 【答案】 16【解析】设选考物理的学生为集合 A ,选考地理的同学为集合 B , 由题意得:Card (A ∪B )=Card (A )+Card (B )−Card (A ∩B ), 即 28=21+14−Card (A ∩B ), 解得:Card (A ∩B )=7,所以该班有 7 人既选考物理又选考地理,所以从该班任选一名学生,则该生既选考物理又选考地理的概率为 742=16, 故答案为:16. 【知识点】古典概型16. 【答案】 512,14【解析】因为得红球的概率为 13, 所以黑球或黄球的概率为 23.记“得到黄球”为事件 A ,“得到黑球”为事件 B , 则 {P (A )+P (B )=23,P (B )−P (A )=16.所以 P (A )=14,P (B )=512. 【知识点】事件的关系与运算三、解答题(共6题)17. 【答案】(1) 当 n ≥10 时,y =50×10+(n −10)×30=30n +200; 当 n <10 时,y =50×n −(10−n )×10=60n −100,所以当天的利润 y 关于当天需求量 n 的函数解析式为 y ={30n +200,n ≥10,n ∈N60n −100,n <10,n ∈N .根据题意求出当天的利润 y 关于当天需求量 n 的函数解析式,应用了函数与方程思想. (2) 记录的 50 天内有 9 天获得的利润为 380 元,有 11 天获得的利润为 440 元,有 15 天获得的利润为 500 元,有 10 天获得的利润为 530 元,有 5 天获得的利润为 560 元. 若当天的利润在 [400,550] 内,则该商品的日需求量可以为 9 件、 10 件、 11 件,其对应的频数分别为 11,15,10,则当天的利润在 [400,550] 内的概率 P =11+15+1050=3650=1825.【知识点】古典概型、建立函数表达式模型18. 【答案】(1) 若用 (x,y ) 表示甲得到的点数为 x ,乙得到的点数为 y , 则样本空间可记为 Ω={(x,y )∣ x,y =1,2,3,4,5,6}, 则两人的投掷结果共有 36 个基本事件,两枚骰子向上的面的点数之和为 8 的基本事件有 (2,6),(6,2),(3,5),(5,3),(4,4),共 5 个, 所以两枚骰子向上的面的点数之和为 8 的概率 P =536. (2) 这种游戏规则公平. 理由如下:设“甲胜”为事件 A ,“乙胜”为事件 B .甲胜即点数之和为偶数,所包含的基本事件有 (1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6),共 18 个, 所以 P (A )=1836=12,P (B )=1−1836=12,所以 P (A )=P (B ),故此游戏规则公平. 【知识点】古典概型19. 【答案】(1) 甲连胜四场的概率为116.(2) 根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为 116;乙连胜四场的概率为 116;丙上场后连胜三场的概率为 18.所以需要进行第五场比赛的概率为 1−116−116−18=34. (3) 丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为 18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况;胜胜负胜,胜负空胜,负空胜胜,概率分别为 116,18,18.因此丙最终获胜的概率为 18+116+18+18=716. 【知识点】事件的相互独立性、古典概型20. 【答案】(1) 由题意可得x 18=236=y54,所以 x =1,y =3.(2) 记从高校B 抽取的 2 人为 b 1,b 2,从高校C 抽取的 3 人为 c 1,c 2,c 3,则从高校B ,C 抽取的 5 人中选 2 人作专题发言的基本事件有 (b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3) 共 10 种,设选中的 2 人都来自高校C 的事件为 X ,则 X 包含的基本事件有 (c 1,c 2),(c 1,c 3),(c 2,c 3) 共 3 种,因此 P (X )=310,故选中的 2 人都来自高校C 的概率为 310. 【知识点】古典概型、分层抽样21. 【答案】(1) 设 A 、 B 、 C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有 { P(A ⋅B)=14,P(B ⋅C)=112,P (A ⋅C )=29, 即 { P (A )⋅(1−P (B ))=14, ⋯⋯①P (B )⋅(1−P (C ))=112, ⋯⋯②P (A )⋅P (C )=29. ⋯⋯③ 由①、③得P (B )=1−98P (C ).代入②得 27[P (C )]2−51P (C )+22=0. 解得 P (C )=23 或119(舍去).将 P (C )=23 分别代入 ③、② 可得 P (A )=13,P (B )=14. 即甲、乙、丙三台机床各加工的零件是一等品的概率分别是 13,14,23.(2) 记 D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件, 则P (D )=1−P(D)=1−(1−P (A ))(1−P (B ))(1−P (C ))=1−23⋅34⋅13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为 56. 【知识点】事件的关系与运算22. 【答案】(1) A ,B ,C 三个地区商品的总数量为 50+150+100=300,抽样比为 6300=150, 所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2, 所以 A ,B ,C 三个地区的商品被选取的件数分别是 1,3,2.(2) 方法一:设 6 件来自 A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2. 则从 6 件样品中抽取的这 2 件商品构成的所有基本事件为:{A,B 1},{A,B 2},{A,B 3},{A,C 1},{A,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共 15 个.每个样品被抽到的机会相等,因此这些基本事件的出现是等可能的.记事件 D :“抽取的这 2 件商品来自相同地区”,则事件 D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共 4 个. 所以 P (D )=415,即这 2 件商品来自相同地区的概率为415.方法二:这 2 件商品来自相同地区的概率为 C 32+C 22C 62=3+115=415.【知识点】分层抽样、古典概型。
2021届全国高考数学一轮复习知识巩固AB卷:专题13 统计、统计案例与概率(A卷)(含解析)

2021年全国高考数学一轮复习知识巩固AB卷(理科)专题13 统计、统计案例与概率(A卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2019年夏季来临,某品牌饮料举行夏季促销活动,瓶盖内部分别印有标识“谢谢惠顾”、A B C标识的饮料数量之比标识B“再来一瓶”以及标识C“品牌纪念币一枚”,每箱中印有,,为3:1:2,若顾客购买了一箱(12瓶)该品牌饮料,则兑换“品牌纪念币”的数量为()A.2 B.4 C.6 D.82.一般来说,一个班级的学生学号是从1开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3、21、17、19、36、8、32、24,则该班学生总数最可能为()A.39人B.49人C.59人D.超过59人3.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编 从中抽取60个样本,如下提供随机数表的第4行到第6行:号分别为001,002,,599,60032 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号()A.522B.324C.535D.5784.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A、B、C、D、E五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( ) A .获得A 等级的人数减少了 B .获得B 等级的人数增加了1.5倍 C .获得D 等级的人数减少了一半D .获得E 等级的人数相同5.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s <>6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .9007.某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )A .甲型号手机在外观方面比较好B .甲、乙两型号的系统评分相同C .甲型号手机在性能方面比较好D .乙型号手机在拍照方面比较好8.某企业的一种商品的产量与单位成本数据如下表:产量x (万件) 14 16 182022单位成本y (元/件)12107a3若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( ) A .4.5 B .5C .5.5D .69.相关变量的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程,相关系数为;方案二:剔除点,根据剩下数据得到线性回归直线方程,相关系数为.则( )A .B .C .D .10.为了判断高中生选修理科是否与性别有关.现随机抽取50名学生,得到如下列联表:根据表中数据,得到的观测值()22501320107 4.84423272030K ⨯⨯-⨯=≈⨯⨯⨯,若已知,,则认为选修理科与性别有关系出错的可能性约为( ) A .B .C .D .11.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( ) A .12B .13C .14D .1512.函数()()22846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是( ) A .310B .23C .35D .45第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.某公司对2019年14月份的获利情况进行了数据统计,如下表所示:月份x 123 4利润y /万元5 6 6.58利用线性回归分析思想,预测出2019年8月份的利润为11.6万元,则y 关于x 的线性回归方程为__________.14.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:参照附表,在犯错误的概率最多不超过______(填百分比)的前提下,可认为“该种疫苗有预防埃博拉病毒感染的效果”. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++15.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第三象限的概率为_____.16.如图,在边长为2的正方形中,以的中点为圆心,以为半径作圆弧,交边于点,从正方形中任取一点,则该点落在扇形中的概率为_____.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)本市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼.摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[25,85]之间,根据统计结果,做出频率分布直方图如图:(1)根据频率分布直方图,求这100位摄影者年龄的样本平均数x和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中评出20个最佳作品,并邀请作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组应抽取的人数;年龄[25,35)[35,45)[45,55)[55,65)[65,75)[75,85]人数②若从较年轻的前三组作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[35,45)的概率.18.(12分)国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):规定:实心球投掷距离在[)9,13之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值ξ,将频率视为概率.(1)求ξ,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;(2)现在从实心球投掷距离在[)5,7,[)13,15之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在[)5,7内的概率.19.(12分)已知某商品每件的生产成本x (元)与销售价格y (元)具有线性相关关系,对应数据如表所示:(1)求出y 关于x 的线性回归方程y bx a =+;(2)若该商品的月销售量z (千件)与生产成本x (元)的关系为221z x =-+,[2,10]x ∈, 根据(1)中求出的线性回归方程,预测当x 为何值时,该商品的月销售额最大.附:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.20.(12分)随着教育信息化2.0时代的到来,依托网络进行线上培训越来越便捷,逐步成为实现全民终身学习的重要支撑.最近某高校继续教育学院采用线上和线下相结合的方式开展了一次300名学员参加的“国学经典诵读”专题培训.为了解参训学员对于线上培训、线下培训的满意程度,学院随机选取了50名学员,将他们分成两组,每组25人,分别对线上、线下两种培训进行满意度测评,根据学员的评分(满分100分)绘制了如下茎叶图:(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;(2)求50名学员满意度评分的中位数m,并将评分不超过m、超过m分别视为“基本满意”、“非常满意”两个等级.①利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?②根据茎叶图填写下面的列联表:并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,()20.0100.0050.0016.6357.87910.828P K kk≥.21.(12分)在边长为1的正六边形ABCDEF中,其中心为点O.(1)在正六边形ABCDEF的边上任取一点P,求满足OP在OE上的投影大于12的概率;(2)从A,B,C,D,E,F这六个点中随机选取两个点,记这两个点之间的距离为x,求x大于等于3的概率.22.(12分)某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y(万人)与年份x的数据:第x年 1 2 3 4 5 6 7 8 9 10 旅游人数y(万人)300 283 321 345 372 435 486 527 622 800该景点为了预测2021年的旅游人数,建立了y与x的两个回归模型:模型①:由最小二乘法公式求得y 与x 的线性回归方程50.8169.7y x =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近.(1)根据表中数据,求模型②的回归方程bx y ae =.(a 精确到个位,b 精确到0.01). (2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).回归方程①50.8169.7y x =+②bx y ae =1021()iii y y =-∑ 30407 14607参考公式、参考数据及说明: ①对于一组数据()()()1122,,,,,,n n v w v w v w ,其回归直线w v αβ=+的斜率和截距的最小二乘法估计分别为121()(),()niii nii w w v v w v v v βαβ==--==--∑∑.②刻画回归效果的相关指数22121()1()nii i n ii yy R yy ==-=--∑∑.③参考数据: 5.46235e ≈, 1.43 4.2e ≈.x y u1021()ii xx =-∑()()101iii x x y y =--∑ ()()101iii x x uu =--∑表中1011ln ,10i i i i u y u u ===∑.专题13 统计、统计案例与概率 答 案+解 析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】根据题意,“品牌纪念币一枚”的瓶数占全部瓶数的三分之一,即11243⨯=. 2.【答案】A【解析】因为随机抽样中,每个个体被抽到的机会都是均等的,所以110,1120,2130,3140,…,每组抽取的人数,理论上应均等;又所抽取的学生的学号按从小到大顺序排列为3、8、17、19、21、24、32、36,恰好使110,1120,2130,3140四组中各有两个,因此该班学生总数应为40左右,故选A . 3.【答案】D【解析】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,578合适,则满足条件的6个编号为436,535,577,348,522,578, 则第6个编号为578,故选D . 4.【答案】B【解析】设2016年参加考试x 人,则2018年参加考试2x 人,根据图表得出两年各个等级的人数如下图所示:由图可知A ,C ,D 选项错误,B 选项正确,故本小题选B . 5.【答案】A【解析】由题意,根据品滚石的计算公式,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则()()()()()2222212481757070706070907050x x x ⎡⎤=-+-++-+-+-⎣⎦()()()2221248170707050050x x x ⎡⎤=-+-++-+⎣⎦, ()()()()()222222124817070708070707050s x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()222124817070701007550x x x ⎡⎤=-+-++-+<⎣⎦, 故275s <.故选A . 6.【答案】A【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为0.03100.3⨯=,301000.3n ∴==,本题正确选项A . 7.【答案】C【解析】从图中可得:甲型号手机在外观方面评分为90,乙型号手机在外观方面评分为85, 故A 正确;甲型号手机在系统方面评分为95,乙型号手机在系统方面评分也为95,故B 正确; 甲型号手机在性能方面评分为85,乙型号手机在外观方面评分为90,故C 错误; 甲型号手机在拍照方面评分为85,乙型号手机在拍照方面评分为90,故D 正确; 故选C . 8.【答案】B 【解析】1416182022901855x,1210733255a ay , x y ,在线性回归方程ˆ 1.1528.1yx =-+上, 1.151828.17.4y ,则32=7.45a,解得5a =,故选B . 9.【答案】D【解析】由散点图得负相关,所以,因为剔除点后,剩下点数据更具有线性相关性,更接近,所以.故选D .10.【答案】B【解析】由观测值,对照临界值得4.844>3.841,由于P (X 2≥3.841)≈0.05,∴认为选修理科与性别有关系出错的可能性为5%.故选B . 11.【答案】C【解析】(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以甲、乙将贺年卡送给同一人丁的情况一种, 概率是14,故选C . 12.【答案】C【解析】由题意,知()00f x ≥,即200280x x -++≥,解得{}0024x x -≤≤,所以由长度的几何概型可得概率为4(2)36(4)5P --==--,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】ˆ0.954yx =+ 【解析】设线性回归方程为ˆˆˆybx a =+,因为52x =,518y =, 由题意可得551ˆ288ˆ11.6ˆˆb a b a⎧+=⎪⎨⎪+=⎩,解得ˆ0.95b =,ˆ4a =,即ˆ0.954y x =+,故答案为ˆ0.954yx =+. 14.【答案】5%【解析】由题意,计算观测值()2210010302040 4.762 3.84150503070K ⨯⨯-⨯==>⨯⨯⨯,参照附表,可得:在犯错误的概率不超过5%的前提下,认为“小动物是否被感染与有没有服用疫苗有关”. 故答案为5%.15.【答案】29【解析】试验发生包含的事件(k ,b )的取值所有可能的结果有:(﹣1,﹣2);(﹣1,1);(﹣1,2);(1,﹣2);(1,1);(1,2);(2,﹣2);(2,1);(2,2)共9种结果.而当00k b <>⎧⎨⎩时,直线不经过第三象限,符合条件的(k ,b )有2种结果,∴直线不过第三象限的概率29P =,故答案为29.16.【答案】π8【解析】如图,正方形面积,因为,故,所以π4AOM ∠=, 同理π4NOB ∠=,所以π2MON ∠=, 又,∴()212222ππMONS =⨯⨯=扇形. ∴从正方形中任取一点,则该点落在扇形中的概率为8ππ24P ==.故答案为π8.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)平均数60,中位数4557;(2)①详见解析,②35. 【解析】(1)在频率分布直方图中,这100位参赛者年龄的样本平均数300.05400.1500.15x =⨯+⨯+⨯600.35700.2800.1560+⨯+⨯+⨯=.设中位数为m ,由0.050.10.15(55)0.350.5m +++-⨯=,解得4557m =(或答55.57). (2)①每组应各抽取人数如下表:②根据分层抽样的原理,年龄在前三组内分别有1人、2人、3人,设在第一组的是a ,在第二组的是1b ,2b ,在第三组的是1c ,2c ,3c ,列举选出2人的所有可能如下:1(,)a b ,2(,)a b ,1(,)a c ,2(,)a c ,3(,)a c ,12()b b ,,11(,)b c ,12(,)b c ,13(,)b c ,21(,)b c ,22(,)b c ,23(,)b c ,12(,)c c ,13(,)c c ,23(,)c c ,共15种情况.设“这2人至少有一人的年龄在区间[35,45]”为事件A , 则93()155P A ==. 18.【答案】(1)平均值9.77ξ=,百分比62%;(2)0.6. 【解析】(1)根据平均值的定义得92340226681012149.77100100100100100ξ=⨯+⨯+⨯+⨯+⨯=, 因为实心球投掷距离在[)9,13之内时,测试成绩为“良好”,所以40220.6262%100+==. (2)实心球投掷距离在[)5,7,[)13,15之内的男生分别有9,6人,用分层抽样的方法抽取5人,则分别抽取3,2人.从这5人中随机抽取3人参加提高体能的训练的总数为35C 10=,在被抽取的3人中恰有两人的实心球投掷距离在[)5,7的总数为2132C C 6=, 所以在被抽取的3人中恰有两人的实心球投掷距离在[)5,7内的概率为60.610p ==. 19.【答案】(1)ˆ46y x =-;(2)预计当6x =时,该商品的销售额最大为162元.【解析】(1)根据题意,5678 6.54x +++==,15172127204y +++==,41515617721827540i ix y=⨯+⨯+⨯+⨯=∑,42222215678174i x =+++=∑,所以414222145404 6.52041744 6.54i ii x y x yb x x--⨯⨯===-⨯-∑∑,所以204 6.56a y bx =-=-⨯=-, 所以y 关于x 的线性回归方程ˆ46yx =-. (2)依题意,销售额2()(221)(46)896126([2,10])f x x x x x x =-+-=-+-∈. 其对称轴为9662(8)x =-=⨯-,又因为()f x 为开口向下的抛物线,故当6x =时()f x 最大, 最大值()836966126162f x =-⨯+⨯-=. 答:预计当6x =时,该商品的销售额最大为162元.20.【答案】(1)对线下培训满意度更高;(2)①84人,②有把握. 【解析】(1)对线下培训满意度更高.理由如下:①由茎叶图可知:在线上培训中,有72%的学员满意度评分至多79分,在线下培训中,有72%的学员评分至少80分.因此学员对线下培训满意度更高.②由茎叶图可知:线上培训满意度评分的中位数为76分,线下评分的中位数为85分.因此学员对线下培训满意度更高.③由茎叶图可知:线上培训的满意度评分平均分高于80分;线下培训的平均分低于80分,因此学员对线下培训满意度更高.④由茎叶图可知:线上培训的满意度评分在茎7上的最多,关于茎7大致呈对称分布;线下培训的评分分布在茎8上的最多,关于茎8大致呈对称分布,又两种培训方式打分的分布区间相同,故可以认为线下培训评分比线上培训打分更高,因此线下培训的满意度更高. 以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知798079.52m +==. ①参加线上培训满意度调查的25名学员中共有7名对线上培训非常满意,频率为725, 又本次培训共300名学员,所以对线上培训满意的学员约为73008425⨯=人. ②列联表如下:于是2250(181877)9.6825252525k ⨯-⨯==⨯⨯⨯,因为9.687.879>,所以有99.5%的把握认为学员对两种培训方式的满意度有差异. 21.【答案】(1)13;(2)35. 【解析】(1)OD ,OF 在OE 上的投影为cos cos OD OD OE OF OF OE 〈〉=〈〉,,11cos602=⨯︒=, ∴当P 在线段FE (除点F )和线段ED (除点D )上运动时,OP 在OE 上的投影大于12,∴OP 在OE 上的投影大于12的概率2163p ==.(2, 选出的两个点不相邻有9种,(A ,C ),(A ,D ),(A ,E ),(B ,D ),(B ,E ),(B ,F ),(C ,E ), (D ,F ),(C ,F );六个点中随机选取两个点,总共有15种:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F );(93155P x ∴≥==. 22.【答案】(1)0.11235x y e =;(2)见解析. 【解析】(1)对bxy ae =取对数,得ln ln y bx a =+, 设ln u y =,ln c a =,先建立u 关于x 的线性回归方程,()()()10110219.000.10883iii i i x x u u b x x==--==≈-∑∑, 6.050.108 5.5 5.456 5.46c u bx =-≈-⨯=≈,5.46235c a e e =≈≈,∴模型②的回归方程为0.11235x y e =.(2)由表格中的数据,有30407>14607,即101022113040714607()()i i i i y y y y ==>--∑∑,即10102211304071460711()()iii i y y y y ==-<---∑∑,2212R R <,模型①的相关指数21R 小于模型②的22R ,说明回归模型②的拟合效果更好.2021年时,13x =,预测旅游人数为0.1113 1.43235235235 4.2987y e e ⨯==≈⨯=(万人).。
第一章 随机事件及其概率 模拟练习(A卷答案)

则:P A1 0.5, P A2 0.3, P A3 0.2, (1) P B P BA1 P BA2 P BA3
9. 甲乙两人独立地向同一目标各射击一次, 若甲的命中率为 p , 乙的命中率为 0.75, 已知恰好有一人击中目标的概率为 0.45,求甲的命中率 p 的值.
解:设事件A表示甲击中目标,事件B表示乙击中目标, 事件C表示恰有一人击中目标,则: P C 0.45 p 1 0.75 1 p 0.75 p 0.6.
4 .设 P( A) p , P( B) q ,且事件 A 、 B 相互独立,则 P( A B) p q pq ,
P( A B) 1 p pq .
姓名
解: P( A B) P( A)+P( B)-P( AB) P( A)+P( B)-P( A) P B p q pq.
解:( 1)P B A P B P A 0.4 0.2 0.2; (2)P B C P B P C P BC 0.4 0.3 0.1 0.6; (3)P A C P A P C P AC 0.2 0.3 0. 0.5.
解:设事件Ai 分别表示产品由甲、乙、丙厂生产,i=1,2,3.事件B表示产品为正品, P B A1 0.96, P B A2 0.92, P B A3 0.86,
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。
若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
2023年新高考1卷英语完形填空解析

2023年新高考1卷英语完形填空解析一、试题概述2023年新高考1卷英语完形填空是一篇以“友谊与成长”为主题的短文,主要讲述了一个年轻人与他的朋友之间的故事。
文章内容贴近生活,语言简洁明了,适合高中学生的英语水平。
共有20道题目,涵盖了词汇、语法、语境等多个方面,难度适中。
二、试题解析1. 词汇理解在本次完形填空中,词汇理解题主要考查了动词、名词、形容词等实词的使用。
例如,第3题考查了“shelter”这个动词的意思,需要根据上下文理解其含义;第7题则考查了形容词“tender”的用法,需要结合语境来选择正确的词义。
2. 语法理解完形填空中的语法理解题主要考查了句子的结构、时态、语态等方面。
例如,第5题考查了句子的时态,需要结合上下文判断句子应该使用什么时态;第14题则考查了语态,需要判断句子中的主语与动词之间的关系。
3. 语境理解完形填空中的语境理解题主要考查了文章的整体意思和上下文之间的联系。
例如,第9题考查了主人公在文中扮演的角色,需要结合上下文理解文章的主题;第18题则考查了作者的态度,需要从文章中找出作者对某个话题或观点的表述。
三、解题技巧1. 跳读全文,了解大意:在解答完形填空之前,要先跳读全文,了解文章的主题和大致内容,为后续的解题打下基础。
2. 逐一分析,排除选项:在分析完形填空的选项时,要根据上下文和语法知识排除错误的选项,逐步缩小选择范围。
3. 结合语境,选择最佳答案:完形填空的答案往往不是唯一的,但每个选项在某些情况下可能是正确的。
因此,在选择答案时,要结合语境,选择最符合文章意思的答案。
4. 复读全文,验证答案:在完成所有选择题后,要复读全文,检查答案是否符合文章意思和逻辑。
如果有不妥之处,要及时更正。
四、参考答案及解析1. A:根据后文“a little while later”可知此处表示时间上的先后顺序,因此选A,“后来”。
2. C:根据下文提到的“befriended”可知此处是在描述他与小狗建立友谊的过程,因此选C,“喜欢”。
2024年上半年高等教育自学考试全国统一命题考试法学概论试卷含解析

2024年上半年高等教育自学考试全国统一命题考试法学概论试卷一、单项选择题1、关于行政组织及行政组织法,下列表述正确的是______。
A.行政组织集体负责制属于行政组织法的基本原则之一B.国务院是最高行政机关C.村委会不可能成为行政主体D.公务员与行政组织之间劳动关系的解除适用《劳动合同法》的有关规定2、甲造纸厂的污水未经处理就排入河流,并对下游乙村的农田造成了污染。
下列表述正确的是______。
A.如果乙村不能证明农田污染由甲厂造成,则甲厂不承担法律责任B.如果甲厂的污水符合行业标准,则甲厂不承担法律责任C.如果甲厂的污染行为性质严重,则可能受到刑事处罚D.对甲厂的行为应适用过错责任原则3、根据我国监察法,属于监察机关调查的是______。
A.危害公共安全的犯罪B.滥用职权的犯罪C.军队内部发生的犯罪D.侵害人身的犯罪4、经济法的制度框架中两个重要的组成部分是______。
A.市场规制法和宏观调控法B.市场规制法和财税法C.宏观调控法和消费者权益保护法D.反垄断法和反不正当竞争法5、公使所携国书的签发主体是______。
A.中央政府B.国家元首C.外交部D.外交部长6、下列有关行政诉讼管辖异议的表述,正确的是______。
A.有权提出异议的主体只包括原告和被告B.只能向受理案件的一审法院提起异议C.异议可以通过书面或口头方式提出D.当事人对驳回异议的裁定不能上诉7、离婚的请求非依夫妻的本国法及法院地法均具有离婚的理由的,不得提出。
该规则属于______。
A.重叠适用的冲突规范B.单边冲突规范C.双边冲突规范D.选择适用的规范8、关于我国环保制度,下列表述正确的是______。
A.各级政府是负责环保工作的唯一机构B.我国的环境与自然资源保护法不具有综合性C.我国最早的环保法律规范可以追溯至殷商时期D.我国宪法未规定有关环境保护的内容9、在起诉之前,为了判决能够得到执行,可以______。
A.直接采取私力救济扣押被告的货物B.向公安机关申请先予执行C.向检察机关申请先予执行D.向法院申请保全10、“不动产物权,适用不动产所在地法律。
贵州2021年省考申论(A卷) 词句概念分析题(1)
贵州2021年省考申论(A卷)-词句、概念解释题分析(1)词句、概念解释题,做题步骤:一、根据资料概括表面含义二、根据资料,合理引申,挖掘深层含义三、依据资料,分析提炼相关问题、原因、影响、对策。
有针对性取舍。
(二)请结合“给定资料4”,谈谈对画线句子“‘小慢车’是一辆开往春天的列车,为乡亲们带来了温暖和希望”的理解。
(30分)要求:全面准确,有条理。
不超过400字。
作答思考:1.小慢车是指什么车?为什么是开往春天,而不是其他季节?2.关键词:乡亲们;3.带来了温暖,温暖指什么?有哪些体现?4.带来了希望,是什么样的希望?4.77岁的彝族老阿妈克迟莫,乘坐5619次列车从下普雄前往上普雄走访亲戚。
阿妈很爱笑,也很健谈,因为牙齿几乎掉光,她笑着的时候总是害羞地抿着双唇。
她说:“1968年,25岁从上普雄嫁到了下普雄,走了一天多的山路,才到夫家。
两年后的1970年,‘小慢车’开了,40多分钟就可以回娘家。
”尽管最近几年山里的大多数村子都修了公路,但是大凉山区经常出现落石、滑坡和泥石流等地质灾害阻断公路,冬季也经常封路。
对于大凉山深处的彝族老乡们来说,“小慢车”还是最安全、时间最有保障的出行方式,很多时候也是唯一的出行方式。
“即使某些区段因为各种原因无法通行,我们也会保障其他区段的运行。
”乘务员阿霞说。
1.小慢车是什么?5617次列车。
是最安全、时间最有保障的出行方式,也是唯一的出行方式。
问题:大凉山区经常出现落石、滑坡和泥石流等地质灾害阻断公路,冬季也经常封路。
在过去的几十年间,这趟被称为“小慢车”的列车早已彻底融入当地人的日常生活。
作为孩子们的校车,当地人的赶集车、公交车、婚车……这趟列车也在用“润物无声”的方式支持着大凉山区的脱贫攻坚。
即使是普通话不流利的彝族老乡,也会在听到“小慢车”三个字时,第一时间吐出一个“好”字。
1.小慢车:彻底融入当地人的日常生活,用“润物无声”的方式支持着大凉山区的脱贫攻坚。
《新媒体概论》试题A卷及答案解析
-----------------------------------------装---------------------------------------订-----------------------------------线-------------------------------------------------------------年级: 专业: 组别: 学号: 姓名:------------------------------------------密--------------------------------------封-----------------------------------线-------------------------------------------------------------20 19 -20 20 学年第 1 学期武汉体育学院体育科技学院期末考试试卷(闭卷)专业:网络与新媒体 年级:2019 课程:新媒体概论(必修课)一、多选题(每小题2分,共40分,每题有2-4个答案,多选或错选不得分;少选,每选对一个得0.5分1. 以下哪些是衡量新闻价值大小的价值要素:( ) A.重要性 B.显著性 C.趣味性 D.接近性 E.娱乐性2. 以下哪些原因使得针对新媒体著作权保护变得十分困难:( ) A.网速太快 B.零成本复制性 C.全球传播性 D.隐蔽性E.共享性 3. 电子商务的一笔交易一般包含着:( )A.资金流B.信息流C. 人才流D.物流E.交易流 4. 评估网络广告效果的标准主要有:( )A.被动浏览B.主动点击C.交互性D.销售收入E.广告价位 5. 以下哪些是电子商务的基本特征:( )A.方便性B.普遍性C.娱乐性D.开放性E.安全性 6. 视频网站的主要特点有:( )A.用户互动B.高度专业性C.内容生产速度快D.内容来源多样化E.视频可以植入网页 7. 网络舆论的主要功能有:( )A.交流思想B.信息传播C.舆论监督D.商业盈利E.娱乐大众 8. 以下哪两个是新闻的两块基石:( )A.真实性B. 新鲜性C.重要性D.趣味性E.接近性 9. Web2.0的主要特征有:( )10. 以下哪些是网络舆论的的主要特性:( )A.丰富性B.商业性C.互动性D.及时性E.专业性 11. 影响谣言产生、传播的因素主要有:( )A.事件的重要性B.事件的模糊性C.信息的不对称性D.公众的教育水平E.造谣者的水平12. 影响网民上网的心理和行为的主要因素有:( )A.是否会外语 B .教育水平 C .年龄 D.教育水平 E.性别 13. 网络安全包括哪四个层次:( )A.国家安全B.人身安全C.商业安全D.个人安全E.自身安全 14. 与传统广告相比,网络广告的主要特点有:( )A.互动性和主动性强B.实时性强C.针对性强D.形式多样E.商业性强 15. 微博的优势主要体现在以下几个方面:( )A.发布平台的开放与多样性B.主动性强C.简单易用D.即时性强E.专业性 16. 驱动电子商务发展的主要因素有:( )。
第十章概率同步训练卷 (含答案)高一数学人教A版(2019)必修第二册
人教版(2019)必修第二册第十章同步训练卷概率注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某城市2017年的空气质量状况如下表所示: 污染指数 30 60 100 110 130 140概率P 110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染.该城市2017年空气质量达到良或优的概率为( )A .35 B .1180 C .119 D .562.抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”;事件B 表示“不小于5的点数出现”.则一次试验中,事件A 或事件B 至少有一个发生的概率为( )A .23 B .13 C .1 2 D .563.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则()()P A B P A =+ ()P B ;③若事件A ,B ,C 彼此互斥,则()()()1P A P B P C ++=;④若事件A ,B 满足()()1P A P B +=,则A 与B 是对立事件.其中正确命题的个数是( ) A .1 B .2 C .3 D .4 4.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12 B .512 C .14 D .16 5.将一颗质地均匀的骰子(各面上分别标有点数1,2,3,4,5,6)先后抛掷3次,至少出现1次6点向上的概率是( ) A .5216 B .25216 C .31216 D .91216 6.在如图所示的电路中,5个格子表示保险匣,格子中所示数据表示通电时保险丝被熔断的概率,则当开关合上时,电路畅通的概率是( ) A .2936 B .551720 C .2972 D .29144 7.某城市有连接8个小区A 、B 、C 、D 、E 、F 、G 、H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )此卷只装订不密封 班级姓名准考证号考场号座位号A.13B.23C.14D.348.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:t):根据样本估计本市生活垃圾投放情况,下列说法错误的是()厨余垃圾”箱可回收物”箱其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60A.厨余垃圾投放正确的概率为3B.居民生活垃圾投放错误的概率为3 10C.该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱D.厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品有20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A为“是一等品”,B为“是合格品”,C为“是不合格品”,则下列结果正确的是()A.7()10P B=B.9()10P A B=C.()0P A B=D.()()P A B P C=10.抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P,则下列结论中正确的是()A.1234P P P P===B.312P P=C.12341P P P P+++=D.423P P=11.下列对各事件发生的概率判断正确的是()A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是2912.以下对各事件发生的概率判断正确的是()A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.每个大于2的偶数都可以表示为两个素数的和,例如835=+,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字l,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是5 36D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是1 2三、填空题:本大题共4小题,每小题5分.13.今年由于猪肉涨价太多,更多市民选择购买鸡肉、鸭肉、鱼肉等其它肉类.某天在市场中随机抽出100名市民调查,其中不买猪肉的人有30位,买了肉的人有90位,买猪肉且买其它肉的人共30位,则这一天该市只买猪肉的人数与全市人数的比值的估计值为________.14.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,3 5,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.15.甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为13,且第一次由甲开始射击.①求前3次射击中甲恰好击中2次的概率____________;②求第4次由甲射击的概率________.16.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的两球同色”,B=“取出的2球中至少有一个黄球”,C=“取出的2球至少有一个白球”,D“取出的两球不同色”,E=“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件:④()1P C E =;⑤()()P B P C=.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:“星队”至少猜对3个成语的概率.18.(12分)计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为45,34,23,在实际操作考试中“合格”的概率依次为12,23,56,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.19.(12分)设甲、乙、丙三位老人是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为005.,甲、丙都需要照顾的概率为01.,乙、丙都需要照顾的概率为0125..(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?(2)求这一小时内至少有一位老人需要照顾的概率.20.(12分)一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回.求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)2次取出的4个球中恰有2个红球,2个白球的概率.21.(12分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;a ,求甲的康复时间比乙的康复时间长的概率;(2)如果25(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)22.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?人教版(2019)必修第二册第十章同步训练卷答 案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=,所以该城市2017年空气质量达到良或优的概率1131025P =+=,故选A .2.【答案】A【解析】事件A 表示“小于5的偶数点出现”;事件B 表示“不小于5的点数出现”, ∴()2163P A ==,()2163P B ==,又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A 和事件B 为互斥事件,则一次试验中,事件A 或事件B 至少有一个发生的概率为()()()112333P A B P A P B =+=+=,故选A .3.【答案】A【解析】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A 与B 是互斥事件时,才有()()()P A B P A P B =+,对于任意两个事件A ,B 满足()()()()P A B P A P B P AB =+-,所以是不正确的;③也不正确.()()()P A P B P C ++不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A ={摸到红球或黄球},事件B ={摸到黄球或黑球}, 显然事件A 与B 不互斥,但()()11122P A P B +=+=. 4.【答案】B 【解析】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则()()()1221135343412P A P A P A =+=⨯+⨯=,故选B . 5.【答案】D 【解析】将一颗质地均匀的骰子先后掷3次,这3次之间是相互独立, 记事件A 为“抛掷3次,至少出现一次6点向上”, 则A 为“抛掷3次都没有出现6点向上”, 记事件i B 为“第i 次中,没有出现6点向上”,1,2,3i =,则123A B B B =, 又()56i P B =,所以()351256216P A ⎛⎫== ⎪⎝⎭, 所以()()1259111216216P A P A =-=-=,故选D . 6.【答案】A 【解析】当开关合上时,电路畅通即表示A 至B 畅通且B 至C 畅通, A 至B 畅通的概率1111511114236P ⎡⎤⎛⎫⎛⎫=-⨯--⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, B 至C 畅通的概率2112915630P =-⨯=, 所以电路畅通的概率125292963036P PP =⨯==,故选A . 7.【答案】B 【解析】此人从小区A 前往H 的所有最短路径为A B C E H →→→→,A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,A D F G H →→→→,共6条;记“此人经过市中心O ”为事件M ,则M 包含的基本事件为A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,共4条,()4263P M ∴==,即他经过市中心的概率为23,故选B .8.【答案】D【解析】由表格可得:厨余垃圾投放正确的概率40024001001003==++; 可回收物投放正确的概率240424030305==++; 其他垃圾投放正确的概率6032020605==++.对A ,厨余垃圾投放正确的概率为23,故A 正确;对B ,生活垃圾投放错误有200602020300+++=, 故生活垃圾投放错误的概率为3003100010=,故B 正确;对C ,该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱,故C 正确; 对D ,厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的的投放量的平均数600300100100033x ++==,可得方差22221100010001000[(600)(300)(100)]3333s =⨯-+-+-=380000200009≠,故D 错误,故选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的 选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】ABC【解析】由题意知A ,B ,C 为互斥事件,故C 正确;又因为从100件中抽取产品符合古典概型的条件, 所以7()10P B =,2()10P A =,1()10P C =,则9()10P A B =, 故A 、B 、C 正确,故D 错误, 故选ABC . 10.【答案】CD 【解析】由题意,抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为1234,,,P P P P , 根据独立重复试验的概率计算公式, 可得:3111()28P ==,3211()28P ==,2233113C ()(1)228P =-=,1243113C (1)228P =⋅-=, 由1234P P P P =<=,故A 是错误的; 由313P P =,故B 是错误的; 由12341P P P P +++=,故C 是正确的; 由423P P =,故D 是正确的, 故选CD . 11.【答案】AC 【解析】对于A ,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为211413327⎛⎫-⨯= ⎪⎝⎭,故A 正确; 对于B ,用A 、B 、C 分別表示甲、乙、丙三人能破译出密码,则1()5P A =,1()3P B =,1()4P C =,“三个人都不能破译出密码”发生的概率为42325345⨯⨯=,所以此密码被破译的概率为23155-=,故B 不正确; 对于C ,设“从甲袋中取到白球”为事件A ,则82()123P A ==;设“从乙袋中取到白球”为事件B ,则61()122P B ==,故取到同色球的概率为2111132322⨯+⨯=,故C 正确;对于D ,易得()()P A B P B A =,即()()()()P A P B P B P A ⋅=,即()[1()]()[1()]P A P B P B P A -=-,∴()()P A P B =,又1()9P A B =,∴1()()3P A P B ==,∴2()3P A =,故D 错误,故选AC .12.【答案】BCD【解析】对于A ,画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P (甲获胜)13=,P (乙获胜)13=,故玩一局甲不输的概率是23,故A 错误;对于B ,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有2与3,2与5,2与7,2与11,2与13,3与5,3与7,3与11,3与13,5与7,5与11,5与13,7与11,7与13,11与13共15种结果,其中和等于14的只有一组3与11,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B 正确;对于C ,基本事件总共有6636⨯=种情况,其中点数之和是6的有()1,5,()2,4,()3,3,()4,2,()5,1,共5种情况, 则所求概率是536,故C 正确; 对于D ,记三件正品为1A ,2A ,3A ,一件次品为B ,任取两件产品的所有可能为12A A ,13A A ,1A B ,23A A ,2A B ,3A B ,共6种; 其中两件都是正品的有12A A ,13A A ,23A A ,共3种, 则所求概率为3162P ==,故D 正确, 故选BCD . 三、填空题:本大题共4小题,每小题5分. 13.【答案】04. 【解析】由题意,将买猪肉的人组成的集合设为A ,买其它肉的人组成的集合设为B , 则韦恩图如下:A B 中有30人,()U A B 中有10人, 又不买猪肉的人有30位,∴U B A 中有20人, ∴只买猪肉的人数为10010203040---=, ∴这一天该市只买猪肉的人数与全市人数的比值的估计值为400.4100=, 故答案为0.4.14.【答案】101125【解析】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()145P A =,()235P A =,()325P A =. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯=, 故答案为101125.15.【答案】227,1327【解析】①由题意,前3次射击中甲恰好击中2次,即前2次甲都击中目标,但第三次没有击中目标,故它的概率为121233327⨯⨯=.②第4次由甲射击包括甲连续射击3次且都击中;第一次甲射击击中,但第二次没有击中,第三次由乙射击没有击中;第一次甲射击没有击中,且乙射击第二次击中,但第三次没有击中;第一次甲射击没有击中,且乙射击第二次没有击中,第三次甲射击击中; 故这件事的概率为3112221222113333333333327⎛⎫+⨯⨯+⨯⨯+⨯⨯=⎪⎝⎭.16.【答案】①④ 【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”,①由对立事件定义得A 与D 为对立事件,故①正确;②B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③C 与E 有可能同时发生,不是对立事件,故③错误; ④()631155P C =-=,()1415P E =,8()15P CE =, 从而()()()()1P C E P C P E P CE =+-=,故④正确; ⑤C B ≠,从而()()P B P C ≠,故⑤错误, 故答案为①④. 四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】23. 【解析】记事件A ,“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”, 由题意,E ABCD ABCD ABCD ABCD ABCD =++++, 由事件的独立性与互斥性,得()()()P E P ABCD P ABCD =+()()()P ABCD P ABCD P ABCD +++ ()()()()P A P B P C P D =()()()()P A P B P C P D +⋅()()()()P A P B P C P D +()()()()P A P B P C P D +⋅()()()()P A P B P C P D + 323212323132224343434343433-⎛⎫=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭, 所以“星队”至少猜对3个成语的概率为23. 18.【答案】(1)丙;(2)1130. 【解析】(1)设“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C ,则412()525P A =⨯=,321()432P B =⨯=,255()369P C =⨯=, 因为()()()P C P B P A >>,所以丙获得合格证书的可能性最大. (2)设“三人考试后恰有两人获得合格证书”为事件D , 则214215315()()()()529529529P D P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯ 1130=. 19.【答案】(1)0.2,0.25,0.5.(2)07..【解析】(1)记事件A =“甲在这一小时内需要照顾”,事件B =“乙在这一小时内需要照顾”.事件C =“丙在这一小时内需要照顾”.由题意,知事件,,A B C 两两相互独立.且()()()()()()()()()0.050.10.125P AB P A P B P AC P A P C P BC P B P C ⎧==⎪==⎨⎪==⎩,解得()()()0.20.250.5P A P B P C ⎧=⎪=⎨⎪=⎩,即甲、乙、丙三位老人在这一小时内需要照顾的概率分别是0.2,0.25,0.5. (2)由(1),知()0.8P A =,()0.75P B =,()0.5P C =, 所以这一小时内至少有一位老人需要照顾的概率()()()()110.7P P ABC P A P B P C =-=-=.20.【答案】(1)3100;(2)2150. 【解析】记“第1次取出的2个球都是白球”为事件A ,“第2次取出的2个球都是红球”为事件B ,因为每次取出后再放回,所以A 、B 是相互独立事件.(1)由古典概型知,3()10P A =,1()10P B =, 因此,313()()()1010100P AB P A P B ==⨯=, 故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是3100. (2)画出树状图得到相关事件的样本点数,如图所示:由图知,样本点总数为100,设“2次取出的4个球中恰有2个红球,2个白球”为事件C , 则事件C 中含有的样本点数为31661342⨯+⨯+⨯=, 因此4221()10050P C ==, 故2次取出的4个球中恰有2个红球,2个白球的概率是2150. 21.【答案】(1)37;(2)1049;(3)11a =或18. 【解析】(1)甲有7种取法,康复时间不少于14天的有3种取法,所以概率37P =. (2)如果25a =,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,共有49种取法,甲的康复时间比乙的康复时间长的列举如下(13,12),(14,12),(14,13),(15,12),(15,13),(15,14),(16,12)(16,13),(16,15),(16,14)有10种取法, 所以概率1049P =. (3)把B 组数据调整为a ,12,13,14,15,16,17或12,13,14,15,16,17,a ,可见当11a =或18a =时,与A 组数据方差相等.(可利用方差公式加以证明,但本题不需要)22.【答案】(1)005.;(2)045.;(3)1200. 【解析】把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为ABC 、AB 1、AB 2、AB 3、AC 1、AC 2、AC 3、A 12、A 13、A 23、BC 1、BC 2、BC 3、B 12、B 13、B 23、C 12、C 13、C 23、123,共20个.(1)事件E={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123号3个球,()10.0520P E ==. (2)事件F ={摸出的3个球为2个黄球1个白球},事件F 包含的基本事件有9个,()90.4520P F ==. (3)事件G ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},()20.120P G ==,假定一天中有100人次摸奖, 由摸出的3个球为同一颜色的概率可估计事件G 发生有10次,不发生90次, 则一天可赚90110540⨯-⨯=,每月可赚1200元.。
《第1章 集合与函数概念》2013年单元检测卷A(一)
人教A版必修1《第1章集合与函数概念》2013年单元检测卷A(一)人教A版必修1《第1章集合与函数概念》2013年单元检测卷A(一)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(2012•临川区模拟)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中23.(4分)(2009•广东)已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图.C D.227.(4分)(2009•辽宁)已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<的x取值范围,[,,)[)22二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)A、B是两个非空集合,定义集合A﹣B={x|x∈A且x∉B},若M={x|﹣3≤x≤1},N={y|y=x2,﹣1≤x≤1},则M﹣N=_________.12.(4分)(2010•上海)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是_________.13.(4分)若函数f(2x+1)=x2﹣2x,则f(3)=_________.14.(4分)设f(x)=x+3,x∈[﹣3,3],g(x)=,求F(x)=f(x)+g(x)解析式,则F(x)的值域为_________.15.(4分)已知a,b为实数,集合M=,N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b等于_________.16.(4分)(2007•天津一模)某市出租车规定3公里内起步价8元(即不超过3公里,一律收费8元),若超过3公里,除起步价外,超过部分再按1.5元/公里收费计价,若乘客与司机约定按四舍五入以元计费不找零,下车后乘客付了16元,则乘车里程的范围是_________.三、解答题(本大题共4小题,共36分,解答应写出文字说明、证明过程或推演步骤)17.(8分)已知:U={﹣1,2,3,6},集合A⊆U,A={x|x2﹣5x+m=0}.若∁U A={2,3},求m的值.18.(10分)已知集合A={x|x2﹣(2m+8)x+m2﹣1=0},B={x|x2﹣4x+3=0},C={x|1≤x≤6},A⊆(B∩C),求m的取值范围.19.(10分)函数是定义在(﹣1,1)上的奇函数,且.(1)确定函数的解析式;(2)证明函数f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.(8分)函数f(x)=x2+2x﹣3a,x∈[﹣2,2].(Ⅰ)若a=﹣1,求f(x)的最值,并说明当f(x)取最值时的x的值;(Ⅱ)若f(x)+2a≥0恒成立,求a的取值范围.人教A版必修1《第1章集合与函数概念》2013年单元检测卷A(一)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(2012•临川区模拟)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中23.(4分)(2009•广东)已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图.C D.227.(4分)(2009•辽宁)已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<的x取值范围,[,,)[)||,解得.)<22二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)A、B是两个非空集合,定义集合A﹣B={x|x∈A且x∉B},若M={x|﹣3≤x≤1},N={y|y=x2,﹣1≤x≤1},则M﹣N={x|﹣3≤x<0}.12.(4分)(2010•上海)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是a≤1.13.(4分)若函数f(2x+1)=x2﹣2x,则f(3)=﹣1.=∴∴14.(4分)设f(x)=x+3,x∈[﹣3,3],g(x)=,求F(x)=f(x)+g(x)解析式,则F(x)的值域为[﹣1,3]..15.(4分)已知a,b为实数,集合M=,N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b等于2.→∴16.(4分)(2007•天津一模)某市出租车规定3公里内起步价8元(即不超过3公里,一律收费8元),若超过3公里,除起步价外,超过部分再按1.5元/公里收费计价,若乘客与司机约定按四舍五入以元计费不找零,下车后乘客付了16元,则乘车里程的范围是.=乘车里程的范围是故答案为:三、解答题(本大题共4小题,共36分,解答应写出文字说明、证明过程或推演步骤)17.(8分)已知:U={﹣1,2,3,6},集合A⊆U,A={x|x2﹣5x+m=0}.若∁U A={2,3},求m的值.18.(10分)已知集合A={x|x2﹣(2m+8)x+m2﹣1=0},B={x|x2﹣4x+3=0},C={x|1≤x≤6},A⊆(B∩C),求m的取值范围.<﹣..,解得{m|m或19.(10分)函数是定义在(﹣1,1)上的奇函数,且.(1)确定函数的解析式;(2)证明函数f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.),所以=,解得=﹣,.的解集为20.(8分)函数f(x)=x2+2x﹣3a,x∈[﹣2,2].(Ⅰ)若a=﹣1,求f(x)的最值,并说明当f(x)取最值时的x的值;(Ⅱ)若f(x)+2a≥0恒成立,求a的取值范围.参与本试卷答题和审题的老师有:xiexie;wubh2011;gongjy;yhx01248;sxs123;wfy814;翔宇老师;maths;qiss;wodeqing;刘长柏;yuhong;wdlxh;wyz123;wdnah;dddccc;caoqz(排名不分先后)菁优网2013年11月13日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
概率统计试卷(A
)解析 1
一.
是非题
是 是 非 非 是 是 是 . .
二.
选择题
(b)(a)(b)(d)(c).
三. 填空题(18分,每题3分)[ 方括弧内为B卷答案 ]
1. 4/7 . 2. 他其040)4/(1)(yyyfY
3. 0.8446 . 4. 0.1 . 5. 1/3 ; 2 . 6. 上限为 6.356 .
四. 计算与应用题
1. A 任取2箱都是民用口罩,
k
B
丢失的一箱为k 3,2,1k分别表示民用口罩,医用口罩,消毒棉花.
368511032
1
)()()(29252925292431CCCCCCBAPBPAP
kkk
.83368363)(/21)(/)()()(2924111APCCAPBAPBPABP
2. (1) .4/1A
(2) 他其0202/)4/1(),()(xxdydyyxfxfxxX
当20x时,他其0)2/(1)(),()(xyxxxfyxfxyfXXY
(3) 202,3/4)2/()(dxxXE 20,0)4/()(xxdyydxYE
20,0)4/()(xxdyyxdxXYE
0)()()(),cos(YEXEXYEYX
所以X与Y不相关.
3. 他其0101)(xxfX 000)(yyeyfyY
dxzxfxfzfYXZ)2()()(
2
0210zxx
2/10zx
x
得z轴上的分界点0与2
20202/)1(02/)1()(12/2)2(102)2(z
zedxezeedxezf
z
zxz
zxz
Z
4. 设 他其出台彩电为次品且未被查第01iXi5102~1i
6105)(
iXE
, )1051(105)(66iXD
经检验后的次品数 51021iiXY,1)(YE,61051)(YD,
由中心极限定理,近似地有 )1051,1(~6NY
.0228.0)2(11051131)3(1)3(6YPYP
5. (1) 28/1681iiXX, 令 XpXE43)(,
得 p的矩估计为 4/14/)3(ˆXp.
(2) 似然函数为
42
8
1)]3()[2()]1()[0()()(XPXPXPXPxXPpLi
i
42
)21()1(4ppp
)21ln(4)1ln(2ln64ln)(lnppppL
令 0218126])(ln[ppppL, 0314122pp
12/)137(p
. 由 2/10p,故12/)137(p舍去
所以p的极大似然估计值为 .2828.012/)137(ˆp
6. 由样本得 1267X, 65.33/40)(31412iiXXS.
(1) 要检验的假设为 1260:,1260:10HH )
3
检验用的统计量 )1(~/0ntnSXT,
拒绝域为 1824.3)3()1(025.02tntT.
1824.3836.34/65.3126012670T
,落在拒绝域内,
故拒绝原假设0H,即不能认为结果符合公布的数字12600C.
(2) 要检验的假设为 2:,2:10HH
检验用的统计量 )1(~)1(22022nSn,
拒绝域为 815.7)3()1(205.022n
815.7104/4020
,落在拒绝域内,
故拒绝原假设0H,即不能认为测定值的标准差不超过20C.
五、 证明题 (6分)
由题设 3!3)(emmXPm,3!3)(ennYPn,,2,1,0,mn
ikikkiYPkXPkiYkXPiYXP00
)()(),()(
ikkikikkikkikiieekiek060
33
33
!)(!!!1!)(3!
3
66!6)33(!1eiieii
, ,2,1,0i
所以 YX仍服从泊松分布,参数为6.